
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

REAL-TIME TWEET SUMMARIZATION MOBILE APPLICATION

BY

NAZAR S. SALIM

A Project Submitted to

the Faculty of the College of

Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computing

June 2018

c© 2018 Nazar S. Salim. All Rights Reserved.

COMMITTEE PAGE

The members of the committee approve the Project of Nazar S. Salim defended on May

25, 2018:

Abdelkarim Erradi

Project Supervisor

Tamer Elsayed

Project Co-Supervisor

Qutaibah Malluhi

Committee Member

Osama Halabi

Committee Member

ii

ABSTRACT

Salim, Nazar, S, Masters:

June: 2018, Master of Science in Computing

Title: Real-time Tweet Summarization Mobile Application

Supervisor of Project: Abdelkarim Erradi

Project Co-Supervisor : Tamer Elsayed

With the emergence of the massive volume of content through social media plat-

forms, users are getting overwhelmed with information, though searching for the topic

will give you filtered information that interests you. Yet, if the user is subscribed

to multiple topics one of them might shadow that topic of interest. The project was

created to address this issue through offering a mobile application for users to define

their topics of interest.

The application named Real-time Twitter Summarization (RTS) offers a novel approach

where user gets to not only choose the topic, but to decide on frequency and relevancy

of the pushed tweets related to the topic. The application also provides a real time

summarization, and offers notification once topic related novel tweet was created.

These functionalities are solutions that were not provided in similar applications.

This project has not only been developed to be fully functional, but to also be usable

in the simplest format. Scalability of the tweet summarization Engine was tested , to

check if the application layer did cause delay or not.

It is important to mention that this work is an extension to the previous work of

Suwaileh, Reem and Hasanain, Maram [7] submitted as a participation of “Real-Time

Summarization Track” [3].

Keywords: Mobile Application; Real-Time Summarization; Scalability; RTS; In-

formation Retrieval; Information Filtering

iii

DEDICATION

I would like to dedicate this project to Science.

And as a sign that you can do anything.

If Nazar was able to pull it off, you sure could do it too.

iv

ACKNOWLEDGEMENTS

I’d like to start my acknowledgment by thanking all my friends who have been waiting

for me to finish the Master’s degree to hang out with them again, and the answer to ”are

you joining us tonight?”, Chang from ”sorry. Can’t” to ”I’m there waiting for you”.

Knowing that without the support I received from my family I would not have reached

this point I would like to thank them form the bottom of my heart.

Additionally, I must appreciate the help of

- Dr. Tamer for allocating from his time to follow up with me on this Project, despite

his pre-equipped schedule.

- Reem Ali Suwaileh, for the orignial work of the RTS engine, and for helping with the

kick starting the project.

- Khaled Nabil Kadoura, for his input on the design that helped in taking the application

to a new level.

- Ammar Al-Qmash for being there in my low points.

- Yazan Tayih for the ionic framework tutorials.

- Mariam Salim and Tasnim Ismail, for proofreading the report

v

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

1 INTRODUCTION 1

1.1 Problem Statement . 1

1.2 Solution Overview . 1

1.3 Contributions . 2

2 BACKGROUND AND RELATED WORK 3

2.1 Background . 3

2.1.1 Tweet Stream . 4

2.2 Related Work . 4

2.2.1 Filtering Service . 5

2.2.2 TREC Real-Time Summarization Tools 6

2.2.3 Twitter Deck . 7

3 REQUIREMENTS ANALYSIS 9

3.1 Functional Requirements . 9

3.2 Non-Functional Requirements . 10

3.2.1 Usability . 10

3.2.2 Scalability . 11

4 SYSTEM DESIGN 12

vi

4.1 System Architecture . 12

4.1.1 Subscription Service . 13

4.1.2 RTS Engine . 13

4.1.3 RTS Mobile Application . 14

4.1.4 FireStore . 14

4.2 RTS User Interface . 14

4.2.1 User Experience (UX) design 15

4.2.2 User Interface (UI) design . 15

4.3 Data Schema . 18

4.3.1 Topics . 18

4.3.2 User . 19

4.3.3 Tweet . 19

4.4 Communication between RTS components 20

4.4.1 Subscription Service Rest API 21

4.4.2 FireStore API . 22

5 IMPLEMENTATION 23

5.1 Subscription Service . 23

5.1.1 Load balancing . 23

5.2 RTS Engine . 24

5.2.1 Configuration options . 24

5.2.2 Sync the Topics . 24

5.3 Mobile Application . 25

5.4 Hosting . 25

6 EVALUATION 26

6.1 Performance Evaluation . 26

6.1.1 Setup . 27

6.1.2 Evaluation Results . 27

6.2 Usability Testing . 29

vii

6.2.1 Task Analysis . 30

6.2.2 Usability Testing Results . 31

7 CONCLUSION AND FUTURE WORK 33

7.1 Conclusion . 33

7.2 Future work . 33

REFERENCES 35

Appendix A FIGURE SNAPSHOTS OF TWEETDECK 37

Appendix B USER EXPERIENCE MATERIAL 39

B.1 Persons . 39

B.1.1 Persona Yazan . 39

B.1.2 Persona Baraa . 40

B.1.3 Persona Husam . 41

B.1.4 Persona Abdol . 41

B.1.5 Persona Khaled . 41

B.2 Scenarios . 42

B.2.1 Download/Sign up and Subscribe to the topics of interest 42

B.2.2 Abdol Learned about the Application 43

Appendix C USER INTERFACE MATERIAL 45

C.1 Screens Design . 45

Appendix D HIERARCHICAL TASK ANALYSIS 47

D.1 Add Topic Simple . 47

D.2 Add Topic Advanced . 48

D.3 Edit Topic . 49

D.4 Sign Up . 50

D.5 Navigate to old date . 51

D.6 Navigate to old date . 52

viii

D.7 Filter Topics . 53

D.8 Remove Topics . 53

ix

LIST OF TABLES

3.1 List of Functional Requirements . 10

4.1 Topic Attributes Description . 20

4.2 Subscription Service Rest API List . 21

4.3 List of the used FireStore API . 22

x

LIST OF FIGURES

2.1 A high-level overview of the pipeline explained in [7] 4

2.2 A high-level overview of the pipeline explained in [7] 7

3.1 The Use Case Diagram of the RTS System 9

4.1 Over View on the System Components and Architecture 12

4.2 Login Screen and Sign Up . 16

4.3 Login Screen and Sign Up with invalid filling 17

4.4 Guide sample and Topic Creation from 18

4.5 Sample Tweet, Filter selecting a topic 19

4.6 The Entity relation digram (ERD) . 21

6.1 Graph showing time in milliseconds per the number of active clients

requests . 28

6.2 Time processing time (milliseconds) versus the number of topics 29

6.3 Summary of Usability survey answers 31

A.1 The type of columns that can be added to your TweetDeck 37

A.2 Example of a Screen Dashboard TweetDeck 37

A.3 Highlight of the filter Options of a Screen Dashboard TweetDeck 38

C.1 Screen Login and tweets Listing . 45

C.2 Screen Topics Listing and topics Form 46

D.1 Hierarchical task analysis for Add topics 47

D.2 Hierarchical task analysis for Add topics 48

D.3 Hierarchical task analysis for Add topics 50

xi

D.4 Hierarchical task analysis for Sign Up 51

D.5 Hierarchical task analysis for Navigating to old date 51

D.6 Hierarchical task analysis for Navigating to old date 52

D.7 Hierarchical task analysis for Filter Topics and Remove Topics 53

xii

CHAPTER 1: INTRODUCTION

The recent information explosion caused by increased amount of published information

and user-generated content has led to information overload. With that, the challenge

of filtering out relevant information from general and repetitive content came about.

Someone could have multiple interests; yet if one of those interest has a high volume

of material, it will shadow out the other topics. In 2014, the text retrieval conference

(TREC) introduced a new track titled “Real-Time Summarization Track” [3] to ad-

dress this issue. The track focuses on both; real-time filtering of the tweet stream and

identifying the relevant and novel tweets. This is to notify the user in real-time.

1.1 Problem Statement

The focus of a Real-time Tweet Summarization (RTS) System is to address the men-

tioned issue by providing a platform for users to define their topic of interest and get

notified of new novel tweets about them.

1.2 Solution Overview

The project presented in this report extends the solution submitted by Qatar University

IR Team. Section 2.2 describes the solution design in details, and how it addresses the

aforementioned issue. The project extends it by developing a mobile application that

works on an interface to utilize the functionality implemented in the filtering service

aka the engine.

The solution is built with four main components: The mobile application, Sub-

scription service, FireStore database and the Engine. The detailed description of the

components and how they are implemented is described in Section 4.1 and Chapter 5

respectively.

1

The idea of this project is to put the use of the research done in [7] into a real

application and expose it for users to experience. Additionally, it opens the chance to

add feedback feature to the solution.

1.3 Contributions

The contributions of this project are

1. Development of the mobile application Real-Time Twitter Summarization (RTS)

that utilizes the ”Scalable Real-time Tweet Summarization” Engine developed by

[7].

2. Overcoming the drawback of available twitter summarization solutions by pro-

viding the following features in RTS

• Defining their topics of interests in a straightforward way

• Get notified about a new topic directly using push notifications in real time

• Navigate through the history of pushed (selected) tweets

3. Introducing functionalities that allow control to the user where they can customize

relevancy threshold, choose tweets frequency , add and remove topics of interest

and thier keywords any time

4. Dev elope RTS in a way that is both Usable on the application level and scalable

on the engine level through a well rounded experiment.

2

CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter; The concepts related to the project are introduced starting with (web 2.0)

and the type of application that is introduced. Then, Twitter as a research opportunity

is explained along with the topics of interest. After that, the research paper that this

project is extending is described. Finally, this section is concluded with highlighting an

exiting application that offers similar features to what this solution project proposes.

2.1 Background

The movement of the web from content-based to web applications and services (Web

2.0) has introduced a new level of content volume and research opportunities [9]. Twit-

ter; the current leading macro blogging platform gets a lot of attention in the Text RE-

trieval Conference (TREC), offering multiple tracks - which are series of workshops

focusing on a list of different information retrieval (IR) research areas- around it. Since

2011, tracks related to real-time search were offered, best summarized as a question of

what are the most relevant tweets about topic X, given a stream of tweets [3]. Each year

TREC offers it with another flavor of challenges. In 2014, Temporal Summarization

Track was offered which focuses on getting updates about highly significant selected

predefined events, that need to be analyzed on a stream of provided documents. Then,

participants are asked to submit a summary of these events; where the optimal summary

is the one that covers all of the essential information about them with no redundancy

[2]. In 2016 TREC introduced the latest version of a microblogging focused track: The

Real-Time Summarization, and carried on to 2017 and 2018 [4]. The focus of this track

is to consider a group of users who have a set of interests, and the system’s task is to

automatically monitor the stream of documents to keep the users up to date with the

topics of interest.

3

Figure 2.1: A high-level overview of the pipeline explained in [7]

2.1.1 Tweet Stream

To get access to a stream of statuses (aka tweets), Twitter offers two methods. The

first method is the ”Sample Real-time Tweets”, which returns a small random sample

of all public statuses [8]. The other method is ”Filtered Real-time Tweets”, this has two

offerings: the standard free one that allows only one filter rule on a single connection,

and requires disconnection to adjust the rule. A second method is an enterprise option

that offers thousands of rules on a single connection, with no disconnection needed to

add/remove rules using Rules API.

It is good to note that the ”Sample Real-time Tweets” is used in research to ensure

neutralness. Also, if there is a challenge, all the participating teams would be getting

the same samples. This helps in testing results accurately.

2.2 Related Work

The RTS project in hand is an extension to work done in [7], Qatar University’s IR

Group submission for RTS 2016 Track. The core system components, donated as the

filtering, service are described as part of the project’s system architecture explained later

in Section 4.1 of this report.

4

2.2.1 Filtering Service

The system design for the 2016 submission explained in [7] emphasizes on the light-

weight and conservative filtering strategy; achieved through pipelining multiple stages:

1) Pre-qualification 2) Preprocessing 3) Indexing 4) Relevance Filtering 5) Novelty

Filtering 6) Tweets Nomination 7) Profile Expansion. As highlighted in figure 2.1,

The system adopts one-tweet-at-a-time processing model to ensure the shortest possible

latency in making pushing decisions.

Pre-qualification

The core activity in the pre-qualification phase is to filter out tweets of a non-desired

language, additionally the removal of Spam tweets - defined as tweets that have more

than one URL or more than 3 hashtags-.

Preprocessing

After a tweet is marked as qualified, some processing takes place including special

characters removal (e.g., emotion and symbolic characters), stop-words removal, URL

removal, and stemming. Then, the indexing takes place where the system incrementally

indexes all incoming English tweets for the evaluation period.

Relevance Filtering

While indexing the tweets, the relevance filtering takes place in parallel by using the

vector space model to represent each interest profile the (title especially) and represent-

ing each incoming tweet as a vector using IDF-based term weighting scheme. Then, it

computes the term weights using the number of tweets indexed at the time of construct-

ing the vector, and the document frequency of the term. After that, the RTS system

computes the relevance score of a tweet against each interests profiles using the stan-

dard Cosine Similarity function.

5

Novelty Filtering

Before sending the tweet to the broker, the RTS system should only push tweets that

are relevant and novel to the user. Therefore, a novelty model has to be used to estimate

the originality for each potentially-relevant tweet. The implementation of the engine

examines the tweet against all previously-pushed tweets for a corresponding profile to

estimate its novelty before deciding to push it to the corresponding user.

Introduced modifications

In this section, changes introduced to the existing engine implementation are high-

lighted. The first change was to make the relevance threshold customizable on the

topic level in contrast to being pre-defined on the system level. Secondly, to modify the

structure of the topic; such that it extracts the terms from the set of provided keywords

of the topic, not the description. This was found to be more effective in experiments.

Also, to modify that further such that users have the ability to define the keywords ex-

plicitly. Last but not least, the system was built with an assumption that all the topics

are pre-known to it. In order to allow the usability of the system with a live application,

the necessary configurations were done to sync the topics with the users’ defined ones.

All of that is detailed in section 4.1 describing the system architecture and chapter 5

explaining the implementation details.

2.2.2 TREC Real-Time Summarization Tools

To evaluate the submissions to the RTS Track a group of tools was created to mimicking

a real scenario and give the assessors a way to evaluate the pushed tweets. That setup

had 3 groups of components, first was the Mobile Assessment App, which mainly used

to show the assessors the submitted tweets for each topic allowing them to rate it with 3

options: 0) not relevant, 1) relevant 2) relevant but repeated. Which in our case would

be the mobile application offered to users to receive push notifications. The second

component are the participating system where in the challenge each team would have

developed their own engine connecting it to the evaluation broker (the third component)

6

Figure 2.2: A high-level overview of the pipeline explained in [7]

to group and distribute the tweets to the assessors.

Figure 2.2 shows the data flow of the components, where each of the participating

systems subscribes to twitter stream, and received the topic’s definition from the broker,

pushes assigned id and topic and tweet id to the broker when finding a relevant and novel

tweet. then the broker manges delivering the tweets to the assessors.

The project in hand follows smiler flow, the main difference is that users create there

own set of topics, and there is only one engine version, with multiple instance of it.

We also replaced the broker with what we call the subscription service though it shares

some functionality with the broker.

2.2.3 Twitter Deck

Twitter has acquired in mid-2011 an application that offers a dashboard. This dashboard

consists of a series of customizable columns; each column provides information or

stream of tweets based on its type. Figure A.1 highlights the selectable types, which

include: mentions, direct messages, lists, trends, favorites, search results, hashtags, or

all tweets by or to a single user. The one closest to the RTS System is the search

column.

7

Search Column

The way the search column works is after it is added to the dashboard, it would show

a search bar, where a search query is entered. Then, it would populate the column with

search results ordered by most recent down to old tweets. The column would also be

auto-updated when new tweets that satisfy the search query come. The search column

also offers filter options as shown in figure A.3. On the content level, its possible

exclude a set of keywords in the query, specify the language, and select only to display

tweets that have a selected type of media such as (images, videos, gifs, etc..). On the

user level, one of the filtering options is to select showing tweets by users who have

been verified by twitter (have the blue tick next to their twitter handle); to allow seeing

tweets by . Last but not least one of the filters available is on the engagement of the

tweet, such that it is possible to specify the minimum number of likes/re-tweets/replies

a tweet received to show in the column.

Drawbacks

Drawbacks of TweetDeck are not having real time updates, using basic filters and not

checking for novelty. Following is their explanations.

The First drawback to TweetDeck is that users must stay logged in to access the

content. Users are not provided with real-time updates while working on other applica-

tions. That is, users must still periodically check TweetDeck to obtain the latest updates.

Second limitation is that the filters are basic, e.g. it only checks if a tweet has the term

or not. Last, the novelty check is not available as an option.

Things that are offered in the RTS System and not in TweetDeck include the ability to

be notified of new tweets that arrives without closely monitoring the feed. Also, nov-

elty filter is applied as an essential step in selecting the tweet to push to the user. Not to

forget using a more complex filter as provided by [7].

8

CHAPTER 3: REQUIREMENTS ANALYSIS

3.1 Functional Requirements

The RTS mobile application requirements focuses on to allowing users to define their

own topics and have full control over the frequency of the push notifications.

As explained in Table 3.1 the main functions are; Managing Topics, viewing Pushed

Tweets, Receiving Notifications, Signing up and Signing In.

Figure 3.1 shows the use case diagram identifying the engine to be the actor that pushes

the tweets and the subscriber who can set the desired topics they are interested to be

updated about.

Figure 3.1: The Use Case Diagram of the RTS System

9

Table 3.1: List of Functional Requirements

Requirement Description
Manage Topics The ability to express their topics of interest, Navigate

through the topics, edit and remove them. along the ability
to customize the frequency and threshold settings per their
desire.

Notification Getting notified about new tweets without the need for hav-
ing the application running.

View pushed tweet
history

Access to a list of all sent tweets, with the ability to filter
the tweets per a selected topic, look for tweets based on the
pushed date.

Sign In Simple user login to use the app functionality
Sign Up The application should be open for public allowing new

users to create accounts.
Push tweet The processing that takes place between the engine getting

the tweet till the subscription service connecting with the
push notification service.

3.2 Non-Functional Requirements

Non-functional requirements (NFR) are requirements of how well the system should

deliver its functionality. The key desired quality of RTS System are usability and scal-

ability of the system.

3.2.1 Usability

The usability requirements for the application are as follows.

1. The interface has to be intuitive: Users should be able to learn the application

on their own without the need for explanation. The application should offer the

necessary guidance only if needed.

2. The number of clicks required to finalize any action should not exceed five clicks.

3. In case of error, the user has to be informed of the issue and the course of action

to avoid it. For example, if there is an invalid field, the field that has a problem

should be clarified, and the way to resolve the validity has to be explained in the

error message.

10

3.2.2 Scalability

Scalability is the capability of a system to handle a growing amount of work by al-

locating more computing resources to accommodate that growth. Scalability can be

achieved by running multiple instances of the comportments experiencing higher work

load. Let us say one engine can handle approximately ten thousand topics, adding one

more engine should allow twenty thousand topics and so on. The scalability require-

ments for our project is the ability to manage ten thousand topics per engine instance,

along with the ability to perform sending one hundred tweets per sec when running

a single instance of each component. Because the pipeline engine is scalable, adding

more instances should be covered by it’s scaling capability. This will be tested in section

6.2.2 then in the performance evaluation.

11

CHAPTER 4: SYSTEM DESIGN

4.1 System Architecture

The developed RTS system follows the architecture shown in figure 4.1 that highlights

the main components of the system:

a) RTS Mobile application: allows the users to define their topic of interest, receive

notification directly on their mobile device and go through the history of pushed tweets.

b) subscription service: receives the created topics along with the edit and remove re-

quests from the users and forwards them to the Real-Time Data Store (fireStore). The

subscription service also acts as a balancer that divides the topics between Engine in-

stances based on round-robin load balancing, along handling the push notifications for

pushed tweets received from engine instances.

c) RTS Engine: listens to the stream of sample tweets and takes them through the

pipeline explained in section 2.2.

d) FireStore: the database of the system offering the sync options and authentication.

Figure 4.1: Over View on the System Components and Architecture

12

e) Twitter: micro-blogging platform the RTS engine listens to. The following subsec-

tions explain in details the roles of each of the components along with the communica-

tion channels between the components. Chapter 5 on the other hand covers in depth the

implementation details.

4.1.1 Subscription Service

The Subscription service component of the RTS system acts as the intermediary be-

tween the three other components. It is responsible for balancing the number of topics

between multiple running instances of the engine. It also handles the interaction with

the mobile application by offering the server side validation for the requests coming

from the users. Additionally, it maintains storing the topics and tweets in the database

server. Furthermore, it connects with the push notification providers through OneSignal

[5] a high volume, cross-platform push notifications and email service that works for

iOS, Android, and Web. Further implementation details of the Subscription service can

be found in section 5.1.

4.1.2 RTS Engine

The RTS engine is the core component of the RTS hence the given name. While active

it subscribes to two streams

a) reading twitter stream and taking each tweet through the processing pipeline ex-

plained in section 2.2

b) second reading the sync stream from the Real-time Database FireStore that notifies

the Engine about every addition, modification and removal of a topic. The engine stores

every topic as a profile object that has the topic details including title and the keywords

where it extracts the terms to analyze it against incoming tweets. More information on

the profile data structure and the sync mechanism can be found in section 5.2 of the

implementation chapter.

13

4.1.3 RTS Mobile Application

The main contribution of the project is the mobile application that allows the users to

receive push notifications, manage their topics, change their preferences in terms of

notification frequency, minimal tweet to topic and minimal relevance level. The appli-

cation also allows the user to view the history of pushed tweets. It is also bundled with

authentication and profile management features. Section 4.2 highlights the user inter-

face design in details and further implementation description can be found at section

5.3.

4.1.4 FireStore

This project uses Google Firebase API [6] as both a database component to store the

tweets, topics through the Beta version of new storing feature, and to manage the user

sign-in/sign-up through the authentication service. The Real-time store comes pre-

equipped subscription-based API that allows the other components of the system to

fetch data directly from it while applying the necessary data access rules: that ensures

that users have access only to the tweets and topics of their own.

4.2 RTS User Interface

The UI is both the first in line from importance for the success of the project and the

second in line when it comes to development prioritizing. Behind the UI, there are two

over-lapping sides to it. First the look and feel including the colors and the interac-

tive items of the application which are the various form fields and buttons. The other

side is the User Experience (UX) which focuses on the flow of the user between inter-

faces/screens, the intuitiveness of the icons used and the usability of the UI elements.

A simple way to know if a design has failed is when it requires a manual to learn how

to use it. The continuation of this section will focus on the work done to design the UX

first then moves to highlighting the UI design of the application.

14

4.2.1 UX design

To develop a solid user experience, user-centric software design (UCSD) an approach

where all the system functionalities and UX/UI are built with the user in mind. To

achieve UCSD the project started with developing the persona of the system users.

Which describes the application users by their interests, their level of technology savvi-

ness, and the information they are looking for. Then, moves to the second phase which

is creating usage scenarios for the created persona¿ The scenarios get translated to user

flow and interfaces. Follows is a highlight of one example of to demonstrate the activ-

ities taken. Section B.1 of Appendix B lists of all persona and the scenarios that were

created can be found in Section B.2.

4.2.2 UI design

The UI design is translating the outcomes of the UX exercise into graphical compo-

nents. In this section we will be showcasing the screens of the application taking you

through the application in a demo format to explain the intention and the possible sce-

narios. The first take will be the flow of an error-free scenario, at each step we will be

highlighting the components, the user’s intentions, and possible interaction options. A

full list of screens design can be found in Appendix C. Note that the highlighted screens

are screen-shots from the implemented application.

Sign Up

The first screen that the user finds after installing the application is the sign in/sign up

Page. The first screen new users see is shown on the left side of figure 4.2. These

screens allow them to pick a quick authentication option through the common social

media platforms (Google, Facebook, Twitter). This acts as a sign up if it is used for the

first time, and as a login, if the user has signed up before. In our scenario the user would

like to use his/her email to sign up, so he/she clicks on the signup button that pulls the

form shown on right side of figure 4.2.

15

Figure 4.2: Login Screen and Sign Up

As shown in the figure the login and sign-up buttons are disabled with a level of

transparency if the user clicks on them, he/she will be notified that he/she needs to fill

the form with valid input in order to accept the action. Figure 4.3 shows it clearly along

with the calcification massages.

First time user Login

After sign up, new users are taken to the topics list page to define their first topic, guided

through the screen with highlighters tour. Figure 4.4 shows the guiding message on the

left side. Note that the screenshot shows the end of the animation. The idea is that the

application welcomes users and direct them to the add topic button, the right side of

figure 4.4 shows the form which has the following input items:

1. Title: which is a given name for the topic

16

Figure 4.3: Login Screen and Sign Up with invalid filling

2. Keyword: This is the place to add a list of keywords that the tweets get evaluated

against

3. Advanced: which are the items related to the frequency of push notification and

the relevance threshold

The Create button has been disabled until the required fields are filled (Title and one

keyword is essential) the rest has default values.

Viewing Tweets/filter options

Once a user creates a topic they are taken to the home page. As shown in figure 4.5

the page shows them an example tweet that tells them this is how a tweet is presented.

The right side shows the pop-up for selecting among the topics created by the user.

Additionally by clicking on the calendar icon, the user will be presented with a calendar

to limit out the displayed tweets. Note that by default, the application shows users

17

Figure 4.4: Guide sample and Topic Creation from

current day’s tweets. The arrows allow the user to move to the previous days, and if

he/she is at a day prior, the next button will be enabled.

4.3 Data Schema

The system has three major entities: topics, subscription and tweets. In this section, we

will highlight the relations of each entity with the others, cover the attributes and their

usage within the application. Figure 4.6 shows the entity relation diagram.

4.3.1 Topics

The topics are the expressed representation of user’s interest. As shown in section 4.2.2,

a topic has two sides: one concerned with the tweet relevance and the other is related to

the push notification. Each user could have zero to many topics, and a topic has one user

subscribed to it. This allows storing the customization related information in the same

18

Figure 4.5: Sample Tweet, Filter selecting a topic

object as the terms. If the system introduces topic sharing, then a topic customization

entity needs to be added to the schema. Table 4.1 bellow shows a detailed description

of the topic attributes, their data types and their usage.

4.3.2 User

The user entity allows linking the topics and tweets to the selected user. It also stores

the user’s device identifier used by the subscription’ service when pushing notifications

to the mobile device of the users. Furthermore, the authentication services are managed

with the users’ entity.

4.3.3 Tweet

The tweets collection holds the minimal necessary content to display the tweet to the

user, also, it stores the user’s id used by the application to apply the access rules such

19

Table 4.1: Topic Attributes Description

Attribute Data Type Description
topicID String An auto-generated identifier used to link a

tweet to the topic and used to reference the
topic for edit and removal requests

uid String used to reference the owner of the topic, and
reflects on the access rules

keywords Array[string] Caries the list of keywords that is used to
test an incoming tweet against the topic

title String The title is a way for the user to identify the
topic. used when filtering and when picking
it to edit/remove

delta int delta is the number of minutes between each
push notification and the previous one.

limitPer character Stands for Limit Per and the possible val-
ues are ’d’:Per Day, ’h’:Per Hour,

’0’ no limit applied;

limitVal int Stands for Limit Value and is used with the
limiPer to identify the limit of tweets per
hour or day. or ignored if set to unlimited.

relevance-
Threshold

float used in the RTS Engine after calculating the
cosine relevance value of tweet terms and
topic keywords to determine if it passes the
minimal relevance required.

that users only see the topics pushed to them. Additionally the tweet has a snapshot of

the tweet object taken from Twitter that is used to display related media of the tweet.

Furthermore, it also holds the Twitter user object to show the name, handle and the

display photo of the user.

4.4 Communication between RTS components

In this section, the Application Programming Interface (API) between different compo-

nents, mainly the subscription service and the fireStore, is highlighted. Details about

the implementation specification will be explained in chapter 5.

20

Figure 4.6: The Entity relation digram (ERD)

4.4.1 Subscription Service Rest API

As discussed in previous sections the subscription service takes care of topics creation,

modification, and removal. The service offers all of that through a group of rest API

listed and explained in table 4.3. The subscription service also offers a set of meth-

ods for the RTS engine to push tweets, and communicate the RTS engine instance status.

Table 4.2: Subscription Service Rest API List

Verb URI Description
Get /rts/topic/:id Used to retrieve a single topic object identi-

fied by the topicId
Get /topics used to retrieve all topic objects
Get /engine/init used to inform the server about the start of

a new RTS engine instance, which then will
reassign some of the topics to it and lower
the amount for the others.

Get /engine/heartbeat used to confirm if the engine is still running
in case it has not sent any tweets for a de-
fined time.

post /tweet/:topic/:tweetid
/:engine

used to reference the owner of the topic, and
reflects on the access rules

21

Table 4.3: List of the used FireStore API

Verb URI Description
Java SDK FirebaseApp .initial-

izeApp
Used to initialize connection with the fire-
base services and reference the collection

Java SDK initLoad.get() .getDocu-
ments()

used to retrieve all topic objects

Java SDK topicsRef .addSnap-
shotListener

used to create an Event listener to cre-
ation/modification and deletion of topics.

AngularFire
SDK

DB.collection() used to create a refinance object to the col-
lection

AngularFire
SDK

query.get().then (queryS-
napshot)

used to execute a retrieval query.

4.4.2 FireStore API

In order to retrieve and update data on the FireStore, an SDK for a good set of plat-

forms is offered by the platform. Further details about the used SDK’s are found in the

description of the components in Chapter 5. The SDK provides the capabilities of the

real-time database allowing the components to be notified of each change without the

need to actively reaching and retrieving the full list of items.

22

CHAPTER 5: IMPLEMENTATION

In this chapter, presents the implementation detail of RTS Component, detailing how

they are communicating and highlighting some of the implementation decisions that

were made and the reasoning behind them. For the subscriber service, it was built in

nodeJS to utilize the non-blocking, event-driven I/O paradigm that it offers.RTS Engine

was created on a JavaEE mainly since the original work extended from [7] was writ-

ten in Java. Additionally it provides a mature ans stable platform. As for the mobile

application, a Hybrid mobile application framework was used that helps to utilize web

development skills along offering one source code while addressing multiple mobile

platforms including Android and ios.

5.1 Subscription Service

The main functionality of the subscription’ service is related to receiving users topic

request including the creation of new ones, along with modification and removal re-

quests. On the creation of a new topic, the application is required to send the user id as

a URI query value, e.g. ?uid=’theUserId’ The rest of the topic object is sent in the

body of the request allowing flexibility when adding complex data including the array

of keywords. Once the topic object is received, it gets first checked for the required in-

formation, that is, the title and the keywords. Additionally, the validity of the provided

user id is checked against the fireStore by merely retrieving the user object for the given

uid.

5.1.1 Load balancing

The load balancing takes place in two scenarios. First when a new topic is added the

tag of the least-sized engine (the instance that has the minimal amount of topics) is

assigned to the topic, further details of how the tag is used in the engine instance will

23

be shown as part of subscribing to the firebase stream in section 5.2.2. The second

scenario where load-balancing takes place is when a change in the engine instance is

identified, an instance has not confirmed active for the defined maximum idle period, a

new instance is added by calling /rts/engine/inti.

5.2 RTS Engine

This Section, describes how the topics get synchronized between the database and the

array of topics stored in the RAM of running thread. We will start by pointing out the

configuration options available for the instance regarding the startup connections and

the ones that affect the the behavior of algorithm, controlling if the engine expands the

topics terms or sticks with the provided terms by the user.

5.2.1 Configuration options

The original configuration options had lots of variables that affect the frequency of

tweets submission, and where set to affect the system as a whole (a common value

used across all topics) that was one of the first contributions of the mobile application

allowing the users to define their preferences. The other set is related to the location

of the index files and the baseurl of the broker (subscription service) in case it was not

hosted on the same host.

5.2.2 Sync the Topics

As mentions earlier the initial version of the RTS Engine used to have predefined set

of topics build to test the algorithm, so the first course of action was to create the

FireBaseUtil a utility class the works on top of the the FireStore SDK. The utility

receives an instance of the ScalableFilter (the main logic of the pipeline) to access

the list of topics, Then modify the topics list according to the listening event, to either

add as new topic as new ones arrive or perform changes on the a topic on a modification

event, The last option is removal where the list gets modified to skip the removed topic.

24

5.3 Mobile Application

The mobile application is as a Hybrid App allowing the export to multiple platforms

including IOS and Android. That is made possible through the use of Ionic framework

that allows developing the app using web technologies, the app runs in a cordova a

container that acts as an interface between native calls and web technologies; through

running a web view with exposed functions that translate to native calls of the used

plug-ins. That said, the application code base is mainly web-based, along with some

native code provided by the selected plug-ins. The Ionic framework comes bundled with

angular a web framework that uses data binding and component-based web interface.

5.4 Hosting

In order to achieve a 24/7 uptime, both the RTS engine and the subscription’ service

were redeployed on a Virtual Machine (VM) purchased from DigitalOcean a cloud

computing platform the offers PAAS. The standard droplet was selected which offers 2

GB of Memory, one vCPU Processor, 50 GB in storage and a total bandwidth of 2 TB

per month. The OS Selected was Ubuntu 16.04.4 LTS GUN/Linux 4.4.0-119-generic

x86 64.

To move the RTS Engine and run it on the VM the project had to be converted to a

maven project a software project management tool that deals with the dependencies.

And in order for the mobile application to reach it, a domain name was used to point at

the server.

25

CHAPTER 6: EVALUATION

To evaluate achieving the project’s functional and non-functional requirements we ran a

set of tests. In this chapter, we will explain the evaluation setup. For the functional and

usability test, a series of user testing was conducted with HCI-based techniques, where

we ask a group of testers to use the application in the format detailed in section 6.2, to

confirm achieving the functional requirements and measure the users’ satisfaction with

the application. For the scalability test, we evaluate each component of the project to

determine the saturation point where the performance starts to degrade. The conducted

experiments test the system at the level of single instance per component then checks

the impact of adding more instances. Unit testing was also used to validate that the

elements of each component work correctly. Series of integration tests were also carried

on to ensure that the overall system is working correctly as a whole. Though the RTS

engine was tested originally to be scalable [7], the performance evaluation covered in

this chapter demonstrates that the modifications made did not impact the scalability of

the system.

6.1 Performance Evaluation

To evaluate the system scalability , we needed to run a series of tests generating in-

creasing workload. First we tasted the RTS Engine ability to handle multiple edits,

creation, and removals of topics concurrently along the ability to run on a large set of

topics. To achieve that we used Locust, a python-based load testing tool. Locust is com-

pletely event-based working on a set of defined light-weight processes, and therefore it’s

possible to support thousands of concurrent users on a single machine. Followed is a

description of the evaluation setup followed by the results.

26

6.1.1 Setup

To validate the ability to handle concurrent requests a group of clients was created such

that depending on a configuration number they receive, they will execute a series of

calls to the RTS subscription service which will create new topics in the FireStore and

directly reflect in the list of topics in the RTS engine. To evaluate the effect of the

number of topics on the execution time, two test accounts where created for the VM

users to use when creating new topics. The created topics had a dense number of terms

randomly picked from a pool of trending terms; each topic would have three to seven

terms. And the measures were made on 3 ranges set of numbers created topics:50-100,

100-1000 and 1000-5000. Each is including an equal number of terms 5 or 7. They are

randomly mixed yet the sequence is stored to repeat the test with the same setup ten

times and take the average, worst and best timing for further analysis.

The RTS engine instance the test run on was hosted on the machine detailed in section

5.4. And the machine that generated Locust clients was running a Windows 10.0.17134

64 bit Operating System, x64-based processor. Installed memory (RAM) of 16.0 GB

and 6th Generation i7 Intel core.

6.1.2 Evaluation Results

Subscription Service

Figure 6.1 shows the ability of the subscription service to handle concurrent clients.

The graph shows three lines.

1) the blue dots raising is the number of active users; where the tool used spawns them

gradually to allow seeing the effect as the number of the current users increase.

2) The second purple dashed line is active time highlighting the average time needed

for each client to complete a cycle of the commands instructed to call.

(i) Login: the initial startup scenario create to establish the connection and act as the

testing user client. It also includes fetching the users list of the 1st 50 topics.

27

(ii) Create: the topic creation scenario in which the spawned client selects a random

sample of the extracted trending topics terms.

3) Last the green solid line reflects the time needed for the client to get initialized (time

to run the starting sequence which includes login and retrieving the list to topics).

The green solid line is relatively stable meaning that the start up sequence (login) did

not get effected by the number of active users, averaging around 200 millisecond. On

the other hand the time to execute the active calls ranged between 340 millisecond to

a minimal of 160 milliseconds, showing a clear variation depending on the number of

concurrent calls. However as the number of users reached 50 concurrent active users

the startup calls stopped; as its the configured number of clients. This shows a direct

effected of the start up sequence on the execution time of active users. That is related

to the topics fetching section of the login scenario.

Figure 6.1: Graph showing time in milliseconds per the number of active clients re-
quests

Effect of the number of topics on the engine execution time

Positive outcomes where shown in the evaluation of the light-weight and conservative

filtering strategy of the engine pipeline implementation, as shown in Figure 6.2, which

plots the number of topics in the x-axis, and the average execution time of the tweet

filtering in milliseconds in the y-axis. Plotting the number of topics starting from 50

topics to 5,000 topics. For each number there are three bars: the average of all tweets’

28

processing time to select a tweet to send to the users donated in blue, the average time

for qualified tweets in orange, and the average time of unqualified tweets (the one that

do not pass the filters) in the gray color. The results clearly show how the RTS engine

is not effected by the number of topics and the average processing time only slightly

increases with the addition of a thousand topics.

Figure 6.2: Time processing time (milliseconds) versus the number of topics

6.2 Usability Testing

The usability testing focused on both making sure the application is usable, and ensuring

the functionalities are all working. To create the test, we started with task analysis

as part of establishing the correct conceptual model. We carefully went through the

functional requirements and translated them to hierarchical task analysis, detailed in

Appendix D. Then, we asked a group of 20 testers to download and use the app, to

validate their satisfaction level with the application. The tests are divided into three

sets:

1) Given no clue about what the application is about.

2) Briefly informed about the application and the problem it is trying to resolve.

3) Given a detailed explanation of how the application works and the functionalities it

provides.

29

6.2.1 Task Analysis

The following group of tasks were created as a translation of the functional require-

ments. Followed is the highlighted description of the task aim. Detailed task steps tree

can be found in Appendix D. The questions related to each task were as follows:

Sign up

The aim of this task is to ask the tester to create an new account, as an initial step that

will allow the other tasks to take place.

Add topic-simple

We split topic creation into two tasks, in this one the testers are asked only to give the

topic a title and list out their keywords.

Add topic - advanced

The advanced topic creation focuses on the testers’ ability to understand the meaning

of the options and being capable of setting the right values. That includes the threshold

slider and the tweet frequency.

Filter topics

This task takes place few days later, based on the fact the the tester should have created

at least two topics prior to starting this task, the tester is then asked to select filtering to

tweets of the first topic.

Navigate to older date

The aim of this task is to confirm the intuitiveness of navigating through the tweets

history.

Edit topic

The task covers both navigating though the topics and editing them.

30

Remove topic

The aim of this task is to evaluate the ability to remove topics, and if the users get the

correct confirmation along the reflection on the tweets list.

6.2.2 Usability Testing Results

The initial tests highlighted a number of usability defects in the system. First, unex-

pected actions from the users like clicking the back button while filling the form re-

sulted in closing the from instead of confirming with them first. This was addressed

right away resulting in improvements of the results of the second round of testing. Fig-

ure 6.3 highlights a survey results based on the testers feedback containing rating the

following questions:

1. I was able to preform the task (Y/N)

2. I was able to figure out what to do easily (1-5)

3. The application described the errors when they happened (1-5)

Figure 6.3: Summary of Usability survey answers

31

Analysis and actions

The first group of bars shown in Figure 6.3 reflect the success rate of the tester to

preform each of the tasks. Five of the tasks had a success rate of 100%; the others

had about 90%. The second group refereed to the easy of use with a majority of 70%

easy having both navigating to older days and removing a topic as the hardest. For

navigation, the introduction of a calender date pick helped improve the results as the

initial setup required the tester to click multiple times to reach the defined date. For the

remove topic task, the fact that the tester needed to edit the topic to find the delete button

was counter-intuitive and the solution was to introduce the delete icon in the topics list

page.

Last group is related to the error description, majority of the tasks had 70% score, note

that both filter the topics and removing a topic Tasks were inapplicable to answer this

question: where the tasks required no input, hence not plotted in the Error description.

From these results, we were able to conclude that the application successfully achieves

the desired functionality, yet there is need for future usability improvements.

32

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Conclusion

In conclusion, RTS mobile application was successfully developed, to extend the Scal-

able Real-Time Tweet Summarization RTS Engine [7]. Offering the users the ability

to of defining their own topics of interests in a straightforward way. Also, get notified

about a new tweets directly using push notifications in real time. Additionally, the abil-

ity to navigate through the history of pushed (selected) tweets.

The application has successfully achieved the usability requirements despite few usabil-

ity issues. A group of 20 users tried the application, and five of the tasks had a success

rate of 100% the others had about 90% with the majority of testers scoring 70% on for

the feedback on error. Testers mentioned that the tweets they received were in fact rel-

evant to their desired topics of interest and many have reported that they will continue

using the application after the test.

In terms of scalability of the RTS engine achieved the desire of processing 5k topics the

tweet with an average of 5 milliseconds. Providing that the application layer did not

affect the scalability of the engine. Overall, this project provided further functionalities

that were not developed in other tweet summarization.

7.2 Future work

For the future work, we recommend: More in-depth analysis of the system scalability,

looking at the effects of changing the parameters of topics. Develop RTS System further

by providing an administrative dashboard to monitor the platform overall performance.

Additionally, follows is a list of recommended future work:

1. Common Topics Offering a set of topics created by the administrators based on

common keywords for users to subscribe to, and define their frequency of notifi-

cation for.

33

2. Topic Keywords Suggestion: When filling the keywords auto complete option

should be available

3. Interact with tweet: This means that the user should be able to re-tweet/like/comment

on the tweet directly from the application if their account is linked with Twitter,

or taken to Twitter application if required.

4. Tweets Collections: Creating a functionality in the application that allows the user

to select from the recommended tweet and place it as part of a collection, go back

to it faster then navigating to its date. More like favorite list of tweets.

5. Apply heuristics for a fair load balancing: Knowing that topics have a different

set threshold and the limit is not the same across all, some engine instances might

end up idle if they satisfied all the topics they have.

34

REFERENCES

[1] Personas, scenarios, user stories. https://www.slideshare.net/

InteractionDesign/personas-scenarios-user-stories-38054661.

(Accessed on 05/13/2018).

[2] Javed Aslam, Fernando Diaz, Matthew Ekstrand-Abueg, Richard McCreadie, Vir-

gil Pavlu, and Tetsuya Sakai. Trec 2014 temporal summarization track overview.

Technical report, NATIONAL INST OF STANDARDS AND TECHNOLOGY

GAITHERSBURG MD, 2015.

[3] Jimmy Lin, Miles Efron, Yulu Wang, and Garrick Sherman. Overview of the trec-

2014 microblog track. Technical report, MARYLAND UNIV COLLEGE PARK,

2014.

[4] Jimmy Lin, Adam Roegiest, Luchen Tan, Richard McCreadie, Ellen Voorhees, and

Fernando Diaz. Overview of the trec 2016 real-time summarization track. In Pro-

ceedings of the 25th text retrieval conference, TREC, volume 16, 2016.

[5] Qatar University Office of Graduate Studies. ONESIGNAL - MULTI-PLATFORM

PUSH NOTIFICATION SERVICE. https://onesignal.com/, May 2018.

[6] Navdeep Singh. Study of google firebase api for android. International Journal of

Innovative Research in Computer and Communication Engineering, 4(9):16738–

16743, 2016.

[7] Reem Suwaileh, Maram Hasanain, and Tamer Elsayed. Light-weight, conservative,

yet effective: Scalable real-time tweet summarization. In TREC, 2016.

[8] Twitter Team. Docs — twitter developers. https://developer.twitter.com/

en/docs, 2018. (Accessed on 04/09/2018).

35

https://www.slideshare.net/InteractionDesign/personas-scenarios-user-stories-38054661
https://www.slideshare.net/InteractionDesign/personas-scenarios-user-stories-38054661
https://onesignal.com/
https://developer.twitter.com/en/docs
https://developer.twitter.com/en/docs

[9] Carsten Ullrich, Kerstin Borau, Heng Luo, Xiaohong Tan, Liping Shen, and Ruimin

Shen. Why web 2.0 is good for learning and for research: principles and prototypes.

In Proceedings of the 17th international conference on World Wide Web, pages 705–

714. ACM, 2008.

36

APPENDIX A: FIGURE SNAPSHOTS OF TWEETDECK

Figure A.1: The type of columns that can be added to your TweetDeck

Figure A.2: Example of a Screen Dashboard TweetDeck

37

Figure A.3: Highlight of the filter Options of a Screen Dashboard TweetDeck

38

APPENDIX B: USER EXPERIENCE MATERIAL

B.1 Persons

This document is created as part of the UX analysis of the users. Aimed at highlighting

a group of users of the application which will be used as a reference when making some

design in the design. Reading what was done around Personas Creations in the sides of

Interaction Design 2014 [1]

B.1.1 Persona Yazan

Age: 23 years old

Gender: Male

Working Status: Shifting between Jobs

Relation Status: Single or so he says.

Moto in life: Nothing is true. . .

Languages: Arabic, English

Uses Twitter: (has an account. But never use it) only for searching but rarely.

wears a Watch ..

Topics of interest: Politics.

News and Article

Twitter Interests:

Scenarios: Things happening at his location. (Qatar-¿ Doha, Exact location motazah

alsadd)

where he sometimes sees a fire and what’s to know what have cussed it.

Would like to get updated about Sryan political war updates.

as an example of low interest is the immigration of siryan people.

39

General interest:

- Movies

- TV. Series

- New Tech Phone: type: Android Samsung Galaxy S6

Have it with him: Always

Favorite color: Red then Black.

B.1.2 Persona Baraa

Age: 27 years old

Gender: Male

Working Status: Project coordinator QCharity

Relation Status: Single

Moto in life: beard is all you need.

Languages: Arabic, English

Uses Twitter: No.

No Watch ..

Topics of interest: Beards, Politics, Crypto, fashion/Style.

Using Facebook or youtube + Googling it to get updated on things that happen in Syria,

Along the need to know about a set of Crypto Currencies

Scenarios: Things happening at his location. (Qatar-¿ Doha, Exact location motazah

alsadd) where he sometimes sees a fire and what’s to know what have cussed it.

Would like to get updated about Syrian political war updates. As an example of low

interest is the immigration of Syrian people.

General interest: - Movies - TV. Series - Music Phone: type: Android Samsung

Galaxy J7 Have it with him: Always 24/7

Favorite color: Blue and Black.

40

B.1.3 Persona Husam

Age: 25 years old

Gender: Male

Working Status: Researcher

Relation Status: Single

Moto in life: Everything has a price

Languages: Arabic, English

Uses Twitter: Yes, only to get news

Topics of interest: crypto-currencies and cars

Uses Facebook, Twitter, Instagram and Youtube Twitter Interests: Following local peo-

ple for local news and some celebrities in my topics of interest

in general, would like to get updates about new laws related to crypto, has an eye

on new ICO’s that gets talked about in the social media. He added: I would like to

know about crypto news, things related to bitcoin and the future of currencies, business

decisions, financial market and the world news generally General interest: - Movies -

New Tech - Cars Phone: Type: Iphone 6s Have it with him: Always

Favorite color: Black and White.

B.1.4 Persona Abdol

Age : 25 years old

Gender: Male

Working Status: Part time

Relation Status: Single

Moto in life: WaQa3na Fe El Fa5

Languages: Arabic, English

B.1.5 Persona Khaled

Age : 23 years old

Gender : Male

41

Working Status: hired on a project.

Relation Status: Single

Moto in life: WaQa3na Fe El Fa5

Languages: Arabic, English

B.2 Scenarios

Step one: Listing out all the Scenarios on high level. Step two: Detail the steps as a

Scenario Step three: Create the site-map to address the scenarios. (might be on-line

through a UX application)

B.2.1 Download/Sign up and Subscribe to the topics of interest

Baraa heard about the application from the developer and says that he is interested in

using the application, Baraa get the application downloaded to his phone directly. –

Note It will be free for him -

Then Baraa looks for the logo of the application and recognizes it based on the logo he

saw last time he was with the developer. (Opens the application)

After opening the application, Baraa sees a splash screen that has the application logo.

Then signup/login page shows, (The login page shows few options like (using Twitter,

Gmail, Facebook Or email))

Baraa Selects to use Facebook option to log in. Facebook shows him a page to confirm

giving access to the application. Then gets redirected back to the application home

page.

The Application shows Baraa a quick explanation of how the application works and

thanks him for joining our testers group. Also, it highlights for him that his actions an

anonymous? This information is kept private within the application and used only to

evaluate the effectiveness of the application. Then moves him to his profile creation

step.

In the profile Creation page. Baraa is presented with some predefined set of topics to

select from. Done in a way similar to the topic selection in Quora and Tumblr. Baraa

42

is also shown the option to create his own self-created topic. (it highlighted as an

advanced option, yet it tells him that its recommended) Once Baraa is done selecting

the topics, The Frequency settings is shown to him and the desired style of display.

Pages List

1. Pages Mentioned in the scenario:

2. Splash Screen

3. Login/signup Page

4. Welcome Page (For First timers)

5. Create Profile.

6. Success page.

7. Highlighted tweets. (empty option)

B.2.2 Abdol Learned about the Application

Abdol Heard from his friend that they are developing a research-based application that

would summarize tweets and send it to him based on his interests. He goes through sim-

ilar Steps as Baraa to create and customize his profile. And been using the application

for a week with a set 60 Reamended tweets. While he was out with some of his finds

a topic came and he said yea I read it on a tweet that was sent to me. He then attempts

to go through the app to get the exact tweet. He starts with opening the application,

He is then auto-logged into the use and redirected to the dashboard. Which highlights

for him some summaries (Average info sent per day/week and total until the day) and

along with a colander based listing of the tweets that were sent. Abdol then scrolls to

the left to go back a week and two days and found the ten tweets that were sent to him

on that day. Scrolls down and sees it as the 7th. Reads it to his friends and closes the

application.

43

Pages Mentioned in the scenario:

1. Login page (yet here its skipped)

2. Dashboard page

3. Welcome Page (For First timers)

4. Create Profile.

5. Success page.

6. Highlighted tweet. (empty option)

44

APPENDIX C: USER INTERFACE MATERIAL

C.1 Screens Design

Figure C.1: Screen Login and tweets Listing

45

Figure C.2: Screen Topics Listing and topics Form

46

APPENDIX D: HIERARCHICAL TASK ANALYSIS

Followed is the Task analysis for the UI Test Tasks.

D.1 Add Topic Simple

Do: 1, 1.1, 1.1.1, 1.1.2, 1.1.2.1, 1.1.2.2, 1.1.3

Figure D.1: Hierarchical task analysis for Add topics

47

D.2 Add Topic Advanced

Do: 1, 1.1, 1.1.1, 1.1.2.1, 1.1.2.2, 1.1.3, 1.1.3.1, 1.1.3.2, 1.1.3.2.1, 1.1.3.3, 1.1.4

Figure D.2: Hierarchical task analysis for Add topics

48

D.3 Edit Topic

Do: 1, 1.1, 1.1.1, 1.1.4

or

Do: 1, 1.1, 1.1.1, 1.1.2, 1.1.2.1, 1.1.2.2, 1.1.4

or

Do: 1, 1.1, 1.1.3, 1.1.1.3.1, 1.1.4

or

Do: 1, 1.1, 1.1.3, 1.1.3.2, 1.1.3.2.1, 1.1.4

or

Do: 1, 1.1, 1.1.3 ,1.1.1.3.3 , 1.1.4

or

Do: 1, 1.1, 1.1.1, 1.1.2.1, 1.1.2.2, 1.1.3, 1.1.3.1, 1.1.3.2, 1.1.3.2.1, 1.1.3.3, 1.1.4

or

Do: 1, 1.1, 1.1.1, 1.1.2.1, 1.1.2.2, 1.1.3, 1.1.3.1, 1.1.3.3, 1.1.4

or

Do: 1, 1.1, 1.1.1, 1.1.2.1, 1.1.2.2, 1.1.3, 1.1.3.1, 1.1.4

or

Do: 1, 1.1, 1.1.1, 1.1.2.1, 1.1.2.2, 1.1.3, 1.1.3.3, 1.1.4

or

Do: 1, 1.1, 1.1.3, 1.1.3.1, 1.1.3.2, 1.1.3.2.1, 1.1.3.3, 1.1.4

49

Figure D.3: Hierarchical task analysis for Add topics

D.4 Sign Up

Do: 1, 1.1, 1.2, 1.3

Or

Do: 2, 2.1, 2.2, 2.3

Or

Do: 3, 3.1, 3.2, 3.3

Or

Do: 4, 4.1, 4.2, 4.3

50

Figure D.4: Hierarchical task analysis for Sign Up

D.5 Navigate to old date

Do: 1

or

Do: 2, 2.1, 2.2

Figure D.5: Hierarchical task analysis for Navigating to old date

51

D.6 Navigate to old date

Do: 1

or

Do: 2, 2.1, 2.2

Figure D.6: Hierarchical task analysis for Navigating to old date

52

D.7 Filter Topics

Do: 1, 1.1, 1.1.1

D.8 Remove Topics

Do: 1, 1.1, 1.1.1

Figure D.7: Hierarchical task analysis for Filter Topics and Remove Topics

53

	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Problem Statement
	Solution Overview
	Contributions

	BACKGROUND AND RELATED WORK
	Background
	Tweet Stream

	Related Work
	Filtering Service
	TREC Real-Time Summarization Tools
	Twitter Deck

	REQUIREMENTS ANALYSIS
	Functional Requirements
	Non-Functional Requirements
	Usability
	Scalability

	SYSTEM DESIGN
	System Architecture
	Subscription Service
	RTS Engine
	RTS Mobile Application
	FireStore

	RTS User Interface
	UX design
	UI design

	Data Schema
	Topics
	User
	Tweet

	Communication between RTS components
	Subscription Service Rest API
	FireStore API

	IMPLEMENTATION
	Subscription Service
	Load balancing

	RTS Engine
	Configuration options
	Sync the Topics

	Mobile Application
	Hosting

	EVALUATION
	Performance Evaluation
	Setup
	Evaluation Results

	Usability Testing
	Task Analysis
	Usability Testing Results

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future work

	REFERENCES
	Appendix FIGURE SNAPSHOTS OF TWEETDECK
	Appendix USER EXPERIENCE MATERIAL
	Persons
	Persona Yazan
	Persona Baraa
	Persona Husam
	Persona Abdol
	Persona Khaled

	Scenarios
	Download/Sign up and Subscribe to the topics of interest
	Abdol Learned about the Application

	Appendix USER INTERFACE MATERIAL
	Screens Design

	Appendix HIERARCHICAL TASK ANALYSIS
	Add Topic Simple
	Add Topic Advanced
	Edit Topic
	Sign Up
	Navigate to old date
	Navigate to old date
	Filter Topics
	Remove Topics

