Hybrid microcapsules reinforced smart coatings for corrosion protection in oil and gas industry

Adnan Khan1,4, R. A. Shakoor1, Ramazan Kahraman2, M. F. Montemor5, Anvarul Hasan4
1 Center of Advanced Materials (CAM), Qatar University, 2713 Doha, Qatar
2 Department of Chemical Engineering, Qatar University, 2713 Doha, Qatar
3 Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
4 Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
Corresponding author email: shakoor@qu.edu.qa

Abstract

Materials and equipment failure in the oil and gas industry is usually observed because of corrosion. According to one survey, about 1/4 to 1/3 of the total downtime in plants is contributed due to deleterious effects of corrosion. It is, therefore, essential to prevent corrosion to ensure reliability of the assets. The current research work summarizes the synthesis and characterization of polymeric smart coatings developed by reinforcing monolayer urea formaldehyde microcapsules (MLMCs) and polyelectrolyte multi-layered microcapsules (PMCs) into epoxy matrix. In situ polymerization technique was used for the synthesis of MLMCs encapsulated with linalyl acetate where as layer by layer technique was adopted to develop PMCs containing alternative layers of Polyethyleneimine (PEI) and sulfonated polyether ether ketone (SPEEK). Phenylthiourea (PTU) was loaded as a inhibitor in between polyelectrolyte layers of PEI and SPEEK. The prepared MLMCs and PMCs (each 6.0 wt.%) were uniformly dispersed into the epoxy resin to develop single layer smart coatings (SLSCs) and multi-layered smart coatings (MLSCs) respectively. Experimental results confirm that MLSCs demonstrate improved self-healing and anti-corrosion properties when compared to SLSCs. This improvement can be attributed to efficient release of self-healing and corrosion inhibiting species from the PMCs.

Result and Discussion

Fig. 1: FTIR spectra of the (a) linalyl acetate (b) MLMCs loaded with linalyl acetate (c) and PMCs.

Fig. 2: (a) Zeta potential measurements, (b) Particle size analysis

Fig. 3: XPS survey spectra of MLMCs and PMCs samples: (a, b) C1s, (c, d) N1s, (e, f) O1s

Fig. 4: Thermal stability analysis (TGA) of (a) MLMCs and PMCs (b) the plain and layered coatings

Fig. 5: UV spectroscopy of polyelectrolyte multilayered microcapsules after (a) 24 h (b) 48 h (c) 72 h of the immersion in 0.1 M NaCl solution with different pH values

Fig. 6: SEM images of the scratched samples (a, b) MLMCs and (d, e, f) PMCs after different time intervals

Fig. 7: The structural and morphological study of the synthesized microcapsules (a, b) SEM of the UF microcapsules (c, d) the SEM of the multilayered microcapsules (e, f) TEM of the multilayered microcapsules, (g, h, i) elemental mapping of MLMCs

Fig. 8: Experimental Nyquist plots and respective fittings (solid lines) for different coatings immersed in 3.5% NaCl solution for different exposure times a) neat coating, b) plain coating, and c) layered coatings.

Experimental

Preparation of Coatings

• Coatings containing MLMCs and PMCs were prepared using 6.0 wt% for direct comparison.
• The thickness of the coatings was 200 µm approximately.
• The coatings were subjected to a controlled damage, self-healing and corrosion resistance was analyzed after different time interval.

Conclusion

• MLMCs and PMCs were prepared and used as additives to modify epoxy coatings for corrosion protection of steel.
• It is concluded that the modified coatings with PMCs show improve thermal and anticorrosive performance.
• The enhanced corrosion protection can be attributed to the release of the self-healing agent (linalyl acetate) stored in the core of the capsules and corrosion inhibitor (Phenylthiourea) stored between layers.

Acknowledgment

The findings achieved herein are solely the responsibility of the authors. The authors also acknowledge NPRP Grant 11S-1225-170128 from Qatar National Research Fund (a member of the Qatar Foundation).