ON FINITE GROUP ACTIONS ON THE
SOLID KLEIN BOTTLE

By

M. A. NATSHEH
Dept. of Mathematics, University of Jordan
Amman, Jordan

Key words and phrases: G-action, cyclic action, orbit space, fixed point set.

ABSTRACT

In this paper we classify all G-actions on the solid Klein bottle when G = \(\mathbb{Z}_n\) and when G = \(\mathbb{Z}_2 \oplus \mathbb{Z}_2\).

Let G be a group and M a topological space. An action of G on M is a map \(\Theta: G \times M \rightarrow M\) such that (i) \(\Theta(g, \Theta((h,x))) = \Theta((gh,x))\) for all \(g, h \in G\) and \(x \in M\), and (ii) \(\Theta((e,x)) = x\) for all \(x \in M\), where e is the identity of G. \(\Theta(g,x)\) is denoted by \(g(x)\). The action \(\Theta\) is called effective if it is injective. Two G-actions \(\Theta\) on M and \(\Phi\) on N are weakly conjugate if there exists a group automorphism \(A: G \rightarrow G\) and a homeomorphism \(t: M \rightarrow N\) (called the connected homeomorphism) such that \(t \Theta((g,x)) = \Phi(A(t(x)))\), i.e. \(tg(x) = A(g)(t(x))\). If \(A(g) = g\), then \(\Theta\) and \(\Phi\) are conjugate.

In this paper we consider the classification of the G-actions on the solid Klein bottle \(SK\). We give complete classifications when G = \(\mathbb{Z}_n\), the finite cyclic group, and when G = \(\mathbb{Z}_2 \oplus \mathbb{Z}_2\). We extend the results of Natsheh (4).

Throughout the paper we work in the PL category (our results are valid for Diff-category without any changes). We divide the paper into three sections. In section 1 we prove theorem 1, the product theorem and state theorem 2, the involutions on SK. In section 2, we classify all \(\mathbb{Z}_n\)-actions on SK, up to weak conjugation. In section 3, we classify the \(\mathbb{Z}_2 \oplus \mathbb{Z}_2\)-actions on SK.

Let G be an Abelian group acting effectively on a connected space M. Let \(g, h \in G\) and \(q:M \rightarrow M/g\) be the orbit map induced by g. Then there exists a homeomorphism \(h^*\) on \(M/g\) uniquely determined by h such that \(h^* = qq^*\). \(h^*\) is called the action on \(M/g\) induced by h.
Throughout the paper \(S^n, D^n, \) and \(P^n \) denote the \(n \)-sphere, the \(n \)-cell and the \(n \)-dimensional projective plane, respectively. \(M_b \) denotes a Mobius band. \(C(X) \) denotes the cone over the space \(X \). \(S^1 \) is viewed as the set of complex numbers \(x \) with norm 1. The closed unit interval is denoted by \(I \). \(T = S^1 \times S^1 \).

\[
D^2 = \{ rx : 0 \leq r \leq 1, \, x \in S^1 \}
\]

\[
SK = \mathbb{R}xD^2/\sim, \quad (s, rx) \sim (s+1, C(rx)), \text{ where } C(rx) = r\bar{x}.
\]

Section 1.

In this section we make use of recent results of Dunwoody (1) and Meeks and Scott (3); Moreover we write down theorem 2 which was proved in (4).

Theorem 1. Let \(G \) be a finite group acting effectively on the solid Klein bottle \(SK \). Then the action is conjugate to an action which preserves the product structure, i.e. for every \(g \in G \) \(g([s, rx]) = [\alpha(s), \beta(rx)] \), up to conjugation.

Proof. Let \(g \in G, M = SK \) and \(M' \) be a disjoint copy of \(M \) with a corresponding \(g' \) action, \(g' : M', \, g'(x') = (g(x))' \). Consider the double of \(M, \, 2M = S^1 \times S^1 \), the non-orientable two-sphere bundle over \(S^1 \) obtained from \(M \) and \(M' \) by identifying them along their boundary by the identity map. Then \(g \) and \(g' \) define an action \(g \) on \(2M \) and hence \(G \)-acts on \(2M \). By Dunwoody (1), there exists a two sphere \(S \) properly embedded in \(2M \) which does not bound a 3-cell such that for every \(g \in G \) \(g(S) = S \text{ or } g(S) \sim S = \emptyset \). Now since each of \(M \) and \(M' \) are invariant under the \(G \)-action and \(S \sim M = D^2 \) it follows that for every \(g \in G, g(D^2) = D^2 \text{ or } g(D^2) \sim D^2 = \emptyset \). Now by Meeks and Scott (3) the result follows.

The following theorem may be found in (4). It is an easy consequence of theorem 1 and Kims result (2).

Theorem 2. Let \(h \) be an involution on \(SK \), then \(h \) is conjugate to exactly one of the following involutions with fixed point sets \(M^*_i \)

\[
\begin{align*}
1. \quad & h_1([s, rx]) = [s, rx] \\
& \text{Fix}(h_1) = S^1 \times I \\
& M^*_1 = S^1 \times D^2 \\
2. \quad & h_2([s, rx]) = [s, -rx] \\
& \text{Fix}(h_2) = M_b \\
& M^*_2 = SK \\
3. \quad & h_3([s, rx]) = [s, -rx] \\
& \text{Fix}(h_3) = S^1 \\
& M^*_3 = SK \\
4. \quad & h_4([s, rx]) = [1-s, r\bar{x}] \\
& \text{Fix}(h_4) = D^2 \cup I \\
& M^*_4 = D^3 \\
5. \quad & h_5([s, rx]) = [1-s, -rx] \\
& \text{Fix}(h_5) = C(P^3) \\
& M^*_5 = C(P^3) \\
& \text{h}'([s, rx]) = [1-s, r\bar{x}]
\end{align*}
\]
Remark. It is easy to see that h_4, h'_5, are conjugate to h'_4, h'_5, respectively by taking the connecting homeomorphism t: $SK \rightarrow SK$ $t(\left[s, rx \right]) = \left[s + \frac{1}{2}, rx \right]$.

Section 2.

In this section we classify all \mathbb{Z}_n-actions on SK.

Theorem 3. Let h be a generator of a \mathbb{Z}_n-action on SK. Then h is weakly conjugate to one of the following maps, with quotient spaces M^*.

1. $h_1(\left[s, rx \right]) = \left[s + \frac{i}{n}, rx \right], n$ is odd
 $\text{Fix}(h'_1) = \Phi, 0 < i < n$
 $M^* = SK$

2. $h_2(\left[s, rx \right]) = \left[s + \frac{i}{k}, rx \right], n = 2k$
 $h'_2(\left[s, rx \right]) = \left[s + 1, rx \right] = \left[s, rx \right]$
 $\text{Fix}(h'_2) = S'x 1$
 $M^* = S' \times D''$

3. $h_3(\left[s, rx \right]) = \left[s + \frac{i}{k}, -rx \right], n = 2k \text{ k is even}$
 $h'_3(\left[s, rx \right]) = \left[s + 1, rx \right] = \left[s, rx \right]$
 $\text{Fix}(h'_3) = S'x 1$
 $M^* = SK$

4. $h_4(\left[s, rx \right]) = \left[s + \frac{i}{k}, -rx \right], n = 2k \text{ k is odd}$
 $h'_4(\left[s, rx \right]) = \left[s + 1, -rx \right] = \left[s, -rx \right]$
 $\text{Fix}(h'_4) = Mb$
 $M^* = SK$

5. $h_5(\left[s, rx \right]) = \left[s + \frac{i}{k}, -rx \right], n = 2k \text{ k is odd}$
 $h'_5(\left[s, rx \right]) = \left[s + 1, -rx \right] = \left[s, -rx \right]$
 $\text{Fix}(h'_5) = S'$
 $M^* = SK$

6. $h_6(\left[s, rx \right]) = \left[1-s, rx \right], n = 2$
 $\text{Fix}(h_6) = D'' U 1$
 $M^* = D''$

7. $h_7(\left[s, rx \right]) = \left[1-s, -rx \right], n = 2$
 $\text{Fix}(h_7) = I U \{^*\}$
 $M^* = C(P')$

Proof. Let h be a generator of a \mathbb{Z}_n-action on SK. It follows from theorem 1 that, up to conjugation h is given by either

$h(\left[s, rx \right]) = \left[s + \frac{i}{m}, g(rx) \right]$,

where m divides n, g is a homeomorphism on D'' such that $Cg = gC$ and $g^n = C^n \cdot n$. or

$h(\left[s, rx \right]) = \left[1-s, g(rx) \right]$
Finite group actions on SK bottle

where n is even $n = 2k$, g is a periodic map on D^i with period n or k, and $CgC = g$.

First let n be odd, then m is also odd and $g^n(rx) = rx$ or rx, hence $g(rx) = rx$, from which we have $h([s,rx]) = [s + \frac{1}{m},rx]$ and $h''([s,rx]) = [s + 1,rx] = [s,rx]$, and hence $n = m$. Therefore h is given by h_1, up to weak conjugation.

Second let n be even, $n = 2k$ and h is given by

$$h([s,rx]) = [s + \frac{1}{m}, g(rx)]$$

we have the following cases:

Case 1. $h'([s,rx]) = [s,rx]$, up to conjugation. Then $SK/h' = S'xD^i$ and $Fix(h') = S'x I \subset S' x \partial D^i$. h induces a periodic map $h':(S'xD^i,S'xI) \rightarrow (S'xD^i,S'xI)$ which preserves the product structure. Hence up to weak conjugation $h(s,rx) = (s + \frac{1}{k}, g(rx))$ where $g(rx) = rx, -rx, rx$ or $-rx$. Therefore, up to weak conjugation, h is given by $h([s,rx]) = [s + \frac{1}{k}, g(rx)]$, where $g(rx) = rx, -rx, rx$ or $-rx$.

If $g(rx) = rx$, then up to weak conjugation h is given by h_2. If $g(rx) = rx$, then k is even and $h = h_2^{k-1}$, therefore h is weakly conjugate to h_2. If $g(rx) = -rx$, then k is even and $h = h_3$, up to weak conjugation. Finally if $g(rx) = -rx$, then k is even and $h = h_3^{k+1}$, hence h is weakly conjugate to h_3.

Case 2. $h'([s,rx]) = [-s,rx]$, up to conjugation. $SK/h' = SK$ and $Fix(h') = Mb$. $h(MB) = Mb$ and Mb is two-sided in SK, hence h interchanges the two sides of Mb and k is odd. We finish this case as we did in Case 1 to conclude that h is weakly conjugate to h_4.

Case 3. $h([s,rx]) = [-s,rx]$, up to conjugation. $SK/h' = SK$ and $Fix(h') = S'$ is a fiber contained in (SK/h'). h induces $h:(SK/h',S') \rightarrow (SK/h',S')$, where h has period k. We finish this case as in Case 1 to conclude that h is weakly conjugate to h_5.

Third let n be even, $n = 2k$ and h is given by

$$h([s,rx]) = [1-s, g(rx)]$$

If $g(rx) = rx$, where ω is a primitive root of unity, then $\bar{g(rx)} = g(rx)$, hence $rx\bar{\omega} = rx \omega$ and $\bar{\omega} = \omega$ from which we have $\omega = 1$ or -1. Therefore $g(rx) = rx, -rx, rx$ or $-rx$ and $n = 2$. If $g(rx) = rx$, h is given by h_6, up to conjugation. If $g(rx) = r\bar{x}$, then it is easy to check that h is conjugate to h_6. Similarly if $g(rx) = -rx$ or $g(rx) = -rx$, then h is conjugate to h_7.

Section 3.

In this section we classify the $Z_2 \oplus Z_2$-actions on SK.

Theorem 4. Let $Z_2 \oplus Z_2$-act effectively on SK, then the action is weakly conjugate to one of the following actions.
M. A. NATSHEH

1) \(G_1 = \{ e, h_1, h_2, h_3 \} \), 2) \(G_2 = \{ e, h_1, h_4, h'_4 \} \), 3) \(G_3 = \{ e, h_1, h_5, h'_5 \} \), 4) \(G_4 = \{ e, h_2, h_4, h_5 \} \) or 5) \(G_5 = \{ e, h_3, h_4, h_5 \} \). Where the \(h_i \)'s are the involutions on \(SK \) given in theorem 2.

Proof. Let \(h \) be a generator of a \(Z_2 \oplus Z_2 \)-action on \(SK \), then \(h \) is an involution. First let \(h \) be given by \(h \) up to conjugation. Let \(g \) be the second generator, then \(g \) is also an involution. If \(g = h_2 \) (or \(h_3 \)) then \(Z_2 \oplus Z_2 = G_1 \) up to weak conjugation. If \(g = h'_4 \), then \(Z_2 \oplus Z_2 = G_2 \) up to weak conjugation. If \(g = h_5 \), then \(Z_2 \oplus Z_2 = G_3 \) up to weak conjugation. Second if \(h = h_2 \), up to conjugation, then if \(g = h_1 \) or \(h_2 \) we get \(G_1 \). If \(g = h_4 \) then \(Z_2 \oplus Z_2 = G_4 \), up to weak conjugation. If \(g = h_5 \), then \(Z_2 \oplus Z_2 = G_4 \), up to weak conjugation where the connected homeomorphism \(t: SK \rightarrow SK \), \(t([s,rx]) = [s^{1/2},rx] \) makes this action and the preceding one weakly conjugate. Third if \(h = h_3 \), then for \(g = h_4 \) we have \(Z_2 \oplus Z_2 = G_5 \), up to weak conjugation.

REFERENCES

4. M.A. Natsheh, PL involutions on some nonorientable 3-manifolds, to appear in Dirasat, the science section, the University of Jordan research journal.
عن المجموعة المحدودة للأفعال في قنينة كلين

محمد عرفات النتشة

في هذا البحث تصنيف لجميع قنينية
وعندما يكون
$G = Z_2 \oplus Z_2$.