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Abstract. In this article saddle and Hopf bifurcation points of predator-prey fractional 
differential equations system with a constant rate harvesting are investigated. The numerical 
results based on Grunwald-Letnikov discretization for fractional differential equations together 
with the Mickens’ non-standard discretization method agree with those found by the 
corresponding ordinary differential equation system.    

1.  Introduction 
Study of the Fractional Differential Equations (FDEs) as a dynamical system is a novel and appealing 
subject which has motivated the leading research literatures in recent years. For example see [1-7]. 
The non-local nature property of the fractional differential equations is a distinguish property. Indeed, 
a local operator, such as an integer order differential equation, has the property that only the present 
state of a system can determine its coming state, so this operator is oblivious to the history of the 
system. On the other hand, the so-called non-local property means that the next state of a system not 
only depends upon its current state but also upon its historical states starting from the initial time. This, 
of course, is closer to reality and is therefore the main reason that FDEs have become more and more 
popular and have been applied to dynamical systems.  

In this article we consider the predator-prey system with constant harvesting rate in the form of 
FDEs and investigate its saddle and Hopf bifurcation points. Although this famous biological model, 
in the form of ordinary differential equations, has been widely used in forestry, fishery and wildlife 
management [7 and 8], however in the form of FDEs it is a new subject. Indeed we expect such 
biological model in the form of FDEs, by the above described non-local property, to be more 
consistent with the real natural phenomenon than its classic one. Here we first discretize the system by 
using the Grunwald-Letnikov discretization method [9 and 10] for FDEs, then in order to obtain more 
accurate numerical results we use the Mickens’ method [11] in the discretization process. The 
numerical results for different orders of FDEs are illustrated in different figures. Finally, we 
summarized with some comments. 

2.  Discretization of Predator-Prey FDEs  
We consider the special case of predator-prey FDEs with the constant rate harvesting as: 
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In this system x  and  are functions of time representing the population densities of prey and 
predator respectively, while k  is the capacity of the prey population, d  is the death rate of the 
predator, 

y

r  is the natural growth rate of the prey population, and e  is the harvesting rate. For the α  

fractional order of we have used Caputo’s definition [12] which is stated 

as . We consider the case where 
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Riemann–Liouville integral operator defined by 
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Here, is the step size and [  denotes the integer part of t and  are the Grunwald-Letnikov 
coefficients defined by 
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They can also be evaluated recursively as 
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Under this discretization method system (1) is discretized as follows; 
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Note that here in discretized system (3) we have adapted non-standard Mickens’ method. As 
discussed elsewhere [7 and 8], in the great number of the dynamical systems the difference equations 
found by non-standard Mickens’ discretization method demonstrate significant qualitative 
improvements in the behaviour of the numerical solutions and the results are dynamically consistent 
with their differential equations; i.e., both possess the same dynamics in  neighbourhoods of the 
bifurcation points. Here to use this non-standard discretization method for system (1) we replace t in 
Euler’s method by a function of ,t )(tϕ , and the term yx by . 1+nnxy

2007 International Symposium on Nonlinear Dynamics (2007 ISND) IOP Publishing
Journal of Physics: Conference Series 96 (2008) 012045 doi:10.1088/1742-6596/96/1/012045

2



3.  Numerical Results 
In this section we illustrate the numerical results found by the solution of discretized system (3). For 
the results to be consistence with those found in classical order differential equations of system (1) [7 
and 8], we have taken  and with the bifurcation parameters tet −−=1)(1ϕ 1)(2 −= teτϕ 5.0=d  
and . With these chooses, system (3) has a saddle point for 0625.0=e 1=α which is illustrated in 
Figure 1-a. This result is analogous to that found by classical differential equation form of system (1), 
[7]. This saddle point exists for the values 19.0 ≤≤α . Figure 1-b shows the saddle point for the 
differential order 9.0=α . This saddle point for the values 9.0≺α will disappear. Another interesting 
bifurcation point that we investigated here is the Hopf bifurcation point which can be found by 
choosing the pair of parameters ( ) ( )05.0,3702.0, =ed . This Hopf bifurcation point is illustrated in 
Figure 2 for different values of differential orderα . Figure 2-a shows the Hopf bifurcation point for 

1=α  which is again completely similar to that found by classical differential equations of system (1) 
in [7]. This Hopf bifurcation point exists for different values of the bifurcation parameters  and 
the differential order

ed ,
α . The Hopf bifurcation for 9.0=α  is illustrated in Figure 2-b with the same 

values of the bifurcation parameters in Figure 2-a. This Hopf bifurcation is very sensitive for the 
differential order 9.0≺α and needs a more considerable effort in the numerical method. 
 

  
 

Figure 1. Saddle node for pair of bifurcation parameters ( ) ( )0625.0,5.0, =ed , (a) for differential 
order 1=α and (b) for 9.0=α . 

  
 

Figure 2. Hopf bifurcation for pair of bifurcation parameters ( ) ( )05.0,3702.0, =ed , (a) for 
differential order 1=α and (b) for 9.0=α . 
 

4.  Consequence 

2007 International Symposium on Nonlinear Dynamics (2007 ISND) IOP Publishing
Journal of Physics: Conference Series 96 (2008) 012045 doi:10.1088/1742-6596/96/1/012045

3



 
 
 
 
 
 

Here we studied the saddle and Hopf bifurcation points of predator-prey FDEs system with the 
constant rate harvesting for different values of the bifurcation parameters and differential orderα . The 
numerical results agreed with those are found by the same system with the classical order 1=α . Yet, 
there are many other important bifurcation points of this system, such as Bogdanov-Takens bifurcation 
points, which have to be investigated. In addition, the stability analysis of these bifurcation points need 
more concrete machinery which yet is an untouched subject in the leading literatures. Although, there 
are some fascinating attempts which have been done by some researchers (for example by Matignon 
[4]), however  the stability analysis of FDEs is relatively a new and attractive subject which needs 
more endeavour.  
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