مركــــز التنـــمية المـــستدامـــة Center for Sustainable Development

Faculty and PostDoc

Energy, Environment & Resource Sustainability

كلية الآداب والعلوم College of Arts and Sciences والعلوم والعلوم والعلوم والعلوم والعلوم والعلوم والعلوم والعلوم

Production of phycocyanin from marine cyanobacteria in Open raceway pond

Abdul Quadir, Mohammad; Das, Probir*; Khan, Shoyeb; Thaher, Mahmoud; Al jabri, Hareb m. S.J.

Algal Technology Center, Center for Sustainable Development, College of Arts and Sciences, Qatar University.

Doha – Qatar

Abstract

- Phycocyanin is one of the major light harvesting accessory pigment present in microalgae and cyanobacteria.
- This water-soluble pigment protein exhibits antioxidant, anti-inflammatory, and neuroprotective effects.
- Application of this pigment also been used in dietary nutritional supplements in many food, nutraceutical, cosmetic, and biotechnology industries.
- In the present study phycocyanin was extracted from locally isolated marine cyanobacteria *Geitlerinema* sp.
- Geitlerinema sp. showed a higher growth during the summer perioed of 0.75 g/L and 0.54 g/L
- Similarly the maximum Phycocyanin obtain was up to 7.1% in during summer period.

Background Study

- High-value compounds with nutraceutical property from microalgae attract many food and biotechnology industries. (C.Bermudez et al., 2015)
- Phycocyanin producing strains were wildly studied for their functional property, which has various applications in food, drug, and medicine, and for cosmetics. (R.Thangam et al., 2013)
- Often due to the overall costly production process, alternative sources of growth media and harvesting technics nutrient sources such as seawater and nutrients from a different waste industrial stream can be used. (P.Das et al., 2019).

Objectives of the study

 The objective of this research is to find out the seasonal productivity of phycocyanin production in outdoor raceway tanks.

Methodology

Outdoor Cultivation:

- Geitlerinema sp. grown outdoor when the maximum light intensity was 2400 μ mol E/m²/s, and maximum temperature of 48°C during summer time.
- Geitlerinema sp were grown in 1000L raceway tanks; the culture depth was maintained to 20cm while the evaporation water loss was balanced by adding seawater.
- Due to added seawater with time salinity was increasing
- Nutrients guillard 10 x f/2 media were added for this strain.
- Pure CO2 were added to maintain the culture pH in the open tanks.

Figure:2a *Geitlerinema* sp. Growth in 1000 L (during summer)

Harvesting Method:

- All the experiments were conducted with 1000 L culture and the both of the strain were harvested with TFF unit.
- Harvesting was done twice, using a mass filter shown below.
- 1 liters of culture were collected and centrifuge daily to calculate biomass density.

Phycocyanin Extraction:

- Harvesting: 2x 10 mL of each culture was centrifuged in 15 mL falcon tubes for 10 minutes at 5000 RPM.
 Supernatant was discarded, and pellet was stored at -80°C until further processing (20 hours)
- thawed pellets were re-suspended in 5mL of Phosphate buffer
- Samples were placed in -20°C for 2 hours when after 2 hours the samples had not completely frozen yet, placed them in -80°C for 2 more hours until solid
- Removed samples from -80°C, covered in Aluminum foil (to keep dark), and placed in 4°C. After 20 hours, vortexed the samples and placed back at 4°C. After 48 h, centrifuged the samples (30 min at 5000 RPM), and measure OD 620 and 750 of the supernatant

Figure:1 *Geitlerinema* sp. 100x magnification

Figure: 2b *Geitlerinema* sp. Growth in 1000 L (during winter)

Phycocyanin concentration was calculated by Lawrenz et al., (2011) formula. Given below.

C = {A/ εd}*MW* {V (buffer)/V(sample)} *10^6

 $\underline{\mathbf{C}}$ = Phycocyanin Concentration (µg/L); $\underline{\mathbf{A}}$ = Scatter corrected Absorbance (620-750) $\mathbf{\varepsilon}$ = molar extinction coefficient PC (1900000 L/mol/cm);

<u>d</u> = path length of cuvette (1 cm)
 <u>MW</u> Molecular weight (264000 g/mol);
 <u>V</u> buffer Volume of buffer (0.005 L)
 <u>V</u> sample Volume of sample (0.01 L)

Figure: 2c Harvested biomass

Maximum average

Phycocyanin

concentration

Figure 4: Phycocyanin concentration in *Geitlerinema* sp.

Conclusion

7.0

■ Tank A ■ Tank B

- Maximum Cell Phycocyanin concentration was obtain during the month of May.
- Overall areal productivity was also observed higher during May, were average ambient temperature ranged from 28 to 39 °C.

Acknowledgment:

The authors would like to acknowledge the support of CSD Team and Qatar National Research Fund (QNRF) for providing the funding (under grant NPRP8-646-2-272) for this study.

References

- Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, (2015) Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxantin and phycobiliproteins. Microb Biotechnol, 8(2), 190–209
- Thangam R, Suresh V, Princy AW, et al. (2013) C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0G1 cell cycle arrest. Food Chem, 140, 262–272.
- Das, P., Thaher, M., Khan, S., AbdulQuadir, M., & Al-Jabri, H. (2019). The effect of culture salinity on the harvesting of microalgae biomass using pilot-scale tangential-flow-filter membrane. Bioresource technology,
- 293, 122057.

 Lawrenz, E., Fedewa, E. J., & Richardson, T. L. (2011). Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. Journal of Applied Phycology, 23(5), 865-871.