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Abstract

Most of diabetic cardiovascular complications are attributed to endothelial dysfunction and 

impaired angiogenesis. Endoplasmic Reticulum (ER) and oxidative stresses were shown to 

play a pivotal role in the development of endothelial dysfunction in diabetes. 

Hemeoxygenase-1 (HO-1) was shown to protect against oxidative stress in diabetes; 

however, its role in alleviating ER stress-induced endothelial dysfunction remains not fully 

elucidated. We aim here to test the protective role of HO-1 against high glucose-mediated ER 

stress and endothelial dysfunction and understand the underlying mechanisms with special 

emphasis on oxidative stress, inflammation and cell death.

Human Umbilical Vein Endothelial Cells (HUVECs) were grown in either physiological or 

intermittent high concentrations of glucose for 5 days in the presence or absence of Cobalt 

(III) Protoporphyrin IX chloride (CoPP, HO-1 inducer) or 4-Phenyl Butyric Acid (PBA, ER 

stress inhibitor). Using an integrated cellular and molecular approach, we then assessed ER 

stress and inflammatory responses, in addition to apoptosis and angiogenic capacity in these 

cells.

Our results show that HO-1 induction prevented high glucose-mediated increase of mRNA 

and protein expression of key ER stress markers. Cells incubated with high glucose exhibited 

high levels of oxidative stress, activation of major inflammatory and apoptotic responses 

[nuclear factor (NF)-κB and c-Jun N-terminal kinase (JNK)] and increased rate of apoptosis; 

however, cells pre-treated with CoPP or PBA were fully protected. In addition, high glucose 

enhanced caspases 3 and 7 cleavage and activity and augmented cleaved poly ADP ribose 

polymerase (PARP) expression whereas HO-1 induction prevented these effects. Finally, 

HO-1 induction and ER stress inhibition prevented high glucose-induced reduction in NO 

release and impaired the angiogenic capacity of HUVECs, and enhanced vascular endothelial 

growth factor (VEGF)-A expression. 
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Altogether, we show here the critical role of ER stress-mediated cell death in diabetes-

induced endothelial dysfunction and impaired angiogenesis and underscore the role of HO-1 

induction as a key therapeutic modulator for ER stress response in ischemic disorders and 

diabetes. Our results also highlight the complex interplay between ER stress response and 

oxidative stress.

Key words: Endothelial dysfunction, ER stress, oxidative stress, Heme oxygenase-1

Compounds: Cobalt (III) Protoporphyrin IX chloride (CoPP, PubChem CID:9961203), 4-

Phenyl Butyric Acid (PBA, PubChem CID:4775), Sn Protoporphyrin IX dichloride (SnPP, 

PubChem CID: 73755113).
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1. Introduction

Endothelial dysfunction generally refers to structural and functional impairment of 

endothelium including damage at the cellular level. It plays a key role in the pathogenesis of 

various cardiovascular diseases, such as atherosclerosis, diabetic complications, and 

hypertension. Heme oxygenase (HO) is one of the cyto-protective proteins that could confer a 

beneficial effect in vasculature. HO originally functions as a rate-limiting enzyme in heme 

degradation, yielding carbon monoxide (CO), iron, and biliverdin as the end products. HO-1 

and HO-2 are isoforms of HO in mammals [1]. The HO-2 isoform is constitutively expressed; 

however, HO-1 is an inducible one. HO-1 expression can be induced by many structurally 

different molecules and by cellular stress such as heat shock [2]. In particular, the role of 

hemeoxygenase-1 (HO-1) as a protective enzyme is well known. Its anti-oxidant, anti-

apoptotic, and anti-inflammatory effects have been extensively studied [2, 3]. The cyto-

protective effect of HO-1 may have several distinct underlying mechanisms, including the 

degradation of heme to the anti-oxidant bilirubin, the co-ordinate induction of ferritin, which 

chelates the pro-oxidant free iron, and release of carbon monoxide (CO), which exerts 

significant anti-inflammatory and anti-apoptotic effects [4].

HO-1 can be induced by numerous oxidizing agents and stimuli, including ultraviolet 

radiation, heavy metals, cytokines and heme/hemoglobin [2, 5]. It is now well established

that HO-1 can provide anti-oxidation and cyto-protection in in vitro and in vivo systems. 

There is convincing evidence indicating that HO-1 can protect the vasculature against 

resinamodeling and endothelial dysfunction [6]. Furthermore, HO-1 is currently regarded as a 

novel therapeutic target in the treatment of vascular disease, and several strategies have been

employed to target this enzyme in the vasculature. A variety of pharmacological agents of 

different chemical structures have been shown to protect against the development of vascular 

disease in numerous studies in vivo [7, 8]. Moreover, Yang et al. [9] demonstrated the anti-
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oxidant protective role of HO-1 in vitro by reducing endogenous reactive oxygen species 

(ROS) production in HUVECs when grown in serum from rats exposed to cigarette smoke

[9]. Concerning the anti-inflammatory role of HO-1, Chang et al. [10] successfully 

highlighted this role in HUVECs treated with iodine-based contrast media that was used as an 

inflammatory model in this study. They showed that HO-1 induction reduced ICAM-1 and 

adhesion molecules receptor expression [10]. About the anti-apoptotic effects of HO-1,

Abraham et al. [11] have previously reported that the overexpression of HO-1 in human 

dermal microvessel endothelial cells prevented high glucose-mediated slowdown of cell 

cycle progression and increase in apoptosis [11]. Utilizing Zucker diabetic fat rats (ZDF), it 

has also been reported that the induction HO-1expression at the early stages of diabetes using 

cobalt protoporphyrin (CoPP) and stannous chloride (SnCl2) imporved blood pressure and 

reduced endothelial cell sloughing and strongly upregulated anti-apoptotic signals including 

Bcl-xl and Bcl-2 [12].

Despite the cyto-protective effects of HO-1 that have been well-documented in literature, the 

role it plays with regards to ER stress response which has been shown in recent years to be 

involved in the pathophysiology of insulin resistance/diabetes [13] and in the development of 

endothelial dysfunction [14] is not fully elucidated. The ER is the site of protein secreted 

synthesis and folding. Upon disruption in protein folding or modification within the ER, a 

state of stress ensues, resulting in the unfolded protein response (UPR) with the aim to return 

the ER to its physiological state and enhance cell survival [15-17]. The UPR functions via 

signalling through three stress-sensing proteins found on the ER membrane: PKR-like 

eukaryotic initiation factor 2α kinase (PERK), inositol-requiring kinase-1α (IRE-1α), and 

activating transcription factor (ATF)-6. The ER luminal domains of PERK, IRE-1α, and 

ATF-6 interact with the ER chaperone Binding immunoglobulin protein (BiP). BiP is 

responsible for maintaining the effectors of UPR response under inactive form. Under stress 
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conditions, accumulation of misfolded or unfolded proteins within ER, BiP dissociates from 

these sensor proteins, which thereby become active. However, prolonged UPR activation 

leads to apoptosis, oxidative stress, and inflammation and is referred to as the “ER stress 

response”. Diabetes results in metabolic conditions that increase the demand on the ER for 

protein and lipid synthesis [15]. Several studies including ours have shown that insulin 

resistant states such as obesity promote ER stress response in various tissues such as liver, 

adipose tissue, and the heart [13, 18, 19]. 

Activated PERK phosphorylates, and thus activates, eIF (eukaryotic initiation factor)-2α, 

thereby reducing general protein translation. However, the translation of ATF-4 is selectively 

permitted. ATF-4 is required for the expression of pro-apoptotic CCAAT/enhancer-binding 

protein homologous protein (CHOP) transcription factor that plays a key role to ER stress-

mediated cell dysfunction. CHOP upregulates expression of pro-apoptotic proteins such as 

Bim, and downregulates expression of anti-apoptotic molecule Bcl-2 [16, 17]. ER stress 

causes insulin resistance and participates in the low-grade inflammation observed in insulin 

resistant states [13, 20] by mediating cell death and the activation of inflammatory 

pathways such as nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) [15]. An 

association between ER stress and endothelial dysfunction was reported in experimental 

models of diabetes [14, 21]; however, the underpinning mechanisms are unclear especially 

regarding the role of ER-stress mediated inflammation and cell death.

The aim of this study was to show in the context of a high glucose environment, how HO-1 

induction would affect ER stress-induced endothelial dysfunction and angiogenic capacity in 

endothelial cells. As such, we hypothesized that HO-1 would reduce ER stress response 

activity and hence improve ER stress-mediated inflammation, oxidative stress and apoptosis, 

which are major molecular contributors to endothelial dysfunction, the initial step in the 

development of atherosclerosis. 
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By using human vascular endothelial cells as a model, we provide evidence that HO-1 

induction exerts a protective role against ER stress-mediated endothelial dysfunction and 

impaired angiogenic capacity caused by high glucose treatment. The effects of HO-1 

induction involve several protective mechanisms including the alleviation of oxidative stress

in addition to inflammatory and apoptotic responses induced by ER stress activation. We 

show here, the critical role of ER stress-mediated cell death in diabetes-induced endothelial 

dysfunction and impaired angiogenic capacity. These results underscore the role of HO-1 

induction as a key modulator for ER stress response in metabolic disorders and diabetes.
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2. Materials & Methods

2.1. Cell culture and treatments

Human Umbilical Vein Endothelial cells (HUVECs) were obtained from Life Technologies 

(Paisley, UK) and were routinely cultivated in M200 medium (Gibco, Paisley, UK) 

supplemented with low serum growth supplement (LSGS; Gibco, Paisley, UK) containing 

2% of foetal bovine serum and were maintained at 37°C in a humidified atmosphere with 5% 

CO2. Cells were used for experiments up to passage 6.

To assess the effects of high glucose on endothelial cells, HUVECs were incubated either 

with culture medium containing a physiological concentration of glucose (5 mM) or cultured 

in high glucose (33 mM) for 5 days with intermittent recovery periods of 8 hours with 

medium containing 5 mM of glucose [16 hours in high glucose (33 mM) followed by 8 hours 

in normal glucose (5 mM) for 5 consecutive days]. M200 culture medium was supplemented 

with D-glucose (SigmaAldrich, Gillingham, UK) to the desired concentration. To factor out 

the osmotic stress effect which high glucose treatments may have cells, mannitol 

(SigmaAldrich, Gillingham, UK) was used as an osmotic stress control where a control 

groups of HUVECs were treated in similar fashion to the high glucose group, with medium 

supplemented with mannitol (33 mM) with 8 hours recovery periods for 5 days.

To induce HO-1 induction, Cobalt (III) Protoporphyrin IX chloride (CoPP, 10 µM;

SigmaAldrich, Gillingham, UK), a potent HO-1 inducer, was added to HUVECs on the 5th

day of glucose treatment 1 hour before the last high glucose treatment and kept for an 

additional 12 hours before the harvest. A dose- and time-course were established to 

determine the best CoPP concentration and incubation time to induce HO-1’s expression in 

HUVECs. 
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To ascertain that effects observed are due to an increase in HO-1’s activity, in some 

experiments cells were treated with Sn-protoporphyrin IX (SnPP) (20 µM; SigmaAldrich, 

Gillingham, UK) which was added to cells 1 hour before CoPP before the last high glucose 

treatment and then kept for an additional 12 hours before the harvest. SnPP, a 

metalloporphyrin formed by a chelate of tin with the porphyrin ring, is a potent inhibitor of 

both HO-1 and HO-2 activities. It induces HO-1 synthesis, but potently inhibits the enzyme’s 

activity by acting as a competitive substrate for heme at the catalytic site [22]. 

To assess the involvement of ER stress response, some cells were treated with the chemical 

chaperone, 4-Phenyl Butyric Acid (PBA, 10 mM; SigmaAldrich, Gillingham, UK) to inhibit 

ER stress [20]. PBA was added to cells 1 hour before the last high glucose treatment and then 

kept for an additional 12 hours before the harvest.  

As a positive control for oxidative stress, some cells were treated with H2O2 (100 μM; 

SigmaAldrich, Gillingham, UK) for 30 minutes to induce ROS release.

As a positive control for cell death, some cells were stimulated with Staurosporine (1 µM; 

SigmaAldrich, Gillingham, UK) for 12 hours to induce apoptosis.

A positive control for induction of IL-6 synthesis and release, some cells were incubated with 

lipopolysaccharide (LPS; E. coli serotype O111:B4) 1 µg/ml (Cell Signaling by NEB, 

Hitchin, UK) at 1 µg/ml for 8 hours prior to assessing IL-6 release in culture medium by 

ELISA.  

2.2. Total RNA isolation and gene expression analysis

After incubation of HUVECs with high glucose in the presence or absence of modulators of

ER stress response or HO-1 inducer, total RNA was isolated using Qiagen RNeasy mini kit 

(Qiagen, Manchester, UK) following the manufacturer’s protocol. 
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Before cDNA synthesis, total RNA was treated with DNAase I to digest any excess genomic 

DNA. First strand cDNA was synthesized from 1 µg of total RNA employing the RevertAid 

First Strand cDNA Synthesis Kit (ThermoScientific, Loughborough, UK) and an oligo(dT)12-

18 primer as reverse primer. Then, target genes were amplified by real-time PCR using GoTaq 

qPCR Master Mix (Promega, Southampton, UK) in Applied Biosystems 7500 Real-Time 

PCR System (ThermoScientific, Loughborough, UK).

Total cDNA samples with known quantities in ng (100 ng/µl, 10 ng/µl, 1.0 ng/µl, 0.1 ng/µl 

and 0.01 ng/µl) were prepared from HUVECs stimulated with thapsigargin. These samples 

were used to generate standard curves for genes of interest. These standard curves were then 

used to determine the relative mRNA expression levels in HUVECs. 

Primer pairs for target genes were obtained from Primer bank. Human primer sequences used 

in the study are as follows: 

GAPDH_F 5’- CCAGCCGAGCCACATCGCTC -3’

GAPDH_R 5’- ATGAGCCCCAGCCTTCTCCAT -3’

β-actin _F 5’- CATCACGCCGTCCTATGTCG -3’

β-actin _R 5’- CGTCAAAGACCGTGTTCTCG -3’

ATF-4_F 5’- GAACGGCTCAAGCAGGAAATC -3’

AFT-4_R 5’- TTCACCATTCGGTCAATCAGAG -3’

BiP_F 5’- GCTGACGATGAAGTTGATGTGG -3’

BiP_R 5’- CATCCGTCCTTGATCCTTCTCTA -3’

CHOP_F 5’- CCCTTCACCTTCTTACAACCTC -3’

CHOP_R 5’- TGCCCAGCTCTAAACTAAAGGA -3’
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IL-6_F 5’- TGATGGCGAAGCGAGTGAAG -3’

IL-6_R 5’- ACTCATCCATACACAGGACCC -3’

VEGF-A_F 5’- GGTGGGCCAAAGGATGAAGAG -3’

VEGF-A_R 5’- CCACAAGCCAAACGACTTCC -3’

2.3. Western blotting

After cell treatments, whole-cell lysates were prepared by extraction in radioimmuno-

precipitation assay (RIPA) (10 mM Tris-HCl, pH 7.4; 150 mM NaCl; 0.1% SDS; 1% Triton-

X100; 1% Sodium deoxycholate; 1 mM NaF; 5 mM EDTA; 1 mM sodium orthovanadate; 

cocktail of protease inhibitors) as described previously [18, 23]. Proteins of equal amounts 

(10-20 µg) were then separated on 8-12% SDS-PAGE gels (ThermoScientific, 

Loughborough, UK). Immunoblots were performed using antibodies against: ATF-4, p-eIF-α 

(Ser51), caspase 3, cleaved caspase 3,  caspase 7, cleaved caspase 7, PARP, cleaved PARP, 

p-iKK α/β (Ser176/180), iKK, p-c-JUN (Ser63), p-Akt (Ser473), Akt, p-eNOS (Ser1177), 

eNOS (Cell Signaling by NEB, Hitchin, UK), p-p47phox (Ser345), p47phox, VEGF-A

(SigmaAldrich, Gillingham, UK), BiP, HO-1, β-actin (Santa Cruz by Insight Biotechnology, 

Wembley, UK). Proteins were then visualized using fluorescent secondary antibodies and 

Odyssey CLx infrared imaging system (Li-COR Biosciences, Cambridge, UK) according to 

manufacturer’s guidelines. Signal was then quantified using Image Studio software from Li-

COR Biosciences (Cambridge, UK). 

2.4. Assessment of cell death

Cell apoptosis was assessed by flow cytometry analysis using an Annexin V Apoptosis 

Detection Kit APC (eBioscience, Altrincham, UK) as described previously [24].  Briefly, 

after treatments, cells were collected by trypsinization and were re-suspended in incubation 

buffer containing Annexin V-PE and propidium iodide (1µg/ml), incubated in the dark at 4°C 
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for 10 minutes, and then fixed in 1% formaldehyde.  Cells were then re-suspended in 

incubation buffer and analysed in a BD FACSCanto™ II (BD Bioscience, Oxford, UK). Cell 

apoptosis was expressed as the percentage of apoptotic cells expressed as the total number of 

cells. Some cells were treated with Staurosporine (1 µM; SigmaAldrich, Gillingham, UK) for 

3 hours and were used as a positive control for apoptosis while untreated cells were used a 

negative control.

2.5. Caspases 3/7 activity

HUVECs were cultured in physiological concentration of glucose (5 mM) or in intermittent 

high glucose (5/33 mM) for 5 days in the absence or presence of PBA or CoPP. As positive 

control, some cells were treated with Staurosporine (1 mM) for 3 hours while untreated cells 

were used a negative control. Then, caspases 3/7 activity was measured using Caspase-Glo® 

3/7 Assay (Promega, Southampton, UK) according to the manufacturer’s guidelines. 

Caspase-Glo® 3/7 reagent contains a luminogenic substrate (Aminoluciferin) attached to 

tetra-peptide sequence Z-DEVD, which is specific for protease cleavage by caspases 3 and 7. 

Caspases 3 and 7 cleave Z-DEVD releasing Aminoluciferin which is a luminescent substrate 

for the luciferase reaction. The light output from the luciferase reaction is directly 

proportional to the activity of the enzymes. The activity of caspases 3 and 7 was determined 

using a LUMIstar Omega luminometer (BMG LABTECH, Aylesbury, UK).

2.6. ELISA analysis of IL-6 production

HUVECs were incubated in physiological concentration of glucose (5 mM) or in intermittent 

high glucose (5/33 mM) for 5 days in the presence or absence of CoPP  (10 µM) and/or SnPP 

(20 µM). A positive control was generated by treating some cells with lipopolysaccharide 

(LPS; Cell Signaling by NEB, Hitchin, UK) at 1 µg/mL for 30 minutes.  Supernatants were 

collected and centrifuged at 10,000 x g for 10 minutes to rem ove dead cells and any debris 
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and then assayed for IL-6 using an ELISA kit (ThermoScientific, Loughborough, UK) 

according to the manufacturer’s instructions.

2.7. Nitrite and nitrate measurement by Griess assay

The production of NO was also quantified by measuring the released NO metabolites (nitrite 

and nitrates) with Griess reagent (Life Technologies, Loughborough, UK). The Griess assay 

was used to measure the concentration of nitrite/nitrate that are stable by-products of NO 

degradation as an indirect way of estimating production of NO in HUVECs. Culture medium 

samples were collected from control and high glucose-treated cells in the presence or absence 

of PBA or CoPP. Culture medium samples were then centrifuged to remove dead cells and 

cell debris. The medium was subsequently processed to determine nitrate and nitrite 

concentrations according to the manufacturer’s protocol [25].

2.8. ROS measurement by dihydroethidine (DHE) staining

HUVECs were cultured in physiological concentration of glucose (5 mM) or in intermittent

high glucose (5/33 mM) for 5 days in the absence or presence of PBA or CoPP. As a positive 

control, H2O2 (100 μM) was added to some cells for 30 minutes to induce ROS release.

Osmotic stress was controlled by growing cells in medium where glucose was replaced by 

mannitol (33 mM). Following this, cells were washed three times with phosphate buffer salt 

(PBS) solution, and then incubated with the oxidative fluorescent dye DHE (10 μM; 

SigmaAldrich, Gillingham, UK) for 30 minutes. Cells were then harvested, washed three 

times with PBS and then fluorescence at 620 nm was determined and the number of DHE-

positive cells was calculated using a FACSCanto™ II flow cytometry (BD Bioscience, 

Oxford, UK). Negative and positive cells were then plotted using the positive control and 

DHE negative cells (untreated cells). Cells shifting to the right channel were considered as 

positive for DHE [25, 26].
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2.9. In vitro tube-like structure formation assay on Matrigel® matrix

HUVECs were incubated in physiological concentration of glucose (5 mM) or in intermittent 

high glucose (33 mM) for 5 days in the presence or absence of PBA or CoPP. Then, they 

were seeded (105 cells per well) on 24-well culture plates coated with a basement membrane 

preparation extracted from Engelbreth-Holm-Swarm murine sarcoma (Matrigel®; BD 

Bioscience, Oxford, UK) [27]. Briefly, 250 µL of Matrigel® substrate diluted with serum-

free medium (1∶1 dilution) was added into each well of 24-well plates and allowed to solidify 

for 1 hour at 37°C. Then, cells were incubated with M200 medium supplemented with LSGS

and allowed to adhere for 1 hour. Untreated cells cultured in M200 medium without LSGS 

were used as the negative control, while those cultured in M200 medium supplemented with 

the LSGS that has 2% FBS + 3 ng/mL β-FGF were used as positive control. HUVECs were 

incubated for further 24 hours and tube-like structures formation was examined using an 

inverted phase contrast microscope. Then, using ImageJ software, the length of the tubes 

formed was counted in 5 different blind fields, averaged then compared across the different 

samples.

2.10 Assessment of HO-1 activity (Bilirubin assay)

Bilirubin colorimetric assay kit (Cell Biolabs Inc., San Diego, CA, USA) was used to 

measure the total and direct bilirubin levels in HUVECs’ lysates following the 

manufacturer’s protocol. Briefly, HUVECs were cultured in normal glucose (5 mM) or 

exposed intermittently to high glucose (5/33 mM) for 5 days in the presence or absence of 

CoPP (10 µM) or SnPP (20 µM). Then, cells were lysed with RIPA lysis buffer and 

centrifuged at 10,000 x g for 10 minutes at 4°C. Bilirubin standards were prepared in 1:2 

serial dilutions. Samples and standards were then loaded in duplicates in a 96-well micro-

plate. Accelerant (proprietary reagent) to each well. Diazo reagent was then loaded to 

samples and standards. Reagent A (Sodium hydroxide) was then added to all wells and the
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plate left for incubation for 1 hour at room temperature protected from light. After incubation 

is over, assay reagent B was added and absorbance at 540 nm was measured. The net OD for 

each sample was calculated by subtracting OD from negative control wells from each sample 

well, which was then plotted against standard curve to determine bilirubin levels (mg/dL). 

2.11. Cell viability assay

This viability assay is based on the capacibolity of metabolically active alive cells to covert 

the yellow tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) to purple formazan crystals. This allows a quantitative evaluation of viable cells. 

HUVECs were seeded into 96-well plates at the density of 20,000 cells per mL and then 

grown for 24 hours. Following this, cells were incubated with varying concentrations of 

CoPP (10, 25, 50, 75 and 100 µM) for either 12 or 24 hours. After incubation, we added 

MTT (SigmaAldrich, Gillingham, UK) at final concentration of 0.5 mg/mL to each one of the 

well and incubated cells for further 4 hours at 37°C. Then, culture medium was removed and 

100 μL Dimethyl sulfoxide (SigmaAldrich, Gillingham, UK) were added to each well to 

solubilise the formazan crystals and incubated for further 30 minutes at 37 °C. Absorbance 

was then measured at 570 nm using a multi-plate reader (Molecular Devices, Wokingham, 

UK). The intensity of colour in control wells was used to indicate 100% of viability.

2.12. Data analysis

Results are expressed as mean ± SEM, and n represents the number of mice or biological 

replicates. Statistical analyses were performed using ANOVA (2-way or 1-way, as 

appropriate) followed by Tukey’s or Bonferroni is multiple comparison post-hoc tests. P < 

0.05 was considered to be statistically significant.
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3. Results

3.1. Validation of the conditions of induction of HO-1 by CoPP in HUVECs

To validate the optimal conditions for use of CoPP to induce HO-1 in HUVECs and to ensure 

that the increase in protein levels is indeed reflecting an increase in activity, we conducted a 

series of experiments. We first constructed a dose- and time-course response to varying 

concentrations of CoPP to determine the optimal concentration and time for the induction of 

HO-1 in HUVECs without causing any non-specific toxicity to the cells. Once determined, 

we evaluated the activity of HO-1 in response to CoPP treatment.

As shown in Figure 1A, the incubation of cells with CoPP at the concentrations of 10, 25, 50, 

75 and 100 µM all caused an increase in protein expression of HO-1 after 12 and 24 hours; 

however, the increase was higher at 12 hours. Furthermore, as shown in Figure 1B, the 

incubation of HUVECs with these different concentrations CoPP for 12 and 24 hours caused 

a significant decrease in cell viability at 24 hours in all concentrations; however, at 12 hours, 

none of these concentrations showed a significant decrease in cell viability.

Altogether, we decided for this project to induce HO-1 expression by treating cells with 

CoPP at the concentration of 10 µM for 12 hours. 

To ascertain that HO-1 expression reflects an increase in its activity, we have assessed the 

enzyme’s activity by measuring the release of heme degradation by-product bilirubin in cells 

treated exposed or not to high glucose in the presence or absence of CoPP, a HO-1 inducer, 

and/or SnPP, a HO inhibitor. As shown in Figure 1C, high glucose did not affect bilirubin 

levels while the induction of HO-1 by CoPP (10 µM, 12 hours) caused an increase of its 

release indicating an increase in HO-1 activity in HUVECs. The pre-treatment of cells with 

SnPP partially, but significantly, prevented the increase in bilirubin caused by CoPP. These 
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data indicate that in our hands the induction of HO-1 by CoPP reflects an increase of the 

enzymes activity. 

3.2. HO-1 induction prevents the induction of ER stress response in HUVECs caused by 

high glucose treatment.

As expected, intermittent high glucose (33 mM) treatment of HUVECs for 5 days induced an 

activation of ER stress response. As shown in Figures (2A, 2B and 2C), high glucose caused 

an increase in mRNA expression of BiP, CHOP and ATF-4 to levels comparable to positive 

control thapsigargin. The pre-treatment of cells with PBA to inhibit ER stress prevented the 

increase in mRNA expression of these key ER stress markers (Figures 2A, 2B and 2C). At 

the protein level, similarly to thapsigargin treatment, the incubation of HUVECs with 

intermittent high glucose enhanced the phosphorylation of e-IF2-α and increased protein 

expression of both BiP (Figure 2D and 2E) and ATF-4 (Figure 2F). Although mannitol

caused a moderate increase in the phosphorylation of e-IF2-α, it did not affect the activation 

of other key ER stress response markers excluding thus any contribution of osmotic stress in 

high glucose-mediated ER stress response. HO-1 induction by CoPP prevented the activation 

of ER stress response in HUVECs as evidenced by the normalisation of e-IF2-α 

phosphorylation and reduction in BiP and ATF-4 protein expression (Figures 2D,  2E and 

2F) indicating a protective role for HO-1 against high glucose-induced ER stress in 

HUVECs.

3.3. HO-1 induction prevents oxidative stress caused by high glucose treatment in 

HUVECs.

The incubation of HUVECs with intermittent high glucose treatment for 5 days caused a 

significant increase in ROS production compared to negative control (Figure 3A). HO-1 

induction by CoPP significantly reduced ROS production to control levels (Figure 3A)
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indicating the protective role that HO-1 has against high glucose-induced oxidative stress. 

Mannitol failed to show any increase in ROS production indicating that these effects shown 

with high glucose treatment are due to metabolic stress and not osmotic stress. PBA treatment 

also significantly reduced ROS production caused by high glucose although not to the same 

extent as CoPP (Figure 3A). These data indicate a considerable degree of ER stress 

involvement in high glucose-mediated increase in ROS production.

NADPH oxidase system is an important source of ROS production in the vasculature 

particularly in endothelial cells [28]. As shown in Figure 3B, when HUVECs were subjected 

to high glucose (33 mM for 5 days with intermittent recovery periods), there was a significant 

increase in the phosphorylation of p47phox regulatory subunit when compared to control 

condition; whereas, co-treatment of cells with CoPP has resulted in a significant reversal of 

such effect. The phosphorylation of regulatory subunit p47phox is believed to be a prerequisite 

for the activation of NADPH oxidase complex [29]. The induction of ER stress response by 

thapsigargin also enhanced the phosphorylation of p47phox and this effect was prevented by 

pre-incubation of cells with PBA, again indicating the involvement of ER stress in this 

process. 

3.4. HO-1 induction prevents ER stress-mediated activation of pro-inflammatory 

signalling pathways caused by high glucose. 

Intermittent treatment of HUVECs with high glucose for 5 days significantly increased 

phosphorylation of inflammatory markers iKK α/β (Figure 4A) and c-JUN (Figure 4B)

compared to control. This effect was also noticeable with thapsigargin treatment and reversed 

by PBA indicating involvement of ER stress in this process. When adding PBA to the cells 

incubated with high glucose, similarly to thapsigargin this has prevented the increase in 

phosphorylation of both iKK α/β and c-JUN (Figure 4A and 4B) indicating that high 

glucose-induced inflammatory response is related to ER stress response induction. Moreover, 
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HO-1 induction by CoPP significantly prevented the increase in phosphorylation of both iKK 

α/β and c-JUN (Figure 4A and 4B) indicating a cross-talk between ROS and ER stress 

response in this process. To further emphasize the involvement of oxidative stress in 

inflammatory response, we were able to observe significant increase in the phosphorylation 

of both inflammatory markers iKK α/β and c-JUN (Figure 4A and 4B) when HUVECs were 

treated with H2O2 (100 µM) for 30 minutes. HO-1 induction prevented the effects of H2O2 on 

phosphorylation of iKK α/β and c-JUN. To exclude the involvement of osmotic stress in this 

inflammatory response, cells were treated with mannitol which did affect the neither the 

expression nor the activation of inflammatory molecules investigated (Figure 4A and 4B). 

In order to ascertain the protective role HO-1 has against high glucose-induced inflammatory 

response in HUVECs, we assessed the production of a key pro-inflammatory cytokine IL-6.

As shown above in Figure 4C, similarly to thapsigargin, IL-6 mRNA levels have 

significantly increased after treatment of cells with intermittent high glucose compared to 

controls. This increase was significantly reversed back to control levels with PBA treatment 

indicating ER stress involvement in this process (Figure 4C). HO-1 induction by CoPP 

reversed the increase in IL-6 mRNA expression both in high glucose and thapsigargin-treated 

HUVECs to bring them back to control levels (Figure 4C). This suggests that the antioxidant 

activity of HO-1 plays a protective role against high glucose-induced inflammation, at least 

partly, through the alleviation of ER stress response. Furthermore, ELISA analysis of IL-6 

protein release in culture medium collected from HUVECs showed a significant elevation in 

IL-6 levels in high glucose culture medium compared to control (Figure 4D). However, 

culture medium harvested from HUVECs treated with high glucose in the presence of CoPP 

showed similar levels of IL-6 expression to negative control clearly indicating a protective 

effect of HO-1 induction against high glucose-mediated inflammation. When SnPP (20 µM), 
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a heme analogue inhibitor of HO, was added 1 hour before CoPP treatment, this has negated 

CoPP effects on high glucose-mediated increase of IL-6 release (Figure 4D).

3.5. HO-1 induction prevents ER stress-mediated apoptosis caused by high glucose 

treatment in HUVECs: Critical role for caspases 3 and 7.

Analysis of apoptosis by flow cytometry showed that amongst HUVECs cultured in 

intermittent high glucose conditions, the percentage of apoptotic cells significantly increased 

to 45% compared to 7% in HUVECs cultured in medium with physiological glucose 

concentration (Figure 5).  However, the percentage of apoptotic cells amongst HUVECs

cultured in intermittent high glucose media was significantly reduced to 15% after HO-1 

induction with CoPP treatment (Figure 5). To further emphasize the anti-apoptotic effect of 

HO-1 induction, SnPP, a HO inhibitor (20 µM), was added 1 hour prior to adding CoPP to 

HUVECs incubated with high glucose. SnPP reversed the protective effects of HO-1 with a 

significant increase in percentage of apoptotic cells to 40% (Figure 5), thus providing further 

evidence on the protective effect of HO-1 against apoptosis in high glucose milieu and 

indicating the key role of ER stress in this process.

To further understand the mechanisms underlying the protective role of HO-1 against high 

glucose-induced apoptosis, we assessed the enzymatic activity of caspases 3/7. As shown in 

Figure 6A, HUVECs cultured in intermittent high glucose (33 mM) conditions showed a 

significant increase in caspases 3/7 activity compared to negative control. This effect was 

negated by CoPP treatment bringing caspases 3/7 activity levels to those of the negative 

control.

Furthermore, we determined by western blot analysis the expression of active (cleaved) 

caspases 3/7 and PARP (a caspase-3 substrate). As shown in Figure 6B, HUVECs incubated 

with high glucose medium (33 mM) exhibited cleavage of caspases 3/7 and PARP indicating 
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the activation of these pro-apoptotic sub-pathways. Similar observations were also noticeable 

with thapsigargin treatment. When adding PBA to cells incubated with high glucose, has 

prevented the cleavage of caspases 3/7 and PARP indicating that high glucose-induced 

apoptotic response involves ER stress response induction (Figure 6B). 

Furthermore, we analysed the cleavage of these three pro-apoptotic effectors (PARP and 

caspases 3/7) following the treatment of HUVECs with H2O2 (100 µM) for 30 minute. H2O2 

caused the cleavage of PARP and caspases 3/7 and this effect was abolished by HO-1 

induction with CoPP treatment. Cells incubated with high glucose and where HO-1 was 

induced by CoPP showed no cleavage of these proteins indicating the protective role HO-1 

plays against oxidative stress-mediated apoptosis (Figure 6B). When cells were treated with 

mannitol, no cleavage of caspases 3/7 or PARP was observed which excludes the 

involvement of osmotic stress in this apoptotic response.

Altogether, our data show that HO-1 induction was able to prevent apoptosis triggered by 

oxidative stress and ER stress response following exposure of endothelial cells to high

glucose. These effects were related to the inhibition of NF-κB and JNK pro-apoptotic and 

inflammatory pathways, alleviation of ER stress response particularly the reduction of CHOP 

expression and to preventing the cleavage of caspases 3/7 and PARP, which play a key 

central role in the final steps of different apoptosis cascades.

3.6. Alleviation of high glucose-induced ER stress by HO-1 induction improves 

endothelial function and angiogenic capacity in HUVECs.

As shown in Figure 7A, high glucose treatment decreased NO production in HUVECs while 

the induction of HO-1 prevented this effect increasing thus NO bioavailability considering 

the concomitant decrease in ROS observed previously (Figure 3). Furthermore, western blot

analysis of key components of NO pathway, showed that HO-1 induction by CoPP strongly 
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enhanced the phosphorylation of eNOS on its key activatory site (Ser 1177) and the 

phosphorylation of Akt (Ser 473) (Figure 7B and 7C) indicating the activation of Akt/eNOS 

that is involved in the positive regulation of NO release. As presented in Figure 7D, HO-1 

expression was successfully induced by CoPP treatment (10 µM) while high glucose (33 

mM) did not affect the protein’s expression.

As depicted in Figure 8A, HUVECs treated intermittently with high glucose for 5 days 

showed significant reduction in tube-like structure formation compared to positive control. 

This effect was reversed by PBA treatment with significant increase in tube-like structure 

formation compared to high glucose alone indicating the involvement of ER stress in this 

process (Figure 8A). Moreover, similar protective effect was noticeable with HO-1 induction 

by CoPP indicating its protective pro-angiogenic role and antagonising the effects of high 

glucose-induced ER stress. This pro-angiogenic effect of HO-1 induction was further 

supported by the observation that CoPP treatment also caused an increase in mRNA (Figure 

8B) and protein (Figure 8C) expression of the key pro-angiogenic factor VEGF-A in 

endothelial cells.

Altogether, these findings provide evidence that the protective role of HO-1 induction by 

CoPP against impaired angiogenesis caused by high glucose in HUVECs is carried out by 

activating the pro-angiogenic VEGF-A—p-eNOS/P-AKT—NO axis and attenuation ER 

stress response.
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4. Discussion

In this study, we provide evidence that HO-1 induction exerts a protective role against ER 

stress-mediated endothelial dysfunction and impaired angiogenic capacity caused by high 

glucose treatment. The effects of HO-1 induction involve several protective mechanisms 

including the alleviation of oxidative stress in addition to inflammatory and apoptotic 

responses induced by ER stress activation. 

High glucose-mediated ER stress response is believed to play a key role in different aspects 

of endothelial dysfunction both in humans and in animal models of diabetes. High glucose

induces ER stress response and ROS production in a close interplay, which ultimately may 

contribute to the pathogenesis of micro- and macro-vascular complications, associated with 

diabetes [31, 32]. Recently, mice injected with streptozotocin to cause diabetes exhibited

enhanced ER stress response in the heart and small mesenteric arteries. Treatment of these 

mice with a chemical chaperone (Tauroursodeoxycholic acid, TUDCA) improved 

endothelium-dependent and -independent relaxation. We report here that exposure of 

HUVECs to high glucose caused an increase in both mRNA and protein expression of key 

ER stress markers (phospho-eIF2-α, BiP, CHOP and ATF-4) indicating that the upstream ER 

stress arm PERK/eIF2-α is activated under these conditions. PERK is the major effector 

controlling the attenuation of protein translation when ER stress ensues through the activation 

of the elongation factor, eIF2-α. Activation of eIF2α allows for selective translation of ATF-4 

that regulates the expression of the pro-apoptotic factor CHOP. We also report that similarly 

to chemical chaperone PBA, the induction of HO-1 by CoPP, reversed the effects of high 

glucose on ER stress indicating an important cross talk between ROS and ER stress in these 

conditions. Consistent with our observations, Kim et al. [33] have reported that that induction 

of HO-1 through the exposure of HUVECs to CO or CoPP prevented thapsigargin-induced 

expression of CHOP [33]. 
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Mannitol, however, caused a moderate increase in the expression phospho-eIF2-α without 

affecting the expression of other ER stress markers. This is possibly because mannitol may 

have enhanced a transient need for more protein synthesis and hence caused a transient 

activation of UPR response.

During ER stress, several mechanisms can lead to increased ROS production including the 

ER itself, which becomes an important source of ROS due to the inhibition of protein 

translation by the PERK/eIF2-α/ATF-4 pathway, in addition to the activation of NADPH 

oxidase complex [34]. As expected, we found here that high glucose-mediated ER stress 

increased ROS production in HUVECs that was blunted by HO-1 induction and PBA 

indicating a strong interplay between ER stress and ROS in high glucose conditions. NADPH 

oxidase is a major source of ROS production in the vasculature [28]. Among other important 

regulatory mechanisms, the phosphorylation of p47phox regulatory subunit was shown to be a 

prerequisite for the activation of NADPH oxidase [29]. We observed here that the 

phosphorylation of p47phox at Ser345 was enhanced in cells exposed intermittently to high 

glucose suggesting the activation of NADPH oxidase complex. The induction of HO-1 by 

CoPP or the alleviation of ER stress response by PBA reduced the phosphorylation of p47phox 

indicating the involvement of ER stress in this process. To the best of our knowledge, this is 

the first time that HO-1 induction or ER stress inhibition was reported to prevent high 

glucose-mediated serine phosphorylation of p47phox in endothelial cells. The phosphorylation 

of p47phox implies a central role for ER stress in the activation of serine/threonine kinase(s) 

that can phosphorylate p47phox. High glucose-mediated ER stress can increase intracellular 

Ca2 + release from the ER, which, in turn, can cause the activation of protein kinase C [35]

which was recently reported to promote the serine phosphorylation of p47phox [36]. However, 

the exact role of this phosphorylation and the activation of NADPH oxidase warrants further 
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investigation to establish a clear mechanistic link between HO-1, ER stress and activation of 

NADPH oxidase. 

Much evidence links ER stress with major inflammatory signalling hubs. For instance, 

PERK/ eIF2-α/ATF-4 arm of ER stress triggers the activation of JNK which is involved in 

the positive regulation of some inflammatory genes and apoptosis [34]. In our hands, high 

glucose-mediated ER stress was associated with the activation of JNK and NF-κB pathways 

and caused a significant increase in the production of IL-6 inflammatory cytokine. All these 

effects were counteracted by HO-1 induction and the inhibition of ER stress indicating the 

involvement of ROS either upstream and/or downstream of ER stress in this process. 

Inflammatory response has been mechanistically linked to oxidative stress [37, 38]. 

Consistent with our findings, previous studies indicated that hyperglycaemia triggers the 

generation of free radicals which activate NF-κB that is known to induce the up-regulation of 

other pro-inflammatory cytokines including IL-6, which can in turn activate ER stress 

response by a vicious cycle and contribute to the maintenance of the inflammatory state 

during ER stress [39].

We observed here that HO-1 induction alleviated the effects of high glucose in activating

several pro-apoptotic pathways, in which ER stress is central, including the activation of JNK 

and PERK/eIF2-α/ATF-4/CHOP pathways. Several mechanisms controlling cell death

following unresolved ER stress have been reported most of which have been prevented by 

HO-1 induction in the present study [40]. In prolonged ER stress, IRE-1α sensor can cause 

the phosphorylation and activation of JNK, which can ultimately induce apoptosis [16]. 

When ER stress becomes severe, the PERK/eIF2α/ATF-4 pathway also activates the 

transcription factor CHOP, which upregulates expression of pro-apoptotic proteins such as 

Bim, and downregulates the expression of anti-apoptotic molecule Bcl-2 [16, 17]. 
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Consistent with other studies, we report here that the activation of JNK and PERK/eIF2-

α/ATF-4/CHOP axis caused by high glucose was associated with a high apoptosis rate in 

HUVECs [41]. HO-1 induction or inhibition of ER stress prevented the activation of these 

pro-apoptotic signals, which was translated into a reduction of apoptosis. These findings

further highlight the important anti-apoptotic role of HO-1. Endogenous HO-1 induction was 

observed in HUVECs exposed to high glucose levels up to 10 mM; however, higher 

concentrations of glucose (>20 mM) did cause a significant downregulation of HO-1 

expression which was linked to an increase in apoptosis rate [41]. Another study by Abraham 

et al. [11] also found that incubation of endothelial cells with high glucose (33 mM) for 7 

days caused a decrease in HO activity and protein expression [11]. This suggests that HO-1 

levels are critical to overcome the pro-apoptotic effects of high glucose. In our study and 

consistent with these previous studies, we found that high glucose (33 mM) did not induce 

HO-1 expression or activity. We observed that these high concentrations of glucose (33 mM) 

failed to increase apoptosis in HUVECs in the presence of HO-1 inducer, CoPP, indicating a 

therapeutic potential for HO-1 induction against high glucose-mediated endothelial apoptosis. 

These pro-survival effects of HO-1 are directly linked to the enzyme’s activity because the 

treatment of HUVECs with SnPP, a potent HO inhibitor, reversed the beneficial effects of 

HO-1 induction on cell survival. 

An important feature of apoptosis is the activation of caspases where the Bcl-2 family plays a 

crucial role in regulating their engagement under ER stress [42]. In our study, we observed 

that HO-1 induction protected HUVECs against high glucose-induced activation of caspases 

3 and 7. Consistent with our results, it was found that under ER stress conditions, through the 

action of JNK-dependent signalling, caspase-3 cleavage and activity is enhanced leading to 

high levels of calcium in the mitochondria [43]. In our study, the activation of caspase-3 
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effector is consistent with the activation by high glucose of PERK/eIF2-α/ATF-4/CHOP 

pathway. 

Perturbations in angiogenesis are tightly linked to endothelial dysfunction and contribute to 

ischemic complications of diabetes. HO-1 was found to possess potent pro-angiogenic 

properties. The overexpression of HO-1 in endothelial cells was reported to enhance cell

proliferation and tube formation capacity [44]. We report here for the first time that HO-1 

induction and inhibition of ER stress in HUVECs prevented the impairment of capillary-like 

structure formation on Matrigel assay caused by intermittent high glucose treatment 

indicating the involvement of ER stress in this process and the therapeutic potential of HO-1 

induction against high glucose-mediated ischemia. In line with our findings, a number of 

studies implicated ER stress in endothelial dysfunction and impaired angiogenic capacity. For 

instance, the chemical chaperone TUDCA was shown to protect against impaired ischemia-

induced neovascularization following hind-limb ischemia after femoral artery ligation in 

db/db diabetic mice [45]. Endothelial dysfunction plays a key role in diabetic microvascular 

dysfunction because endothelial NO is a crucial regulator of angiogenic sprouting [46]. We 

report here that HO-1 induction and ER stress inhibition improved NO production and 

enhanced the activation of Akt/eNOS pathway in HUVECs exposed to high glucose, which

eventually contributes to restoring the capacity of cells to form tube-like structures. The 

concomitant reduction of ROS production in cells treated with CoPP or PBA also contributes 

to the improved NO bioavailability. ER stress can affect NO bioavailability through several 

ways and hence impair angiogenic capacity of endothelial cells. Accumulation of CHOP was 

shown to inhibit eNOS synthesis through a direct interaction with the enzyme’s promoter

while CHOP-deficient mice exhibited an improved postnatal ischemia-induced 

neovascularization [47]. ER stress can also affect endothelial NO bioavailability by causing 

endothelial insulin resistance which may directly and negatively affect endothelial function. 
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Insulin by binding to its receptor, expressed by endothelial cells, can stimulate the release of 

NO by endothelial cells [48], and, thus, endothelial insulin resistance can impair insulin-

mediated NO release [49]. Ozcan et al. reported that the activation of ER stress enhanced NF-

κB and JNK pathways, which then phosphorylated insulin receptor substrate (IRS)-1 on 

serine residues and hence blunted insulin signalling response [13]. In our study, we found 

that high glucose-mediated ER stress was closely associated with the activation of NF-κB and 

JNK pathways, which may in turn contribute to the impairment of endothelial insulin 

response.

Although, the role that heme degradation by-products play in the cyto-protective effects of 

HO-1 in our system was not specifically studied, some evidence in the literature indicate that 

the action of both bilirubin and CO may alleviate ER stress response; however, their exact 

role needs to be further delineated in future studies. Biliverdin and bilirubin are both potent 

antioxidants through a direct ROS scavenging mechanism and were found to prevent 

oxidative stress-mediated cell death [50]. Recently, bilirubin was shown to enhance insulin 

signalling response in a diet-induced obesity mouse model an in db/db diabetic mice through 

the suppression of ER stress response [51]. Bilirubin levels in humans were found to be 

associated with reduced risk for coronary heart disease [50, 52]. CO, the other degradation 

by-product, was found to prevent apoptosis in endothelial cells by activating p38 MAP 

kinase. CO was also shown to improve insulin response by increasing intracellular calcium 

[50]. Recently, it was reported that CO- releasing agent, CORM-2, improved ER stress 

response and blocked the ER stress-mediated impairment in leptin signalling in cells treated 

with ER stress inducers thapsigargin and tunicamycin [53].

Altogether, we demonstrate in the present study the pivotal role of ER stress-mediated cell 

death in high glucose-induced endothelial dysfunction and impaired angiogenic capacity and
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underscore the potential role of HO-1 induction as a key therapeutic modulator for ER stress 

response in ischemic disorders and diabetes.
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Figure Legends:

Figure 1. Validation of conditions of HO-1 induction by CoPP. (A), western blot analysis 

of HO-1 and β-actin expression in HUVECs treated with CoPP (10, 25, 50, 75 and 100 µM) 

for 12 or 24 hours. Representative image from 3 independent experiments. (B), viability 

(MTT) assay of HUVECs treated with CoPP (10, 25, 50, 75 and 100 µM) for 12 or 24 hours. 

Histograms represent pooled normalized data to negative control (CTL) (n=3-6 per group). 

(C), HO-1 activity assay showing bilirubin production (mg/dL) in HUVECs incubated in 

physiological (5 mM) concentration of glucose or in intermittent high glucose (5/33 mM) for 

5 days in the presence or absence of CoPP or SnPP (n=3). Data are presented as mean± SEM 

and were analysed by one-way ANOVA, followed with a Tukey's multiple comparison test. 

*P < 0.05, **P < 0.01, ***P < 0.001 vs. control or indicated groups. CTL, control; HG, high 

glucose.

Figure 2. HO-1 induction in HUVECs attenuates high glucose-induced ER stress. (A, B), 

Relative mRNA expression levels of ER stress target markers BiP (A), CHOP (B) and ATF-4 

(C) normalised against β-actin housekeeping gene (n=6).  (C, D), western blot analysis 

showing protein expression levels of BiP, p-eIF2α (D and E) and ATF-4 (F). Histograms 

represent pooled normalized data to total amount of normalised to β-actin loading control 

expressed as arbitrary units (A.U.) (n=3 per group). Data are presented as mean± SEM and 

were analysed by one-way ANOVA, followed with a Tukey's multiple comparison test. 

*P < 0.05, **P < 0.01, ***P < 0.001 vs. control or indicated groups. CTL, control; HG, high 

glucose; TG, thapsigargin; Man, Mannitol.

Figure 3. HO-1 induction in HUVECs protects against high glucose-induced oxidative 

stress. (A), Measurement of ROS production in HUVECs. Cells were either treated with 

H2O2 (100 µM) for 30 minutes (PC) or incubated with intermittent high glucose (HG) for 5 

days in the presence or absence of PBA, CoPP or Mannitol. In negative control (NC) group, 
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cells where incubated with M200 medium only. Histograms represent the percentage of 

DHE-positive cells to negative control. (B), western blot analysis of protein expression of 

phosphorylated p47phox (Ser345). Histograms represent pooled normalized data to total 

amount of total protein p47phox expressed as arbitrary units (A.U.) (n=4). Data are presented 

as mean± SEM and were analysed by one-way ANOVA, followed with a Tukey's multiple 

comparison test. **P < 0.01, ***P < 0.001 vs.  Control or indicated groups. CTL, control; HG, 

high glucose; PC, positive control; NC, negative control; TG, thapsigargin; Man, Mannitol.

Figure 4. HO-1 induction in HUVECs prevents inflammatory response mediated by 

high glucose-induced ER stress. (A, B), western blot analysis showing protein expression 

levels of p-iKK α/β (A) normalized against iKK and p-c-JUN normalized against β-actin (B). 

Histograms represent pooled normalized data to total amount of respective loading control 

expressed as arbitrary units (A.U.) (n=4 in each group). (C) Relative mRNA expression IL-6 

normalized against β-actin housekeeping gene (n=6). (D) ELISA analysis of IL-6 release in 

culture medium from HUVECs treated with LPS (PC) or high glucose (HG) in the presence 

or absence of CoPP and/or SnPP (n=3). Data are presented as mean± SEM and were analyzed 

by one-way ANOVA, followed with a Tukey's multiple comparison test. *P < 0.05, 

**P < 0.01, ***P < 0.001 vs. control or indicated groups. CTL, control; HG, high glucose; TG, 

thapsigargin; PC, positive control; Man, Mannitol.

Figure 5. HO-1 induction in HUVECs protects against high glucose-induced apoptosis.

(A), Assessment of apoptosis by flow cytometry in HUVECs treated with intermittent high 

glucose (33 mM) using Annexin V and PI staining (n=3). Histograms represent pooled data 

and presented as percentage of control. Data are presented as mean± SEM and were analysed 

by one-way ANOVA, followed with a Tukey's multiple comparison. ***P < 0.001 vs. control 

or indicated groups. CTL, control; NT, negative treatment.
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Figure 6. HO-1 induction in HUVECs protects against high glucose-induced caspases 

3/7 and PAPRP activation. (A), Caspase 3/7 Glo luminescent assay for assessment of 

Caspases 3 and 7 activity (n=3). Cells treated with Staurosporine were used as positive 

control (PC). Untreated cells were used as negative control (NC). (B), western blot analysis 

to determine  presence of cleaved PARP, caspase 3 and caspase 7. Images are representative 

of 4 independetnt experiments. Data are presented as mean± SEM and were analysed by one-

way ANOVA, followed with a Tukey's multiple comparison. ***P < 0.001 vs. control or 

indicated groups. CTL, control; HG, high glucose; PC, positive control; NC, negative control; 

TG, thapsigargin; Man, Mannitol.

Figure 7. HO-1 induction improves NO bioavailability in in HUVECs incubated in high 

glucose. (A), Quantification of nitrite and nitrate productions in HUVECs. Cells were 

incubated in intermittent high glucose (HG) in the presence or absence of CoPP. Supernatants 

were collected and assayed for nitrite and nitrate production (n=4). (B-C), western blot 

analysis of protein expression of p-eNOS (Ser1177) (B), p-Akt (Ser473) (C) and HO-1 (D). 

Histograms represent pooled normalized data to total amount of respective total protein 

expressed as arbitrary units (A.U.) (n=4 in each group). Data are presented as mean± SEM 

and were analysed by one-way ANOVA, followed with a Tukey's multiple comparison test.

*P < 0.05, **P < 0.01, ***P < 0.001 vs. control or indicated groups. CTL, control; HG, high 

glucose.

Figure 8. Alleviation of high glucose-induced ER stress by HO-1 induction improves 

endothelial function and angiogenic capacity in HUVECs. (A), Phase-contrast 

micrographs of HUVECs incubated in complete culture M200 medium (positive control, PC), 

in basal culture medium negative control, NC) or in intermittent high glucose (HG) in the 

presence or absence of CoPP or PBA. Cells were grown on a Matrigel® matrix to favour 

network formation. Images are representative of 3 independent experiments (images taken 
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after 24 h). Capillary length was used to quantify angiogenesis in 5 different blind fields 

(Image J software). Histograms represent pooled data and presented as average length of 

tubes formed in mm. (B), Relative mRNA expression of VEGF-A against GAPDH 

housekeeping gene (n=4). (C), western blot analysis of VEGF-A protein expression. 

Histograms represent pooled normalized data to total amount of β-actin expressed as arbitrary 

units (A.U.) (n=4 in each group). Data are presented as mean± SEM and were analysed by 

one-way ANOVA, followed with a Tukey's multiple comparison test. *P < 0.05, **P < 0.01, 

***P < 0.001 vs.  control or indicated groups. CTL, control; HG, high glucose; PC, positive 

control; NC, negative control.
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Caspases 3/7 and PARP cleavage
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