
Fig. 3 FTIR spectra of (a) pristine TNT and DDA 

corrosion inhibitor and (b) TNTs loaded with DDA 

and modified epoxy coating with TNTs loaded with 

DDA and monomer.

Fig 9. GC-MS of the DDA standard with different 

concentration of (a) 250 and (b) 500 ppp and (c) is 

the released DDA corrosion inhibitor from TiO2

nanotubes.
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The present work focuses on the self-healing and corrosion
behavior of novel epoxy based coatings containing epoxy
monomer (EM) and dodecylamine (DDA) as self-healing and
corrosion inhibitor, respectively. The coating self-healing ability
and the corrosion inhibition effect have been combined, together,
in one single coated layer providing autonomous corrosion
protection. Towards this goal, the as-synthesized titania nanotubes
(TNTs), with an average size of 20 nm were impregnated with DDA
and EM and were thoroughly dispersed into the epoxy used as the
matrix and applied on steel. Fourier-transform infrared
spectroscopy (FTIR) analysis confirms the presence of DDA loaded
nanotubes and the loading of inhibitor was estimated by
thermogravimetric analysis. . Additionally, the amount of the
released corrosion inhibitor was identified by gas
chromatography–mass spectrometry (GC-MS). The scanning
electron microscopy (SEM), analysis shows the polymer healing of
the prepared coatings when damaged. The electrochemical
studies indicate that the corrosion rate of the steel samples coated
with the epoxy modified with the healing additives decreases after
5 days of immersion in saline water.

Novel single layer nanocomposite coatings have been successfully

synthesized by reinforcing epoxy matrix with TiO2 nanotubes loaded

with inhibitor (DDA) and self-healing agent (epoxy). The improved

properties of the modified coatings may be attributed to the efficient

release of inhibitor and self-healing agent from the loaded TiO2

nanotubes, making it potentially attractive for protection of steel

components used in oil and gas industry.
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a-Surface morphology

Smart Multilevel 

Protective Coating

Schematic diagram demonstrating the experimental procedure.

(a) (b)

(c) (d)

Encapsulated nanotubes

Fig. 2 (a, b) FE-SEM and (c, d) HRTEM analysis of as-synthesized

TiO2 nanotubes and TiO2 nanotubes carrying corrosion inhibitor.
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Fig. 4. C 1s XPS spectra of (a) dodecylamine, (b)

TNT loaded with dodecylamine and (c) the smart

coating

Fig. 5.  N 1s XPS spectra of (a) dodecylamine, 

(b) TNT loaded with dodecylamine and (c) the smart coating 

Fig. 6.  O 1s XPS spectra of (a) TNT loaded 

with dodecylamine and (b) the smart coating 

Fig. 7.  Ti 2p XPS spectra of (a) TNT loaded 

with dodecylamine and (b) the smart coating 

(a) (b)

Fig. 8 (a) TGA curves of as-received TiO2

nanotubes and the prepared DOC loaded nanotubes

(b) TiO2 nanotubes loaded with epoxy.
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Fig. 10. SEM images of the scratched samples (a) Pure

epoxy (b) Coating modified with TiO2 nanotubes loaded

with epoxy monomer.
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Fig. 11. EIS Nyquist plots of different concentration of 

DDA inhibitor and its related (b) bode, (c) phase angel 

and (d) the Langmuir adsorption plot.  
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Fig. 12. EIS Bode plots of (a) plain epoxy coatings (c) epoxy

modified with DDA loaded TNT, (e) epoxy + TNT+

monomer and (g) the smart coating before and after scratch

tested at different time intervals in 3.5 wt% NaCl solution

and their corresponding phase angle (b, d, f and h),

respectively.
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