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[9] L. Saalschütz, Neue formeln für die Bernoullischen zahlen, J. Reine Angew. Math. 126 (1903),

pp. 99–101.
[10] N.J.A. Sloane, A091885 formatted as a simple table, in The On-Line Encyclopedia of Number

Sequences, Available at www.research.att.com/�njas/sequences (Last updated: 3 July 2007).
[11] N. Gauthier and P.S. Bruckman, Sums of the even integral powers of the cosecant and secant,

Fibonacci Quart. 44 (2006), pp. 264–273.
[12] K. Knopp, Theory and Application of Infinite Series, Dover, New York, 1990.

[13] P.G. Todorov, On the theory of the Bernoulli polynomials and numbers, J. Math. Anal. Appl. 104

(1984), pp. 309–350.

On the ‘independence of trials-assumption’ in geometric distribution

Mohammad Fraiwan Al-Saleha*

Department of Mathematics and Physics, Qatar University, Doha, Qatar

(Received 7 August 2007)

In this note, it is shown through an example that the assumption of the
independence of Bernoulli trials in the geometric experiment may unexpectedly
not be satisfied. The example can serve as a suitable and useful classroom activity
for students in introductory probability courses.
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1. Introduction

A Bernoulli experiment (BE), is a random experiment for which the sample space consists

only of two outcomes, success (s) and failure ( f ). Let p¼Pr(s); q¼ 1� p¼Pr( f ).

Many of the well-known discrete distributions are usually defined based on the repetition

of this experiment. Assume that a BE is repeated n times, so that the n trials are

independent and p kept fixed for all the trials. If X1 be the total number of successes,

then X1 is a binomial random variable, denoted by X1�B(n, p), with probability density

function (pdf), f1ðxÞ ¼ ð
n
xÞ p

xð1� pÞn�x, for x¼ 0, 1, . . . , n and 05 p5 1. If instead, a BE is

repeated with the same conditions above (independence of trials and fixed p), until 1

success is obtained and if we let X2 be the required number of trials, then X2 is

a geometric random variable, denoted by X2�G( p), with pdf, f2(x)¼ pqx�1, for

x¼ 1, 2, . . . . Similarly, if X3 denotes the required number of trials to obtain r successes,

then X3 is a negative binomial random variable, denoted by X3�NB(r, p), with pdf,

f3ðxÞ ¼ ð
x�1
r�1Þp

rqx�r , for x¼ r, rþ 1, . . . .
It is well known that X3 has the same distribution as

Pr
i¼1 Yi, where Y1, . . . ,Yr are

independent and identically distributed (iid) G( p). Thus,

X3¼
d
Xr
i¼1

Yi:

As a consequence of this relation, we have

EðX3Þ ¼ rEðY1Þ ¼
r

p
and VarðX3Þ ¼

rq

p
:

The two assumptions, the independence of trials and fixed p, are essential to guarantee

that the trials are identical (see [1] and [2]). In other words, the same BE is being repeated.
In classroom teaching, teachers usually simplify the above two assumptions to students

by saying that the assumptions are satisfied, if we randomly sample with replacement from

a population, that consists of items of two kinds with 100p% of one kind (s) and (1� p)

100% of the other kind ( f ). Note that in the above-mentioned population, the assumption

of fixed p is satisfied whether sampling is with or without replacement, i.e. the Pr(s) is the

same for all trials. However, if sampling is without replacement then, the conditional

probability of s at any trial depends on the results of the previous trials, i.e. the trials are

dependent. If the population is infinite, then sampling with or without replacement does

not make any difference.
The purpose of this article is to provide a case were sampling with replacement

may not be enough for the ‘independence of trials’ assumption. Hence, we may conclude

mistakenly that the distribution is binomial, geometric or negative binomial, etc.

The example shows that the satisfaction of the independence of trials assumption may

depend on the value of the common probability of success of each trial, p.

2. The example

Assume that we are sampling randomly from a population of items of k different types and

the proportions of these types are, respectively, p1, p2, . . . , pk, with
Pk

i¼1 pk ¼ 1. Items are

selected, at random, one at a time independently (with replacement) and the type of each

selected item is noted. Let X be the minimum number of items need to be selected to obtain

one item at least of each type. The support of X is the set {k, kþ 1, . . . .}.
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Let Y1 be the total number of items that need to be drawn to obtain any type.

Clearly Y1¼ 1 with probability 1; Y1 can also be regarded as a geometric random variable

with p¼ 1, i.e. Y1�G(1). Let Y2 be the total number of items that need to be drawn to

obtain a type different than the first drawn type. In general, for i¼ 2, . . . , k, let Yi be the

total number of additional items that need to be drawn, after obtaining the (i� 1) types, to

obtain a type different than the (i� 1) previously drawn types. Clearly

X¼
d
Xk
i¼1

Yi: ð1Þ

We pose the following question: Are the Yi’s geometrically distributed? A first reaction

to this question is ‘YES’. Each trial is either a success or a failure, where a trial is a success

if its outcome is a different type than the previously obtained types.
For simplicity, consider first the simple case of k¼ 2. Then X represents the minimum

number of items that need to be taken to obtain at least one of each of the two types,

t1 and t2, say. Thus, X can take the values 2,3,4 . . .

PrðX ¼ xÞ ¼ Pr ðt1t1 . . . t1t2Þ
 ���!
x�1 times

þPr ðt2t2 . . . t2t1Þ
 ���!
x�1 times

¼ p1p
x�1
2 þ p2p

x�1
1 :

Thus, the pdf of X is

f ðxÞ ¼
p1ð1� p1Þ

x�1
þ ð1� p1Þp

x�1
1 if x ¼ 2, 3, . . .

0 if otherwise

(
, ð2Þ

which is a convex combination of two truncated geometric’s densities. Hence, it can be

easily verified that

EðXÞ ¼
1

p1ð1� p1Þ
� 1 ¼

1

p1p2
� 1: ð3Þ

Since, Y1¼ 1 with probability 1. Y2 is the number of trials, excluding the first one, till

obtaining a success. The success here is the event of obtaining a type different from the

type obtained in the first trial. Thus, the probability of success here is,

p ¼ PrðsÞ ¼ Prðt1t2 or t2t1Þ ¼ 2p1p2: ð4Þ

Now, Y2¼X� 1. Thus, the pdf of Y2, g( y2), is

gð y2Þ ¼ PrðY2 ¼ y2Þ ¼ PrðX ¼ y2 þ 1Þ:

Therefore,

gð y2Þ ¼
p1ð1� p1Þ

y2 þ ð1� p1Þp
y2
1 if y2 ¼ 1, 2, . . .

0 if otherwise
;

�
ð5Þ

EðY2Þ ¼
1

p1ð1� p2Þ
� 2: ð6Þ

If Y2 were geometric then, the pdf should have been, for y2¼ 1, 2, . . .

g�ð y2Þ ¼ pð1� pÞy2�1 ¼ 2p1ð1� p1Þð1� 2p1ð1� p1ÞÞ
y2�1: ð7Þ
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Thus, for 05 p15 1, g* ( y2) 6¼ g( y2) unless p1¼ 0.5. Hence, Y2 has a geometric

distribution if and only if p1¼ 0.5.
One question that may immediately arise: What went wrong? The probability of

success at any trial is fixed at p¼ 2p1p2. This means that the problem is with the second

assumption: the trials are not independent. To see this, let A1 and A2 denotes, respectively,

the result of the first and second trial.

PrðA1 ¼ sÞ ¼ Prðt1t2 or t2t1Þ ¼ 2p1ð1� p1Þ;

PrðA2 ¼ sÞ ¼ Prðt1t1t2, t1t2t2, t2t2t1 or t2t1t1Þ

¼ 2p21ð1� p1Þ þ 2p1ð1� p1Þ
2

¼ 2p1ð1� p1Þ:

However, the conditional probability that A2¼ s given that A1¼ s is

PrðA2 ¼ sjA1 ¼ sÞ ¼
Prðt1t2t2 or t2t1t1Þ

Prðt1t2 or t2t1Þ
¼

1

2
:

Hence, Pr(A2¼ sjA1¼ s) 6¼Pr(A2¼ s), unless p1 ¼ ð0:5Þ, which says that the trials are

not independent unless the two types have equal proportions. This is actually very

surprising, because we are sampling from the population with replacement. In fact,

since the maximum value of p1(1� p1) is 0.25 assumed at p1 ¼ ð0:5Þ,
Pr(A2¼ sjA1¼ s)4Pr(A2¼ s) for all p1 6¼ ð0:5Þ.

The result of this example can be easily generalized for k4 2. Thus, Y1,Y2, . . . ,Yk

are geometrically distributed if and only if p1 ¼ p2 ¼ � � � ¼ pk ¼ ð1=kÞ.
For example, if a balanced die with six faces is rolled until each face is obtained at

least once, then the minimum required number of trials is X ¼
P6

i¼1 Yi, where Yi

are independent with Yi�Gðð7� iÞ=6Þ. Thus, the mean and variance of X can be

easily obtained. Also, if a balanced coin is tossed until each face is obtained at least once,

then again, X¼Y1þY2, where Y1�G(1) and Y2�Gð1=2Þ. These two examples are

familiar examples in any introductory course of probability. On the other hand,

if individuals are sampled from the population repeatedly until obtaining at least one

individual for each of the four blood types, then X ¼
P4

i¼1 Yi, but the Yi are not

geometrically distributed. The reason here is that p0is, which are the proportions of the four

blood types are not equal. In other words, the trials to obtain the second blood type

after obtaining one of them are not independent, as are the trials for obtaining the third

and the fourth blood types.

3. Concluding remarks

It is trivial in many classroom examples to check the conditions on Bernoulli trials so that

the distribution is Binomial, geometric, etc. However, examples of the above types require

extra care when checking the assumption of the independence of trials.
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Some infinite series are analysed on the basis of the hypergeometric function and
integer structure and modular rings. The resulting generalized functions are
compared with differentiation of the ‘mother’ series.
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1. Introduction

Infinite series have intriguedmathematicians for centuries, as has the concept of unification,

whereby seemingly unrelated functions can be shown to be particular cases of some general

function. A case in point occurred early in the nineteenth century when many known

functions were shown to be particular cases of the hypergeometric function [1].

Another unifying approach is to analyse systems using integer structure (IS) and modular

rings [2]. Here, we illustrate how some series may be thus interpreted, both for their

mathematical interest and pedagogical value, so far as they link a variety of ideas.

2. Hypergeometric functions

Many functions can be represented by infinite series. For example, for �15x� 1,

lnð1þ xÞ ¼ x�
1

2
x2 þ

1

3
x3 �

1

4
x4 þ � � �

¼ xFð1, 1; 2;�xÞ, ð2:1Þ

is a hypergeometric function, defined in general by

Fða, b; c;xÞ ¼ 1þ
ab

c
xþ

aðaþ 1Þbðbþ 1Þ

2cðcþ 1Þ
x2 þ

aðaþ 1Þðaþ 2Þbðbþ 1Þðbþ 2Þ

3!cðcþ 1Þðcþ 2Þ
x3 þ � � �

¼
X1
n¼0

anbn

cn
xn

n!
, ð2:2Þ
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