New solitary wave and multiple soliton solutions for fifth order nonlinear evolution equation with time variable coefficients

H.M. Jaradat,² Muhammed Syam,² M.M.M. Jaradat,³* Zead Mustafa,³ S. Momani,³,⁴,⁵

² Department of Mathematics, Al al-Bayt University, Mafraq, Jordan
³ Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
⁴ Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar
⁵ Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan

Abstract

In this paper, we investigate the multiple soliton solutions and multiple singular soliton solutions of a class of the fifth order nonlinear evolution equation with variable coefficients of t using the simplified bilinear method based on a transformation method combined with the Hirota’s bilinear sense. In addition, we present analysis for some parameters such as the soliton amplitude and the characteristic line. Several equation in the literature are special cases of the class which we discuss such as Caudrey-Dodd-Gibbon equation and Sawada-Kotera. Comparison with several methods in the literature, such as Helmholtz solution of the inverse variational problem to derive its solution. Conditions have received considerable attention because these equations have many applications in physics such as nonlinear optics and Bose-Enstein. Choudhuri et al. [23] studies the following class of equations:

\[w_t + 30ww_{xxx} + 30w_xw_{xx} + 180w^2 w_x + w_{xxxxx} = 0 \]

\[w_t + 15ww_{xxx} + 15w_xw_{xx} + 45w^2 w_x + w_{xxxxx} = 0. \]

Naher et al. [22] studied the solution of the SK Eq. (4.2) using the exp-function method. In this paper, we consider the following class of the fifth order nonlinear evolution equation (FNFE) with variable coefficients of t:

\[w_t + a(t)ww_{xxx} + b(t)w_xw_{xx} + c(t)w^2 w_x + w_{xxxxx} = 0 \]

where $w = w(x, t)$ and the coefficients $a(t), b(t)$ and $c(t)$ are function of the variable t. Eqs. (1.1)–(1.3) are special cases of Problem (1.4). Thus, we compare our results with the solutions of Choudhuri et al. [23], Mia et al. [18], Abdollahzadeh et al. [20], Ghasemi et al. [21],...
and Naher et al. [22] and we find that the proposed method generate their solitons. For this reason, we consider their problems as special case of the problem under discussion. More details about this problem can be found in [4–7,12–14,8–10].

Bilinear forms is one of the tools that usually to solve nonlinear problems. More details about this method can be found in [1–3]. In this paper, we study the multiple soliton solutions and multiple singular soliton solutions of Eq. (1.4) without using the bilinear forms. The proposed technique depends on the simplified bilinear method based on a transformation method combined with the Hirota’s bilinear form. In the literature, when \(a, b, c\) are \(30, 60, 270\), \(20, 40, 120\) and \(10, 20, 30\), Eq. (1.4) becomes the Fifth order KdV equation (FKdV) which satisfy the conditions

\[
2a(t) = b(t), \quad c(t) = \frac{3a^2(t)}{10}.
\]

When \((a(t), b(t), c(t)) = (30, 30, 180), (5, 5, 5), (15, 15, 45)\) and \((-15, -15, 45)\), Eq. (1.4) is called the Sawada-Kotera equation (SK) which satisfy the conditions

\[
a(t) = b(t), \quad c = \frac{a^2(t)}{5}.
\]

In this paper, we find that the corresponding conditions to determine single soliton solution on Eq. (1.4) are

\[
c(t) = \frac{a^2(t) + a(t)b(t)}{10},
\]

\[
a(t) \neq -b(t),
\]

\[
b(t) = -a(t) + \chi.
\]

We organize this paper as follows. In Section “Multiple soliton solutions for (FNEE),” we present the multiple soliton solutions for Eqs. (1.4) while in Section “Multiple singular soliton solutions for (FNEE),” we derive the multiple singular soliton solutions for the problem under discussion. In Section “Analysis of the parameters and discussion,” we present some analysis of the parameters and we make discussion about our results. Finally we conclude with some comments in the last section.

Multiple soliton solutions for (FNEE)

In this section, we apply the simplified bilinear method to construct the soliton solutions of Eq. (1.4). Substituting

\[
w(x, t) = e^{\epsilon_i},
\]

\[
\epsilon_i(x, t) = rx - s_i(t),
\]

into the linear terms of Eq. (1.4), we obtain

\[
s_i(t) = \int_0^t r_i^2 dt.
\]

Then, the dispersion relation is given by

\[
\epsilon_i(x, t) = rx - \int_0^t r_i^2 dt.
\]

Let

\[
w(x, t) = \rho (\ln \delta(x, t))_{xx},
\]

where the auxiliary function \(\delta(x, t)\) of single soliton solutions is given by

\[
\delta(x, t) = 1 + e^{\epsilon_i(x,t)} = 1 + e^{\epsilon_i x - \int_0^t r_i^2 dt}.
\]

Substituting Eqs. (2.4) and (2.5) into Eq. (1.4) and solving the new equation for \(\rho\) to obtain

\[
\rho = \frac{60}{a(t)} + b(t).
\]

subject to

\[
c(t) = \frac{a^2(t) + a(t)b(t)}{10}, \quad a(t) \neq -b(t), \quad b(t) = -a(t) + \chi.
\]

where \(\chi\) is arbitrary nonzero constant.

Now, we can obtain the single soliton solution by

\[
w(x, t) = \frac{60}{a(t) + b(t)} r_i^2 \frac{e^{\epsilon_i(x,t)}}{1 + e^{\epsilon_i(x,t)}} + \frac{15}{a(t) + b(t)} r_i^2 \sec h^2 \left(\frac{\epsilon_i(x,t)}{2} \right).
\]

Next, we are looking for two-soliton solutions. Let

\[
\delta(x, t) = 1 + e^{\epsilon_i x - \int_0^t r_i^2 dt} + e^{\epsilon_j x - \int_0^t r_j^2 dt} + c_{12} e^{\epsilon_{i+2} x - \int_0^t r_i^2 dt}.
\]

Substituting Eqs. (2.9), (2.6), and (2.4) into Equation (1.4), we obtain the two solutions for the phase shift as

\[
c_{12} = \left\{ \begin{array}{l}
\frac{30 \delta_i}{\delta_j} \times \left[\frac{r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2 + r_i^2}{1 + e^{r_i x + r_i^2 t}} \right], \quad \text{if } b(t) = a(t), c(t) = \frac{a^2(t)}{10}, \\
\frac{20 \delta_i}{\delta_j} \times \left[\frac{r_i^2 + r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2}{1 + e^{r_i x + r_i^2 t}} \right]^2, \quad \text{if } b(t) = 2a(t), c(t) = \frac{3a^2(t)}{10} \end{array} \right.
\]

The two-soliton solutions of the (FNEE) Eq. (1.4) are given by

\[
w(x, t) = \left\{ \begin{array}{l}
\left[\frac{30 \delta_i}{\delta_j} \times \left[\frac{r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2 + r_i^2}{1 + e^{r_i x + r_i^2 t}} \right] \right], \quad \text{if } b(t) = a(t), c(t) = \frac{a^2(t)}{10}, \\
\frac{20 \delta_i}{\delta_j} \times \left[\frac{r_i^2 + r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2}{1 + e^{r_i x + r_i^2 t}} \right] \left[\frac{r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2 + r_j^2}{1 + e^{r_j x + r_j^2 t}} \right], \quad \text{if } b(t) = 2a(t), c(t) = \frac{3a^2(t)}{10} \end{array} \right.
\]

The three-soliton solutions can be obtained by assuming

\[
\delta(x, t) = 1 + e^{\epsilon_i} + e^{\epsilon_j} + e^{\epsilon_{i+2}} + c_{12} e^{\epsilon_{i+2} x - \int_0^t r_i^2 dt} + c_{23} e^{\epsilon_{i+2} x - \int_0^t r_i^2 dt} + c_{123} e^{\epsilon_{i+2} x - \int_0^t r_i^2 dt},
\]

where

\[
c_{12} = \left\{ \begin{array}{l}
\frac{30 \delta_i}{\delta_j} \times \left[\frac{r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2 + r_i^2}{1 + e^{r_i x + r_i^2 t}} \right], \quad \text{if } b(t) = a(t), c(t) = \frac{a^2(t)}{10}, \\
\frac{20 \delta_i}{\delta_j} \times \left[\frac{r_i^2 + r_i^2 + r_i^2 + r_j^2 + r_j^2 + r_j^2}{1 + e^{r_j x + r_j^2 t}} \right] \left[\frac{r_i^2 + r_i^2 + r_j^2 + r_i^2 + r_j^2 + r_j^2}{1 + e^{r_j x + r_j^2 t}} \right], \quad \text{if } b(t) = 2a(t), c(t) = \frac{3a^2(t)}{10} \end{array} \right.
\]

Substituting Eqs. (2.11), (2.6), and (2.4) into Equation (1.4), we get

\[
c_{123} = c_{12} c_{23}.
\]

Then, the three-soliton solutions are obtained. Then N-soliton solutions exist for any order \(N \geq 4\) [15,16].

Multiple singular soliton solutions for (FNEE)

To obtain a single singular soliton solution, we assume that the auxiliary function \(\delta(x, t)\) is given by

\[
\delta(x, t) = 1 - e^{\epsilon_i x - \int_0^t r_i^2 dt}.
\]

Substituting Eqs. (2.4) and (3.1) into Eq. (1.4) and solving the new equation for \(\rho\), we get

\[
\rho = \frac{60}{a(t)} + b(t).
\]

subject to the same conditions in Eq. (2.7). Then, the single singular soliton solution for (FNEE) Eq. (1.4) is given by
\[w(x,t) = \frac{-60}{a(t) + b(t)} x^2 + e^{\alpha_{1}(x,t)} \]
\[= \frac{-15}{a(t) + b(t)} x^2 \csc h^2 \left(\frac{c_1(x,t)}{2} \right). \] (3.3)

To determine the two singular soliton solutions explicitly, we substitute
\[\delta(x,t) = 1 - e^{\alpha_{1}(x,t)} - e^{\alpha_{2}(x,t)} + c_{12} e^{\alpha_{3}(x,t)} + c_{13} e^{\alpha_{4}(x,t)} + c_{23} e^{\alpha_{5}(x,t)}, \] (3.4)
in Eq. (1.4). We obtain the phase shift \(c_{12} \) as in Equation (2.10). Following the same procedure as described before to obtain the two singular soliton solutions of Eq. (1.4). For the singular three-soliton solutions, let
\[\delta(x,t) = 1 - e^{\alpha_{1}} - e^{\alpha_{2}} + e^{\alpha_{3}} + c_{12} e^{\alpha_{4}} + c_{13} e^{\alpha_{5}} + c_{23} e^{\alpha_{6}}, \] (3.5)
where \(c_{ij} \) are defined in (2.12). Following the same procedure as described before, we obtain
\[c_{12} = a_{12} a_{12} a_{12}, \]
The singular three-soliton solution can be obtained by substituting Eqs. (3.5) and (3.2) into Eq. (2.4).

Analysis of the parameters and discussion

The soliton amplitude \(amp \) can be expressed from Eq. (2.8) as
\[\left| \frac{15}{a(t) + b(t)} x^2 \right|. \]

Hence, the soliton amplitude \(amp \) for fifth order KdV equation (FkDV) is given by \(a \)
\[amp = \left| \frac{5}{a(t)} x^2 \right|, \]
as well as the soliton amplitude \(amp \) for the Sawada-Kotera equation (SK) given by
\[amp = \left| \frac{15}{2a(t)} x^2 \right|. \]

The characteristic line \([17,5,6,11] \) for each solitary wave can be defined by
\[x = r_i t, \quad i = 1, 2, 3, \ldots \] (4.1)
The velocity of the wave at time \(t \) can be expressed as
\[v_i = r_i. \] (4.2)
The soliton amplitude \(amp \) of Eq. (2.8) depends only on \(a(t) \) and \(b(t) \) while the soliton amplitude \(amp \) of fifth order KdV equation (FkDV) and Sawada-Kotera equation (SK) depends only on \(a(t) \). In addition, the solitonic amplitude decreases while \(a(t) \) is increasing. However, from Eq. (4.2), we note that the propagation velocity is independent on the coefficient parameters \(a(t), b(t) \) and \(c(t) \).

Choudhuri et al. [23] used the Helmholtz solution of the inverse variational problem to derive conditions under which this equation admits an analytic representation. They studied only the case when \(A = a(t), B = b(t) \), and \(C = c(t) \) are constants. They derived the conditions \(B = 2A, C = \frac{\delta A}{\delta x} \). In addition, they use the homogeneous balance method to derive the single soliton solution which is given by
\[w(x,t) = \frac{20}{A} c_0 e^{\delta_{0}(x,t)} \left(d_{0} + c_{1} e^{\delta_{0}(x,t)} \right). \]

Their results are special case of our results. If we choose \(c_0 = c_1 = 1, v = r_i \), then their single soliton solution is the same single soliton solution which is given in Eq. (4.2).

The Caudrey-Dodd-Gibbon equation, which is given by
\[w_t + 30ww_{xxx} + 30w_{xx} + 180w^2w_x + w_{xxxxx} = 0, \] (4.3)
was solved by Mia et al. [18] by tanh-method and the solution was given by
\[w(x,t) = k^2 - k^2 \tanh^2(kx - 16k^2t). \] (4.4)
They found that the necessary conditions are \(a(t) = b(t) = 30 \) and \(c(t) = \frac{\delta A}{\delta x} = 180 \). If we choose \(k = \frac{1}{2}, \) the solution in Eq. (4.4) becomes
\[w(x,t) = \left(\frac{r_1^2}{4} - 4 \right) \tanh^2 \left(\frac{r_1}{2} x - \frac{r_1}{2} t \right) = \frac{r_1^2}{4} \sec h^2 \left(\frac{r_1}{2} x - \frac{r_1}{2} t \right) \]
which the same solution given in Eq. (4.2). This means that the proposed method is also solving Caudrey-Dodd-Gibbon equation.

Wazwaz [19] solved Eq. (4.3) by coth-method and his solution was given by
\[w(x,t) = -\mu^2 \csc h^2 (\mu x - 16\mu^2 t). \]
If we choose \(\eta = \frac{1}{2}, \) his solution will be the same as well as the one in Eq. (3.3). Abdollahzadeh et al. [20] solved Eq. (4.3) using the rational exponential function method and he found that the solution was given by
\[w(x,t) = \frac{x^2(\cosh(\alpha(x - \alpha t)) + \sinh(\alpha(x - \alpha t)))}{(1 + \cosh(\alpha(x - \alpha t)) + \sinh(\alpha(x - \alpha t)))^2}. \]
If we choose \(\alpha = r_2 \), their solution will be the same solution as the one given in Eq. (4.2). Ghasemi et al. [21] used the homotopy perturbation method for solving the Sawada-Kotera (SK) Equation
\[w_t + 15ww_{xxx} + 15w_{xx} + 45w^2w_x + w_{xxxxx} = 0, \] (4.5)
and they found the solution was
\[w(x,t) = 2k^2 \sec h^2 (kx - 16k^2t - x_0)). \]
If we choose \(k = \frac{1}{2} \) and \(x_0 = 0 \), then their solution will be the same solution as the one given in Eq. (4.2). Naher et al. [22] studied the solution of the SK Eq. (4.2) using the exp-function method and they found the solution was
\[w(x,t) = a_1 + \frac{1}{1 + \cosh(\alpha(x - 45\alpha^2 t + 15a_1 + 1)t)} \] (4.6)
If we set \(a_1 = 0 \) in Eq. (4.6), then
\[w(x,t) = \frac{1}{2} \sec h^2 \left(\frac{1}{2} (x - t) \right) \]
which the same solution produces by Eq. (4.2) if we choose \(r_1 = 1 \).

Conclusions

In this paper, we study class of the fifth order nonlinear evolution equation (FNFE) with variable coefficients of \(t \):
\[w_t + (a(t)ww_{xx} + b(t)w_{xx} + c(t)ww^2w_x + w_{xxxxxx} = 0 \] (5.1)
where \(w = w(x,t) \) and the coefficients \(a(t), b(t) \) and \(c(t) \) are function of the variable \(t \). We use the simplified bilinear method based on a transformation method combined with the Hirota's bilinear sense. We derive the multiple soliton solutions for Eqs. (5.1). In addition, we derive the multiple singular soliton solutions for the problem under discussion. Also, we present some analysis of the parameters such as the soliton amplitude and the characteristic line.

We compare our results with the solutions of Choudhuri et al. [23], Mia et al. [18], Abdollahzadeh et al. [20], Ghasemi et al. [21], and Naher et al. [22] and we find that the proposed method
generate their solitons. For this reason, we consider their problems as special case of the problem under discussion. This comparison shows that

- Choudhury et al. [23] studied only the case when $A = a(t), B = b(t), \text{ and } C = c(t)$ are constants. They derived the conditions $B = 2A, C = \frac{a^3}{2}$. In addition, they use the homogeneous balance method to derive the single soliton solution which is given by

$$w(x, t) = \frac{2C_0C_1\sqrt{v}}{A \left(C_0 + C_1e^{\frac{v(\xi + v^2t)}{2}}\right)}.$$

Their results are special case of our results. If we choose $C_0 = C_1 = 1, v = r^4$, then their single soliton solution is the same single soliton solution which is given in Eq. (4.2).

- Mia et al. [18] solved the Caudrey-Dodd-Gibbon equation and their solution was given by

$$w(x, t) = k^2 - k^2\tanh^2(kx - 16k^2t).$$

They found that the necessary conditions are $a(t) = b(t) = 30$ and $c(t) = \frac{c_1}{2} = 180$. If we choose $k = \frac{r}{2}$, the solution in Eq. (4.4) becomes

$$w(x, t) = \frac{r_1^2}{4} - \frac{r_1^2}{4}\tanh^2\left(\frac{r_1}{2}x - \frac{r_1}{2}t\right) = \frac{r_1^2}{4}\sec^2\left(\frac{r_1}{2}x - \frac{r_1}{2}t\right),$$

which is the same solution which is given in Eq. (4.2). This means that the proposed method is also solving Caudrey-Dodd-Gibbon equation.

- Wazwaz [19] solved Eq. (4.3) and his solution was given by

$$w(x, t) = -\mu^2\csc h^2(\mu x - 16\mu^2t).$$

If we choose $\eta = \frac{k}{2}$ his solution will be the same as well as the one in Eq. (3.3).

- Abdollahzadeh et al. [20] solved Eq. (4.3) using and he found that the solution was given by

$$w(x, t) = \frac{\tanh(x - 2x^4t) + \sinh(x - 2x^4t)}{1 + \cosh(x - 2x^4t) + \sinh(x - 2x^4t)}.$$

If we choose $x = r_1^2$, their solution will be the same solution as the one given in Eq. (4.2). Ghasemi et al. [21] used the homotopy perturbation method for solving the Sawada-Kotera (SK) Equation

$$w_t + 15ww_{xx} + 15w_ww_{xx} + 45w^2w_x + w_{xxxx} = 0.$$

and they found the solution was

$$w(x, t) = 2k^2\sec h^2(kx - 16k^2t - x_0).$$

If we choose $k = \frac{r}{2}$ and $x_0 = 0$, then their solution will be the same solution as the one given in Eq. (4.2).

- Naher et al. [22] studied the solution of the SK Eq. (4.2) and they found the solution was

$$w(x, t) = a_1 + \frac{1}{1 + \cosh(x - (45a_1^2 + 15a_1 + 1)t)}.$$

If we set $a_1 = 0$ in Eq. (4.6), then

$$w(x, t) = \frac{1}{2}\sec h^2\left(\frac{1}{2}(x-t)\right),$$

which is the same solution produces by Eq. (4.2) if we choose $r_1 = 1$.

From these comparisons, we conclude that the proposed method is efficient and the solutions produced by the simplified bilinear method based on a transformation method combined with the Hirota’s bilinear sense are correct.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.rinp.2018.01.039.

References

