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HIGHLIGHTS

A novel synthetic strategy was

developed for coating single-

layered TiO2 mesopores

The assembly process showed

great controllability and versatility

Extensive electrochemical

sodium-storage properties were

achieved
We have demonstrated a confined interfacial monomicelle assembly approach for

accurately coating ordered monolayered TiO2 mesopores on diverse surfaces. By

regulating the synthetic conditions, the coated mesoporous TiO2 layers can be

well controlled with desired thickness, mesopore size, and switchable coated

surfaces. The resulting monolayered mesoporous TiO2 exhibit excellent sodium-

storage properties. This unique mesoporous TiO2 coating strategy affords great

potential in constructing multicomponent nanostructures with mesoporosities for

advanced technologies.
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Progress and Potential

The development of core-shell

structures has been in great

demand recently owing to their

integrated functionalities.

However, the progress in reliable

coating of porous semiconductors

remains unproductive. Here, we

have demonstrated a confined

interfacial monomicelle assembly

method for controlled coating of

ordered single-layered

mesoporous TiO2. The coating

method can be well controlled

with tunable coated layers,

mesopore size, and switchable

coated surfaces. The resulting
SUMMARY

Mesoporous core-shell nanostructures have recently been receiving extensive

scientific interest; however, reliable approaches for coating mesoporous mate-

rials still remain exciting challenges, except for amorphous silica. We report, for

the first time, a confined interfacial monomicelle assembly method for

controlled coating of anatase TiO2 with single-layered ordered mesopores on

diverse surfaces, opening up the area of coating ordered mesoporous crystal-

line materials that possess mesopores originating from self-assembled

surfactant instead of accumulated nanocrystals. This facile and repeatable

methodology relies on the solvent-confinement effect of glycerol during the

assembly process and monomicelle hydrogel preformation by selective evapo-

ration of double-solvent precursors. This assembly process shows precise

controllability and great versatility, endowing the coated TiO2 layers with highly

tunable thickness, mesopore size, and switchable coated surfaces. The ultrathin

monolayered mesopores of such mesoporous TiO2 shells, in combination with

their high surface area and highly crystalline nature, afford them excellent

rate capability and superior cyclability for sodium-ion storage.
mesoporous TiO2 exhibit

excellent electrochemical

properties as a sodium-ion anode,

which is attributed to their unique

mesostructures associated with

accessible high surface area and

ultrathin layers. Such accurately

designed mesoporous core-shell

nanostructures are expected to

provide a useful platform to

produce numerous delicate core-

shell nanostructures with

integrated functionalities and

mesoporosities for potential

applications, such as catalysts,

sensors, energy storage, and

energy conversion.
INTRODUCTION

Core-shell nanostructures have recently been receiving considerable scientific

attention in various fields because of their combined functionalities of cores and

shells, improved stabilities and dispersibilities of core particles, or even pristine pho-

tonic, electronic properties.1–13 However, most shells formed around cores are

commonly composed of dense or solid parts. Turning a dense shell into a mesopo-

rous one provides markedly improved properties because such mesopores on shells

are able to accommodate molecules and allow the diffusion into and out of cores

due to their textural properties associated with the high pore volumes and surface

areas.14–16 A few advantageous examples include substantially enhanced reactant

accessibilities and catalytic sites for mesoporous TiO2 shells,17,18 and much better

conductivities and structural stabilities for mesocarbon-coated materials.19

The implementation of all these approaches strongly depends on constructing mes-

oporous-shelled nanostructures with controlled parameters, including composition,

distribution, and thickness. A number of strategies have been developed to pursue

these aims.20–26 For instance, the representative surfactant-templating approach,20

which involves soft core particles, structure-directing agents, and silica sources

under alkaline conditions, has been widely used for coating various functional

nanomaterials with mesoporous SiO2 shells. Owing to its great simplicity and high
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reproducibility, it can also be extended to fabricate SiO2-based asymmetric

nanoparticles21 and yolk-shell nanostructures.22,23 Unfortunately, these approaches

cannot generate mesoporous core-shell structures with other compositions. The

controllable coating of ordered mesoporous metal oxides, such as TiO2 over func-

tional cores, still remains an exciting challenge. Although TiO2 has a sol-gel reaction

quite similar to that of SiO2, with similar molecular structures of precursors (e.g.,

tetrabutyl titanate [TBOT], tetraethyl orthosilicate), and both can form three-dimen-

sional (3D) -O-M-O-M-O- networks,27 the highly reactive titanium precursors en-

dowed by the low electronegativity and high coordination number of titanium

give rise to immense difficulties in precisely controlling the sol-gel chemistry of

TiO2 on interfaces.

As a consequence, the progresses in controlled coating of mesoporous TiO2 shells

remain underdeveloped. For instance, a general method similar to the Stöber pro-

cess for silica has been developed to synthesize porous TiO2 shells for constructing

multifunctional core-shell particles,28 but the mesopores normally generated from

TiO2 grain accumulation instead of surfactant-micelle templates are disordered

and lack control. Alternatively, Guan et al. reported a method for coating mesopo-

rous TiO2 shells on various surfaces via a cooperative assembly-directed

strategy.29 However, such relatively small mesopores from hexadecylamine

(HDA) and disordered structural regularity may hinder the efficient diffusion of

guest molecules. Although other synthetic approaches such as utilizing ‘‘silica-pro-

tected calcination’’ to control TiO2 grains30 or the atomic layer deposition

method31,32 to deposit titania layers with ultrathin thickness (<1 nm) are able to

successfully form nanoporous TiO2 shells, the multistep processes are relatively

tedious and the TiO2 mesostructures cannot be highly adjusted. Precise control

of the coating of mesoporous crystalline titania at the single-layer level has not

been achieved to date. On the basis of these premises, the exploration of general

and reliable synthetic methods for coating ordered mesoporous TiO2 as a thin

layer under delicate control is imperative.

We demonstrate a general confined interfacial monomicelle assembly approach to

coat ordered single-layered crystalline TiO2 mesopores in a precise, controllable

manner. Here, we used coating colloidal SiO2 nanospheres as a proof of concept.

These highly ordered TiO2 mesostructures controlled at single-micelle level can

be heterogeneously assembled on diverse solid-liquid interfaces, which involves

using triblock copolymer Pluronic F127 as a template and glycerol as a confined sol-

vent. First, titania monomicelle hydrogels were prepared after preferential evapora-

tion of tetrahydrofuran (THF). A sol-gel process was then initiated by subsequently

mixing the monomicelles and solid silica cores into ethanol/glycerol solvents under

stirring. We used high-viscosity glycerol as a co-solvent, because it enables induc-

tion of monomicellar self-assembly in spatially confined directions as well as simul-

taneously retarding hydrolysis and the condensation rate of titanium oligomers by

strongly adhering to titania monomicelles.33 As a result, the coated TiO2 shells

possess a monolayer of mesopores, a high surface area (119 m2 g�1), and a large

mean mesopore size (�9.8 nm), as well as crystalline anatase mesopore walls. More-

over, the accurate controllability of such a confined assembly process enables for-

mation of TiO2 shells from mono- to multilayers (up to five layers) of mesopores,

and the mesopore size also can be manipulated from 4.7 to 18.4 nm by tuning the

amount of swelling agent. We further show that the single-layered mesoporous

TiO2 shells can be grown on diverse functional nanomaterials, indicating their

superior versatility. This novel type of single-layered mesoporous TiO2-coated

SiO2 core-shell structure was denoted SiO2@SL-mTiO2, which exhibits superior
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Figure 1. Synthesis and Characterization of the Single-Layered Mesoporous SiO2@SL-mTiO2 Core-Shell Nanostructures

(A) Schematic illustration of the preparation of single-layer TiO2 mesopore-coated core-shell structures.

(B–D) Low-magnification TEM (B), high-magnification TEM (C), and FESEM (D) images of the SiO2@SL-mTiO2 core-shell nanostructures. Scale

bars, 200 nm.

(E) Nitrogen-sorption isotherms and pore-size distribution of the SiO2@SL-mTiO2 core-shell nanostructures.

(F) WAXRD patterns of the SiO2@SL-mTiO2 and the pure silica nanospheres, compared to the standard anatase (space group I41/amd, JCPDS card

No. 21–1272).
sodium-storage properties for sodium-ion batteries, including large discharge ca-

pacity, excellent rate capability, and outstanding cyclability.

RESULTS

Preparation and Characterization of the SiO2@SL-mTiO2 Nanostructures

Figure 1A presents the scheme for the coating of SL-mTiO2, whereby the silica nano-

spheres with a diameter of about 220 nm (Figure S1) are used as a core substrate. The

formed SiO2@mTiO2 core-shell hybrids possess an ultrathin mesoporous TiO2 layer

with a high uniformity (Figure 1B). The ordered open mesopores with a uniform meso-

pore size as largeas�9.5nmare clearlyevidenced fromfield-emission scanningelectron

microscopy (FESEM) images (Figure 1D). The magnified transmission electron micro-

scopy (TEM) images show that the mesoporous TiO2 shells are composed of closely

packed open mesopores with a thickness of around 11.5 nm, indicating the formation

of a single layer of closely packed uniform mesopores (Figures 1C and S2). Low-magni-

fication FESEM images clearly reveal that every silica nanosphere is unexceptionally

coated with a thin ordered TiO2 mesostructure, and no homogeneous nucleation of

TiO2 monomicelles can be observed (Figure S3). Additionally the formed uniform

SiO2@SL-mTiO2 nanospheres can further be packed into ordered photonic crystals by

simple gravity sedimentation,34 further confirming the substantial uniformity of the

SiO2@SL-mTiO2 nanospheres and accuracy of the single-layered coating (Figure S4).

The elemental mapping images (Figure S5) exhibit a homogeneous distribution of ele-

ments, including Ti, O, C, and Si, in whole core-shell nanospheres.

The zeta potential characterizations of the colloidal SiO2 cores and SiO2@SL-mTiO2

hybrids further show a significant change from negative charge (�53.1mV) to neutral

(�0.54 mV) after coating SL-mTiO2 layers (Figure S6), implying the success of TiO2
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growth entirely on the surface of silica cores. After removing the silica cores by

NaOH etching treatment, the hollow SL-mTiO2 spherical structures can be retained

with a uniform thickness of around 9.7 nm (Figure S7). From nitrogen-sorption exper-

iments (Figures 1E and S8A), both SiO2@SL-mTiO2 and hollow SL-mTiO2 show type

IV isotherms at a very high relative pressure P/P0 = 0.6 to 1.0, indicating their uniform

mesoporous structures, as also confirmed by the corresponding pore-size distribu-

tion curves (inset of Figures 1E and S8B). The Brunauer-Emmett-Teller surface area

and mesopore volume of the hollow SL-mTiO2 nanospheres are calculated to be as

high as 119 m2 g�1 and 0.28 cm3 g�1, respectively. The wide-angle X-ray diffraction

(WAXRD) patterns (Figure 1F) show a broad peak ranging from 15� to 30� for pure
silica nanospheres. After the coating and annealing of TiO2 layers, well-defined

diffraction peaks at 25.4�, 37.0�, 48.1�, 54.2�, 55.0�, and 62.9� are observed, which

can be indexed to the 101, 004, 200, 105, 211, and 204 reflections of anatase, fully

confirming the formation of pure anatase phase (space group I41/amd) with a good

crystallinity. The TiO2 grain size calculated from Scherrer equation is about 5.1 nm,

consistent with that (5.7 nm) observed from high-resolution TEM (HRTEM) results

(Figure S9). The X-ray photoelectron spectra of the core-shell SiO2@SL-mTiO2

were further investigated and no peaks for Ti-C and Ti-Si bonding were detected

(Figure S10), showing that the TiO2 nanocrystals are connected with silica and car-

bon via an oxygen-linking bond or/and van der Waals force.

Precise Control of the Coated Mesoporous TiO2 Layers

The structural parameters of the coated mesoporous TiO2 layers can be

highly controlled by regulating the synthetic conditions. A series of core-shell

SiO2@SL-mTiO2 nanospheres with silica core diameters ranging from �150 to

420 nm can be obtained by simply tuning the diameter of colloidal SiO2 templates,

demonstrating the general applicability of the confined monomicelle coating strat-

egy (Figures 2A–2D and S11). More interestingly, if the glycerol amount decreases

gradually from 10.0 to 3.0 mL, the numbers (one to five) of coated mesoporous

TiO2 layers can be accurately manipulated, and the resultant shell thickness varied

from 11.5, 23.1, 32.5, 38.5 to 45.7 nm, respectively (Figures 2E–2N and S12). The

mesoporous TiO2 shells are estimated to possess near body-centered cubic meso-

structures with Im3m symmetry according to small-angle X-ray scattering patterns,

which requires further investigations due to the vague peaks of the distorted struc-

tures (Figure S12F). Also, the thickness exhibits a gradual increment frommonolayer

to five layers of mesopores with the increment of TBOT/SiO2 weight ratio from 1:2.5

to 1:0.2 (Figure S13). From thermogravimetry curves, all the hollow mesoporous

TiO2 nanospheres show similar carbon weight ratio between 13.03% and 16.12%

while the TiO2 content exhibits a steady growth from 9.67% to 48.96% to

SiO2@SL-mTiO2 when increasing mesoporous TiO2 layers (Figure S14 and Table S1).

In addition to the tunable mesoporous TiO2 layers, SiO2@SL-mTiO2 core-shell struc-

tures with controlled mesopore sizes can be easily prepared (Figures S15 and S16;

Table S2). Without the addition of swelling agent (trimethylbenzene [TMB]) during

the synthesis, the TiO2 shell mesopores do not appear clearly after calcination in ni-

trogen. Through expanding the hydrophobic poly(propylene oxide) (PPO) chains of

the composite micelles, the mesopore size of SL-mTiO2 shells displays an increasing

tendency from 4.9 to 17.8 nm observed from HRTEM results, in good accord with

corresponding pore-size distribution curves (4.7–18.4 nm).

Moreover, we further demonstrated the versatility of this confined interfacial mono-

micelle assembly method by coating SL-mTiO2 on a variety of nanomaterials,

including carbon nanotubes (CNTs), graphene oxide (GO), carbon nanospheres,
530 Matter 1, 527–538, August 7, 2019



Figure 2. Precise Control of the Coated Mesoporous TiO2 Layers

(A–D) SEM images of the core-shell SiO2@SL-mTiO2 nanospheres with varied silica core sizes at (A) 150, (B) 220, (C) 300, and (D) 420 nm.

(E–N) TEM images (E–I) and corresponding structural models (J–N) of the SiO2@mTiO2 core-shell structures with highly tunable coated TiO2 layers from

one to five layers of mesopores.

(O–Z) TEM images (O–T) and corresponding structural model (U–Z) of different nanomaterials from 1D to 3D with coated single-layered TiO2

mesopores: (O) carbon nanotubes, (P) graphene oxides, (Q) carbon nanospheres, (R) CdS nanowires, (S) ZnS nanosheets, and (T) a-Fe2O3 ellipsoids.

All scale bars represent 200 nm.
CdS nanowires, ZnS nanosheets, and a-Fe2O3 ellipsoids (Figures 2O–2Z and

S17–S22). After calcination under nitrogen atmosphere, corresponding ordered

TiO2 mesopores can be formed uniformly on diverse surfaces, which possess strong

interactions with hydroxyl groups for monomicelle heterogeneous growth. These re-

sults clearly suggest that SL-mTiO2 shells enable coating on different functional

nanomaterials with affiliations to micelles by using this universal method, which is in-

dependent of dimension, size, and composition of cores.

Electrochemical Properties of the Coated SL-mTiO2

The electrochemical performances of the hollow SL-mTiO2 nanospheres as a

sodium-ion battery anode were investigated. As shown in current-voltage curves
Matter 1, 527–538, August 7, 2019 531



Figure 3. Electrochemical Properties of the Hollow SL-mTiO2 Nanospheres as Na-Ion Battery

(A) Current-voltage curves of a sodium-ion battery at the initial five cycles.

(B) Charge-discharge profiles at the first, second, tenth, 20th, 50th, and 100th cycles under a current density of 1.0 A g�1.

(C) Cycling stability and corresponding Coulombic efficiencies at a current density of 1.0 A g�1.

(D) Charge-discharge capacities and corresponding Coulombic efficiencies at different current densities from 0.2 to 10.0 A g�1.

(E) Long-term cycling performance at an ultrahigh current density of 10.0 A g�1.
(Figure 3A), the cathodic peak at about 0.8 V can be attributed the formation of solid

electrolyte interface films due to the reductive electrolyte decomposition.35,36 Ex

situ TEM and XRD analyses show the amorphous nature of the anode after initial
532 Matter 1, 527–538, August 7, 2019



cycle, further suggesting the irreversible capacity loss during first cycle (Figure S23).

The broad peak ranging from 0.5 to 1.0 V in the anodic scan is attributed to the

Ti3+/Ti4+ redox couple. The peak current density and integrated area intensity

remain nearly constant from the third sweep process, indicating tiny capacity losses

during cycling. The charge-discharge curves at 1.0 A g�1 present a high initial

discharge of 665 mAh g�1 and charge capacity of 207 mAh g�1 (Figure 3B). Notably,

the charge capacity undergoes a gradual decline over 1–20 cycles and a slight incre-

ment over 20–100 cycles, ascribed to the activation process and suppressed side

reactions.37 The capacity after 100 cycles still reaches 170 mAh g�1, proving the

high cyclability at a low rate. The Coulombic efficiency rises to nearly 95% in the

tenth cycle, then reaches 99% in the 20th cycle and remains at this level for the sub-

sequent cycles.

Meanwhile, the hollow SL-mTiO2 nanospheres exhibit superior rate and cycling per-

formances. Figure 3D shows the rate capacities of the sodium-ion battery, accompa-

nied by the corresponding Coulombic efficiencies. The reversible capacities

decrease slightly to 212 mAh g�1 at 0.2 A g�1 in the first 15 cycles. Thereafter,

discharge capacities of 179, 160, 142, 122, 109, 97, and 89 mAh g�1 are achieved

at 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 A g�1, respectively, and can almost return

to 202 mAh g�1 when the current density resets to 0.2 A g�1. Ultrahigh Coulombic

efficiencies of nearly 99% are retained after 20 cycles over the whole test, suggesting

excellent reversibility. Furthermore, we carried out long-term cycling stability mea-

surements of the hollow SL-mTiO2 nanospheres at both low and high rates. At a low

current density of 1 A g�1, the discharge capacity stabilizes at around 160 mAh g�1

after 20 cycles and remains at this level for over 500 cycles with high Coulombic ef-

ficiency of 99% (Figure 3C). Even at a high current density of 10 A g�1, the capacity

can still be retained at about 90 mAh g�1 for over 50,000 cycles (Figure 3E). Ninety-

nine percent of the capacity is retained for each cycle, suggesting strong stability in

ultralong cycles. By contrast, the hollow TiO2 nanospheres and commercial P25

nanoparticles exhibit lower and less stable capacities at each specific current (Fig-

ure S24), with much lower capacities being retained at 1 A g�1 for these two elec-

trodes (Figure S25). These results clearly demonstrate that the introduction of the

interconnected mesoporosity can significantly enhance electrochemical properties

due to the combination of electrolyte access and short diffusion lengths for both

electronic and sodium-ion transport.

The impressive rate performance and outstanding cycling stability of the hollow

SL-mTiO2 nanospheres could be mainly attributed to the unique structural features,

showing enhanced sodium-storage properties in comparison with reported TiO2-

based anode materials (Table S3). The mesoporous crystalline TiO2 frameworks

and hollow structures allow accommodation of volume expansion during sodium

insertion-extraction. More importantly, the ultrathin TiO2 mesostructures allow the

entire high-surface-area mesoporous crystalline TiO2 to comprehensively contact

with electrolytes, thus facilitating rapid electrochemical reactions. Besides, the

shortened diffusion lengths of sodium ions due to the single-layered mesopores

also play an essential role for the highly reversible storage capacities. All of these

structural features provide possibilities for achieving outstanding cycling and rate

capabilities in sodium-ion storage.
DISCUSSION

Ex situ TEM measurements were conducted by harvesting products at different

time intervals. After THF evaporation at 45�C for 24 h, the hydrogels of spherical
Matter 1, 527–538, August 7, 2019 533



poly(ethylene oxide) (PEO)-PPO-PEO/TiO2 oligomer composite monomicelles with

a uniform diameter of �12.4 nm are formed in high order (Figures S26 and S27),

which is crucial for the subsequent confined assembly. Notably, TEM images

display well-retained spherical morphology with declining regularity when

dispersing the hydrogels in ethanol/glycerol solvents, implying that the Pluronic

F127/TiO2 monomicelles are surrounded by glycerol through hydrogen bonding

(Figures S28A and S28B). It is worth mentioning that the glycerol-wrapped mono-

micelles turn out to be very stable, enabling prevention of monomicelle self-as-

sembly at room temperature (Figures S28C and S29C). This phenomenon provides

us the opportunity for precisely manipulating the assembly behavior. To further

support this hypothesis we carried out the coating process at room temperature,

which produced smooth silica spheres with no titania shells (Figures S29A and

S29B). In contrast, when heating up to 100�C in the absence of silica cores, we

observed the formation of white precipitates after the reaction (Figure S29D), con-

firming the strong monomicelle stability. As a result, we assumed that an external

thermodynamic driving force is able to induce the assembly behavior of glycerol-

stabilized monomicelles: If the collision between two monomicelles occurs under

mild stirring, the surrounding glycerol is linked in advance. The glycerol in the mid-

dle region then moves away due to the mechanically unstable state38,39 at a rela-

tively high temperature, allowing the true connection and continuous condensa-

tion of the micellar dimers (Figure S29E).

Syntheses were also conducted by replacing glycerol and removing SiO2 template

for further investigation (Figures S30A–S30F). Nonuniform mesoporous TiO2

spheres in different particle sizes appear after the reaction at 100�C when no co-sol-

vent or other interactive solvents are added. Comparably, a heterogeneous nucle-

ation and growth of the monomicelles occurred when using glycerol, evidenced

from the 2D mesoporous TiO2 nanosheets observed from SEM and TEM images

(Figure S31). In consequence, the glycerol is proposed to perform as a special struc-

ture-directing and confined agent for TiO2 monomicelle assembly. To validate this

assumption, we measured the viscosities of these solvents at varying temperature.

As expected, the viscosity of glycerol at room temperature is two orders of magni-

tude higher than in other solvents with hydroxyl groups (Figures S30G and S30H).

It also appears to be five times as high as others even at 100�C, demonstrating its

intrinsic viscous nature. This glycerol particularity is further validated by a controlled

experiment in which no glycerol is added during the coating reaction (Figure S32).

Thus we concluded that the strong hydrogen-bonding interaction provided by its

three hydroxyl groups in one molecule, in combination with the ultrahigh viscosity,

leads to glycerol being realized as a special protector and confined solvent of TiO2

monomicelles.

Furthermore, we conducted controlled experiments in which the stirring rates were var-

ied with or without colloidal silica template (Figure S33). The TEM results reveal well-re-

tainedSiO2@SL-mTiO2 core-shell structures or 2Dmesoporous TiO2morphology under

mild stirring at 350 rpm. However, when the stirring rate increases themesoporous TiO2

shells appear to be nonuniform and the uniform TiO2 nanosheets become increasingly

irregular at higher stirring rates. Thus, we considered that the relatively stronger shear

force might interfere with the thermal motion of the confined monomicelles, leading

to undesirably fast heterogeneous growth. On the other hand, we found that during

the assembly process, the SL-mTiO2 layers can be coated completely on the silica sur-

face within 3 h and the core-shell mesostructure remains unchanged when the reaction

time is prolonged to 24 h, showing that the reaction time has little impact on the coated

mesostructure (Figures 4 and S34).
534 Matter 1, 527–538, August 7, 2019



Figure 4. Schematic Illustration of the Formation Mechanism for Coating Single-Layered Mesoporous Titania via Confined Interfacial Monomicelle

Assembly
On the basis of these observations, we propose a solvent-confined interfacial mono-

micelle self-assembly process for the controlled coating single-layered mesoporous

TiO2 on versatile solid surfaces. Before the growth of mesoporous TiO2 shells, TBOT

precursors hydrolyze slowly and assemble with hydrophilic PEO chains of Pluronic

triblock copolymer F127; thus the uniform spherical PEO-PPO-PEO/TiO2 oligomer

composite monomicelles as coating subunits are formed previously by entire

preferential THF evaporation at 45�C (as confirmed by ex situ TEM images). After

redispersing in ethanol/glycerol mixture solution and introducing silica cores, the

composite monomicelles and SiO2 nanospheres are forced to be wrapped by glyc-

erol solvent due to the strong hydrogen interaction provided by its three hydroxyl

groups. A few F127/TiO2 composite monomicelles start to collide and attach on

large silica nanospheres under a mild shear force. When heating to 100�C, the sur-

rounded glycerol becomes mechanically unstable, and thereby titania oligomers

and silica nanospheres are able to link together after heat flow of the glycerol molec-

ular networks in between. The titania monomicelles then prefer to pack side by side

on the silica surface with continuous glycerol thermal flow because of the much
Matter 1, 527–538, August 7, 2019 535



stronger interaction at solid-liquid interface. Due to the confinement effect of sur-

rounding glycerol solvent networks, the assembly on the monomicelle surface

away from silica cores is much unfavored. After continuous collision and assembly

at the silica solid surface, single-layer close-packed SiO2@TiO2 nanospheres with or-

dered mesostructure are formed. The uniform SiO2@SL-mTiO2 nanospheres are

finally obtained after crystallization and surfactant removal by annealing in an inert

atmosphere. Furthermore, if the glycerol/TiO2 monomicelle ratio or SiO2/TiO2

monomicelle ratio decrease, the confinement effect is weakened. The continuous

assembly is gradually favored, leading to the growth of multilayered mesopores.

Conclusion

In summary, we have demonstrated a novel confined interfacial monomicelle assem-

bly approach for the growth of single-layered crystalline TiO2 mesopores on diverse

interfaces (SiO2, carbon, polymers, metal oxides, metal sulfides). Controlled growth

of uniform mesoporous TiO2 shells with a tunable number of the coated layers, mes-

opore size, and switchable coated surfaces have been achieved. Such successful

precision synthesis requires the preformation of TiO2 monomicelle hydrogels and

the solvent-confinement effect of glycerol. The formed SL-mTiO2 shells have shown

excellent rate capability and superior cyclability as a sodium-ion battery anode.

Moreover, this finding reveals the significance of the confinement effect in the

controlled synthesis of well-defined nanostructures. Such accurately designed

core-shell nanostructures also provide a solid platform for the construction of multi-

component nanostructures with diverse functionalities, which might have great po-

tential for practical applications.

EXPERIMENTAL PROCEDURES

Preparation of Spherical PEO-PPO-PEO/TiO2 Oligomer Composite

Monomicelle Gels

The gels of PEO-PPO-PEO/TiO2 oligomer composite monomicelles were synthe-

sized according to an evaporation-driven oriented assembly approach.40 For a

typical synthesis, 1.5 g of triblock copolymer Pluronic F127, 2.4 mL of acetic acid,

and 3.2 mL of concentrated HCl were added stepwise into 30.0 mL of THF, then

3.0 mL of TBOT was added dropwise into the mixture to form a golden-yellow solu-

tion. After vigorous stirring for 10 min, the white-yellow solution (around 40 mL in to-

tal) was transferred into two 30 3 50-mm volumetric flasks and kept in an oven at

45�C for 24 h to slowly evaporate THF solvent. The white-yellow gels of spherical

F127/TiO2 composite monomicelles were obtained and stored in a drying box.

Fabrication of SiO2@SL-mTiO2 Core-Shell Nanostructures

In brief, the coating of single-layered TiO2 mesopores on the colloidal silica nano-

spheres was carried out via an improved hydrothermal-induced solvent-confined

monomicelle assembly method.33 In a typical process, 3.0 g of above-formed gels

and 3.0 mL of TMB were redispersed in 10.0 mL of anhydrous ethanol under stirring

for 10 min. Glycerol (10.0 mL) was subsequently added dropwise. After stirring for

5 min to form a transparent solution, 2.0 mL of anhydrous ethanol containing

1.0 g of monodispersed SiO2 nanospheres (�220 nm) obtained as above were

added into the mixture. The whole solution was heated in an oil bath at 100�C for

6 h under mild stirring (350 rpm) and allowed to cool down to room temperature.

The white precipitates were isolated and collected by centrifugation, washed with

ethanol, and dried in an oven. Finally the SiO2@SL-mTiO2 core-shell structures

were obtained after annealing under nitrogen at 350�C for 3 h to remove F127 tem-

plate and improve crystallinity. The nitrogen atmosphere was used to prevent mes-

ostructural collapse during annealing. The hollow mesoporous TiO2 nanospheres
536 Matter 1, 527–538, August 7, 2019



were formed by etching silica cores with NaOH solution (2.0 M) at 80�C for 24 h. The

syntheses of SiO2@mTiO2 core-shell structures with various diameters were per-

formed through same processes except for adding the SiO2 cores with diameters

at 150, 300, and 420 nm, respectively. The syntheses of SiO2@mTiO2 core-shell

structures with different layers of mesopores were performed through same pro-

cesses except for varying the glycerol amount to 7.5, 5.5, 4.0, and 3.0 mL, or chang-

ing the SiO2 amount to 0.50, 0.25, 0.12, and 0.08 g, respectively.

Fabrication of SL-mTiO2-Coated Core-Shell Structures with Diverse Core

Particles

In brief, the SL-mTiO2-coated core-shell structures were prepared under the same

conditions as for coating silica nanospheres except for replacing the SiO2 cores

with 50 mg of GOs, 50 mg of CNTs, 0.8 g of carbon nanospheres, 1.5 g of CdS

nanowires, 1.5 g of CdS nanorods, 2.0 g of ZnS nanosheets, and 1.0 g of a-Fe2O3

ellipsoids, respectively. Of note, the coating processes for a-Fe2O3 ellipsoids

were carried out with a magnetic stirrer.
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