
REVIEW
published: 07 April 2020

doi: 10.3389/fonc.2020.00499

Frontiers in Oncology | www.frontiersin.org 1 April 2020 | Volume 10 | Article 499

Edited by:

Katarína Smolková,

Institute of Physiology

(ASCR), Czechia

Reviewed by:

Joanna Maria Boncela,

Institute for Medical Biology

(PAN), Poland

Dongya Jia,

Rice University, United States

Andre Koit,

National Institute of Chemical Physics

and Biophysics, Estonia

*Correspondence:

Apostolos Zaravinos

azaravinos@qu.edu.qa

Specialty section:

This article was submitted to

Cancer Metabolism,

a section of the journal

Frontiers in Oncology

Received: 07 January 2020

Accepted: 19 March 2020

Published: 07 April 2020

Citation:

Georgakopoulos-Soares I,

Chartoumpekis DV, Kyriazopoulou V

and Zaravinos A (2020) EMT Factors

and Metabolic Pathways in Cancer.

Front. Oncol. 10:499.

doi: 10.3389/fonc.2020.00499

EMT Factors and Metabolic
Pathways in Cancer
Ilias Georgakopoulos-Soares 1,2, Dionysios V. Chartoumpekis 3,4, Venetsana Kyriazopoulou 4

and Apostolos Zaravinos 5,6*

1Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA,

United States, 2 Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States,
3 Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne,

Lausanne, Switzerland, 4Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras,

Patras, Greece, 5College of Medicine, Member of QU Health, Qatar University, Doha, Qatar, 6Department of Life Sciences

European University Cyprus, Nicosia, Cyprus

The epithelial-mesenchymal transition (EMT) represents a biological program during

which epithelial cells lose their cell identity and acquire a mesenchymal phenotype.

EMT is normally observed during organismal development, wound healing and tissue

fibrosis. However, this process can be hijacked by cancer cells and is often associated

with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell

characteristics, and cancer treatment resistance. It is becoming evident that EMT is a

complex, multifactorial spectrum, often involving episodic, transient or partial events.

Multiple factors have been causally implicated in EMT including transcription factors (e.g.,

SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and

more recently, long non-coding RNAs. However, the relevance of metabolic pathways in

EMT is only recently being recognized. Importantly, alterations in key metabolic pathways

affect cancer development and progression. In this review, we report the roles of key EMT

factors and describe their interactions and interconnectedness. We introduce metabolic

pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino

acid metabolism, and characterize the relationship between EMT factors and cancer

metabolism. Finally, we present therapeutic opportunities involving EMT, with particular

focus on cancer metabolic pathways.

Keywords: EMT, metabolic pathways, transcription factors, non-coding RNAs, cancer metabolism

THE EPITHELIAL TO MESENCHYMAL TRANSITION (EMT)
PROCESS

In recent years, it has been progressively realized that cell identity is highly dynamic, as most
notably demonstrated by Yamanaka et al., by reprogramming fully differentiated fibroblasts
into induced pluripotent stem cells with the induction of four transcription factors (TFs) (1).
Stem cells can renew themselves while maintaining their multipotency or can differentiate to
a less potent cell type. During development and embryogenesis, a cascade of epigenetic and
transcriptional programs is employed to ensure the differentiation of multipotent progenitor
cells. Epithelial to mesenchymal transition (EMT) represents a cell biological program, during
which epithelial cells progressively miss their cell identity and morphology and increasingly
acquire mesenchymal characteristics (2, 3). The converse route is recognized as mesenchymal to
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epithelial transition (MET). EMT and MET are both mediated
through a cascade of transcriptional and epigenetic changes and
are physiologically observed during organismal development,
tissue healing, homeostasis, as well as during fibrosis. However,
the same processes can be hijacked by tumor cells during cancer
development (4). Indeed, several analogies have been drawn
between organismal development and tumorigenesis (5).

Epithelial cells exhibit cell-cell junctions, apico-basal polarity
and limited migratory potential, and they can be identified using
a multitude of cell surface markers, most notably E-cadherin,
but also cytokeratins, occluding, and claudins (6, 7). In contrast,
mesenchymal cells are characterized by front rear polarity and
a migratory phenotype. In addition, during cancer development
they display resistance to apoptosis, stem cell characteristics
and tissue invasiveness (2, 8, 9). Mesenchymal cells can be
identified by N-cadherin, Fibronectin and Vimentin cell surface
markers (6). The EMT/MET model proposes that the migratory
phenotype of cancer cells is acquired during EMT, enabling the
invasion of other tissues, while MET potentiates the settlement of
cancer cells at the new site (6).

Current work has demonstrated that EMT is not a binary state
procedure, during which cells can either have a mesenchymal
or an epithelial identity. Instead, EMT is a dynamic spectrum
and reversible process and cells can be found at any locale on
that spectrum, often sharing certain epithelial and mesenchymal
characteristics (10–15). Most importantly, cells considered to be
in a hybrid epithelial/mesenchymal state are more apoptosis-
resistant and have higher tumor-initiating potential (15–17)
Technological advances in CRISPR-Cas9 genome editing and
decreasing costs in single cell sequencing have potentiated
important breakthroughs in EMT. Firstly, single cell sequencing
has revealed the extensive variability in gene expression and
cell identity during EMT, both in development (18) and cancer
(14, 19). Secondly, recent studies have demonstrated partial and
transient EMT events with cells found across the continuum
along the EMT spectrum (19–22). Thirdly, the variability and
complexity in the expression patterns of multiple EMT and
MET factors across disparate cell types and conditions is being
appreciated and novel players in the EMT process are being
discovered (14, 18, 19, 21, 22). CRISPR-Cas9 screens coupled
with single cell RNA sequencing have identified novel EMT-
associated factors and have provided evidence that specific
signaling pathways control the EMT via discrete, regulatory
checkpoints (21).

Cancer cells are known to adapt their metabolism to meet
their high needs for energy and synthesis of biomolecules
including proteins, lipids and nucleic acids (23, 24). Tumor
cells are usually characterized by the Warburg effect, that is,
the production of ATP mostly from glycolysis and not oxidative
phosphorylation, even in conditions with high availability of
oxygen (25). However, a multitude of key metabolic pathways
are involved in the metabolic adaptations of cancer cells,
with accumulating evidence for the importance of these
pathways in EMT. Most notable among them are glycolysis, the
TCA cycle, lipid and amino acid metabolism, which directly
contribute to EMT, cancer cell survival, cancer invasiveness
and metastasis. Although the regulation of these metabolic

pathways was considered to be largely known, it seems that
recent advances in our capacity to measure specific metabolites
at the cell level and especially in the cancer state have shed
new light on their modulation and intertwining with EMT
transcriptional regulation (26, 27). As epithelial cancer cells
acquire mesenchymal features during the EMT process, their
metastatic potential increases. As a result, they should be able
to penetrate the extracellular matrix, enter the blood stream
and finally grow in a different tissue. All these steps require
a continuous supply of nutrients to the cells that is provided
through the blood stream and by metabolic reprogramming of
the cells (28). More evidence is accumulating that this metabolic
reprogramming is a highly regulated process by transcription
factors that are known to be involved in EMT (29).

The requirement of EMT for metastasis may rely on the
cancer type and there is ongoing contention regarding its role in
metastasis, which may also be context-dependent and transient.
There is substantial evidence supporting the notion that EMT
is a driver during cancer metastasis in certain cancer types (30–
37). Additionally, the induction ofMET and the down-regulation
of EMT TFs at the site of metastasis, supports the colonization
of the metastatic cells (38–40). Metastasis accounts for an
estimated 90% of cancer-associated deaths (41), reinforcing
the importance of intervention at EMT. Various signaling
molecules can activate the EMT process, including epidermal
growth factor (EGF), fibroblast growth factor (FGF), hepatocyte
growth factor (HGF), transforming growth factor β (TGFβ), β-
catenin–dependent canonical and β-catenin–independent non-
canonical WNT signaling, bone morphogenetic protein (BMP),
Sonic Hedgehog (SHH) and the Notch signaling pathway,
among others (12, 42–46). EMT transcription factors, epigenetic
alterations, microRNAs, post-translational modifications, and
metabolic reprogramming orchestrate the transition. In this
review, we delve into each of them from a molecular and
cellular viewpoint and summarize recent advances and changes
in our understanding.

EMT- TRANSCRIPTION FACTORS (TFS)
AND SIGNALING THAT REGULATES THE
EMT PROCESS

EMT-TFs represent master TFs that coordinate the EMT process.
Themost widely studied TFs among them are TWIST1, TWIST2,
SNAIL1, SNAIL2, ZEB1, and ZEB2 (12), all of which directly
inhibit the expression of E-cadherin and promote the transition
to a mesenchymal state. The consequence of their expression is
the suppression of the epithelial phenotype and the associated
loss of epithelial cell surface biomarkers. A common feature
among EMT-TFs is their physiological roles in embryogenesis
and organismal development, as well as their reappearance
in cancer cells during cancer development and progression.
The expression of EMT-TFs can be overlapping and they
can form networks, yet their functions are usually distinct.
They are activated through signaling cascades and promote
the transcriptional program switching. EMT-TFs have clinical
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relevance in metastasis and their expression correlates with poor
clinical outcomes in cancer (6, 47, 48).

The SNAIL1 and SNAIL2 Master TFs in EMT
The SNAIL sub-family within the larger SNAG domain family
of Zinc finger TFs in humans is composed of three members,
namely SNAIL1, SNAIL2 (also known as SLUG), and SNAIL3,
which act as transcriptional repressors (49). The number of
SNAIL members varies by species and they are usually associated
with mesoderm development and differentiation (50) and wound
healing (51). SNAIL1 and SNAIL2 have important and widely
studied roles in the EMT process, whereas SNAIL3 is a paralogue
of SNAIL1 and SNAIL2 with distinct and divergent functions
(52). SNAIL1 and SNAIL2 downregulate the expression of a
number of target genes in relation to EMT, most notably E-
cadherin, but also claudins, occludin, PALS1 and PATJ (53,
54). Both SNAIL1 and SNAIL2 bind directly to the E-cadherin
promoter at E-box sequences to inhibit its expression (55).
SNAIL1 interacts with chromatin remodeling factors to exert its
repressor activity at the E-cadherin promoter (56). It also alters
the polarity of epithelial cells by inhibiting the expression of
Crumbs3, which is essential for epithelial morphogenesis (57).
In addition to mediating the EMT process, SNAIL members
promote cell survival, block the cell cycle and inhibit the
apoptotic process, with roles in the induction of a metastatic

phenotype and the acquisition of cancer stem cell features (8, 58).
In support to that, circulating tumor cells from hepatocellular
carcinomas express roughly 10 times more SNAIL1 mRNA
(59), while transient SNAIL2 and SOX9 induction increases the
metastatic ability of mammary gland cells (60).

A plethora of general and cell-type specific signals can activate
SNAIL TFs. TGFβ1 induces SNAIL1 expression in a number of
cell types including hepatocytes, palate, epithelial andmesothelial
cells (61, 62). TGFβ2 induces SNAIL1 expression during hair
follicle morphogenesis (63) and SNAIL2 expression during heart
development (64). BMP4 induces SNAIL2 expression during
neural crest development (65). Snail genes are up-regulated
in multiple cancer types and they are associated with poor
prognosis, including breast and ovarian cancers for SNAIL1
(66, 67) and colorectal cancers for SNAIL2 (68). In pancreatic and
thyroid cancers and their metastases Snail genes are upregulated
(69, 70). Furthermore, SNAIL TFs promote cancer recurrence
(71) and resistance to cancer treatments (72). In turn, SNAIL1
can induce changes in the metabolism of glucose and can control
the dependence of cancer cells to glycolysis relative to the
pentose phosphate pathway (73), indicating the link between
EMT factors, metabolism and cancer cell survival (Figure 1).

Phosphorylation of SNAIL proteins is crucial for their
localization and their functionality in the cell (74). Glycogen
Synthase Kinase-3 (GSK3) is a kinase that phosphorylates

FIGURE 1 | Interplay of glycolysis pathway with EMT factors. Enzymes are depicted in yellow font, EMT-related factors are depicted in red font. → denotes induction;

⊣ denotes inhibition. Yellow dots indicate intermediate reactions that are not depicted.
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SNAIL1 resulting in its nuclear export and degradation (75).
GSK3 can inhibit the EMT process by targeting SNAIL1 across
multiple cell types (76). GSK3’s activity contrasts that of p21-
activated kinase (PAK1) which phosphorylates SNAIL1 resulting
in its nuclear localization and the activation of EMT (77). Indeed,
SNAIL1 expression and activation induces fibrosis in kidney and
EMT (78). Importantly, de-phosphorylation of SNAIL proteins
by Small C-terminal domain phosphatase (SCP) can also affect
their localization and activity (79). Stabilization of SNAIL1 by
nuclear factor kappa B (NF-kB) is mediated through prevention
of its phosphorylation by GSK3 (80). Therefore, multiple post-
translational regulators of SNAIL proteins control their functions
and are putative targets for intervention.

Basic Helix Loop Helix EMT-TFs TWIST1
and TWIST2
TWIST1 and TWIST2 belong to the family of basic helix loop
helix (bHLH) TFs. TWIST proteins are structurally similar
and bind to E-box DNA response elements to repress or
activate transcription (81). They have important physiological
roles during embryonic morphogenesis, wound healing and
tissue fibrosis (82, 83). In contrast, they are not expressed,
or are expressed at extremely low levels, in most cell types
after embryogenesis with the exception of certain precursor cell
types (84), suggesting that they could be an attractive target for
therapeutics or cancer biomarker development.

Expression of TWIST TFs can induce the EMT process and
they are upregulated during cancer development (85, 86) and
progression to metastasis (87). TWIST TFs are also associated
with worse patient prognosis (87). Increasing the expression
of TWIST1 is directly associated with tumor invasion and
metastasis and mediates the loss of E-cadherin, a key epithelial
marker. It also increases the expression of the mesenchymal
markers Fibronectin, N-cadherin and Vimentin, leading to the
reduction of cell adhesion and the promotion of cellular motility
(87, 88). TWIST proteins also promote a cancer stem cell
phenotype (89). TWIST activity can be modulated via post-
translational modifications, such as phosphorylation. TWIST1
phosphorylation by MAP kinase stabilizes the protein and
promotes breast cancer cell invasiveness and EMT (90). Similarly,
AKT-mediated phosphorylation of TWIST results in increased
invasiveness (91). In contrast, phosphorylation by IKKβ results
in the degradation of TWIST (92).

The role of TWIST in metabolism has been mainly described
in adipose tissue and has been associated with increased
inflammation and insulin resistance (93). Its role in cancer
metabolism has not been elucidated but it seems to be activated
by asparagine and promote EMT (Figure 4) (94).

Another member of the bHLH EMT-TF group is
Transcription Factor 3 (TCF3 or E2A) which produces two splice
variants, E47 and E12 (95). TCF3 can induce the EMT process
by inhibiting the expression of E-cadherin (96). Finally, E2.2
(also known as TCF4) is not a master EMT-TF, but it can induce
a full EMT and represses E-cadherin expression indirectly,
through complex, functional and hierarchical interactions
with EMT factors (97, 98). Indeed, E2.2 is upregulated in cells

overexpressing SNAIL1, SNAIL2, or E47 and after inhibition of
E2.2 expression, the EMT is maintained, when driven by SNAIL1
and E47 (97).

Zinc-Finger E-Box Binding (ZEB) 1/2
The ZEB family in humans comprises ZEB1 (or δEF1) and
ZEB2 (or SIP1), which are zinc finger TFs (99). ZEB TFs
bind at bipartite E-boxes using their zinc-finger domains (100).
Both ZEBs actively repress epithelial cell markers, and activate
the expression of mesenchymal biomarkers, thus, mediating
EMT (101). During physiological conditions, they are primarily
expressed in the CNS, heart, skeletal muscle and hematopoietic
cells. ZEB1 and ZEB2 can, in part, compensate for each other
(102). Nevertheless, in lymphocytes, ZEB1 is mainly found in
the thymus during T-lymphocyte development; whereas, ZEB2 is
found primarily in the spleen during B-lymphocyte development
(102), indicating differences in expression and functionality. The
two ZEB TFs can even function antagonistically (103). ZEB2
knockout mice are embryonically lethal (104), indicating that
ZEB1 cannot fully compensate for the developmental functions
of ZEB2 in its absence.

Multiple signaling molecules control ZEB1 and ZEB2
expression. For instance, estrogen signaling cascades can induce
ZEB1 expression (105). Similarly, TGFβ and Wnt/β-catenin
signaling are activators of ZEB1 (106). Also, SNAIL1 and
TWIST1 cooperatively control ZEB1 expression levels (107).
In turn, ZEB1 suppresses multiple genes being involved in
the generation and maintenance of epithelial cell polarity,
including CDH1, Lgl2, PATJ, and Crumbs3 (108). ZEB1/2
expression in epithelial cells results in EMT and a mesenchymal
phenotype, promoting invasion, metastatic dissemination and
de-differentiation to a cancer stem cell state (109). The expression
of ZEB1 associates with poor clinical outcome in solid tumors
(110), including those of the breast (111), colorectum (112)
or pancreas (113). ZEB2 expression also associates with poor
prognosis and survival in different cancer types (114–116).
ZEB1/2 and the miR-200 family expression levels are anti-
correlated, with a double-negative feedback loop between
them, which is described in the section of microRNAs. Post-
translational modifications of both TFs can also modulate their
expression levels, an example being the phosphorylation of ZEB1
(117) and the SUMOylation of ZEB2 [reviewed in (118)].

From a metabolic point of view, ZEB1 has been recently
described to be a central component of adipogenesis (119) in
non-cancer cell studies but ZEB1/2 have been more extensively
studied in the context of cancer cell metabolism and appear
to affect glycolysis (120) (Figure 1), to be affected by TCA
cycle byproducts and drive EMT (121) (Figure 2), and to divert
glycosphingolipid metabolism (122) (Figure 3).

Other Non-canonical EMT-TFs
In addition to the thoroughly studied canonical EMT-TFs, a
number of other TFs are also implicated in EMT. For instance,
Krüppel-like factor 8 (KLF8) promotes EMT in breast (123,
124), ovarian (125) and gastric cancer cell lines (126). In
particular, KLF8 resulted in the acquisition of mesenchymal
features including enhancedmotility, changes in cell morphology
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FIGURE 2 | Crosstalk of TCA cycle with EMT factors. Enzymes are depicted in yellow font, EMT-related factors are depicted in red font. → denotes induction; ⊣

denotes inhibition.

and direct inhibition of E-cadherin expression by modulating its
promoter (123).

Paired-related homeobox 1 (PRRX1) overexpression activates
EMT in certain cancers, including those of the stomach (127),
colorectum (128), pancreas (129) or breast (39), and promotes a
migratory and invasive phenotype. However, at a later stage of the
metastatic process, its expression must be stopped, to promote
MET, metastatic colonization and an epithelial phenotype with
stem cell features (39). In particular, two isoforms of PRRX1,
PRRX1a, and PRRX1b, have distinct functions in EMT and MET
in pancreatic ductal adenocarcinoma (36). PRRX1b promotes
de-differentiation, invasiveness and EMT; whereas, PRRX1a is
involved in differentiation and MET (36).

Forkhead box C2 (FOXC2) is a TF that can induce EMT
and thus, indirectly inhibit the expression of E-cadherin (130).
Under physiological conditions, FOXC2 plays a role during in
embryogenesis, affecting angiogenesis and the development of
the muscles, kidney and urinary tract (131), while it also has
distinct functionalities in adipocytes (132). Importantly, FOXC2
has roles in the metastatic process through EMT activation in
breast, prostate and ovarian cancers (133–136).

Goosecoid (GSC) can indirectly inhibit E-cadherin (130)
and is overexpressed in many breast cancers and metastases
(137). Another TF, LBX1 (Ladybird homeobox 1) can up-
regulate the expression of ZEB1/2 and SNAIL1, promoting cell
migration and invasiveness in breast cancer (138). Finally, NF-
kB induces EMT by regulating the expression of EMT-TFs, while
its inhibition abolishes the metastatic potential of mammary
epithelial cells (139).

All these non-canonical TFs that play a role of EMT have
not been studied very thoroughly in the very specific content
of cancer cell metabolism but some of them like FOXC2 (140)
and PRRX1 (141) have established roles in adipocyte metabolism.
However, their interaction with ZEB, SNAIL, TGFβ that are
major players of EMT means that they can indirectly affect EMT
and possibly relevant metabolic processes.

TFs That Suppress Mesenchymal Toward
Epithelial Phenotype
OVOL1 and OVOL2 are zinc-finger TFs involved in the
maintenance of the epithelial state (142) and the suppression
of the EMT (143). OVOL2 and ZEB1 act as mutual repressors
of each other (11). Grainy-head like 2 (GRHL2) is involved in
the establishment of epithelial identity (144) and the suppression
of EMT (145, 146). It has been shown that GRHL2 suppresses
EMT by inhibition of P300, which is required for EMT (146).
It also antagonizes TGFβ-induced EMT in gastric cancer (147).
Furthermore, knock down of GRHL2 and OVOL2 increases
the collective cell migration (148). The pioneer TFs, FOXA1,
and FOXA2, are transcriptional activators of epithelial genes,
including E-cadherin expression (149). Both FOXA1 and FOXA2
are regulators and antagonists of the EMT and can be down-
regulated by SNAIL1, resulting in the inactivation of enhancers at
key epithelial genes (150). The TFGATA3 promotes the epithelial
phenotype and inhibits metastasis in breast cancer (151). Thus, in
addition to the TFs that are EMT inducers there is an opposing
set of EMT suppressors. This set of transcription factors that
suppress MET are not well described for their metabolic effects
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FIGURE 3 | Fatty acid metabolism and EMT factors. Enzymes are depicted in yellow font, EMT-related factors are depicted in red font. → denotes induction; ⊣

denotes inhibition.

with the exception of a study that shows FOXA1 to reduce
lipid accumulation in human hepatocytes (152). Their crosstalk
though with ZEB1 or SNAIL can be relevant in an indirect way to
cancer cell metabolism.

MICRORNAS

microRNAs (miRNAs) are small (18–24 nt long), non-coding
RNAs that can post-transcriptionally fine-tune gene expression
by targeting the 3

′

UTR of mRNA transcripts, leading to their
destabilization and degradation. They are initially transcribed
by RNA polymerase II into a pri-miRNA and processed by
DROSHA to generate the pre-miRNA, which is subsequently

exported from the nucleus and processed by DICER to
mature miRNA (153). The mature miRNA interacts with the
RNA-induced silencing complex (RISC) to target and cleave
complementary mRNA molecules. About one third of human
genes are recognized and targeted by miRNAs (154), indicating
their pervasive regulatory control. Different miRNAs have
been found to either promote or inhibit the EMT process
through a multitude of functions. To date, over 130 different
miRNAs have been implicated in EMT regulation (155) through
combinatorial control networks (45). Among miRNA targets,
there are multiple EMT-TFs, including SNAIL, TWIST and
ZEB1/2 (156). microRNAs have also been described to regulate
various metabolic processes including but not not limited to
glucose and lipid metabolism in non-cancer cells (157) and
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have been described to participate in the regulation of metabolic
pathways in cancer cells (158).

The miR-200 Family in EMT Suppression
The miR-200 family members include miR-200a, miR-200b,
miR-200c, miR-141, and miR-429, which are clustered in two
polycistronic pri-miRNA loci, found in chromosomes 1 and
12, in humans. They can inhibit EMT by targeting the mRNA
molecules of EMT promoting factors, resulting in their transcript
degradation or translational repression. The miR-200 members
share many of their targets, due to the high sequence homology
between them in their seed region. Their overexpression leads
to an increased E-cadherin expression, the maintenance of the
epithelial phenotype and the inhibition of EMT (159). The miR-
200 members target ZEB1/2, both of which repress E-cadherin
(160–162). Their expression in cell lines results in MET, with
the acquisition of epithelial cell morphology, phenotype and
biomarkers and the loss of mesenchymal features, including the
migratory phenotype and mesenchymal-associated biomarkers
(159). ZEB1 can also inhibit the expression of miR-141 and
miR-200c, increasing the complexity of this interaction network
(160). As a result, ZEB1 and the miR-200 family are components
of a mutual inhibition circuit. In cancer, the miR-200 family
can suppress metastasis (163). The roles of miR-200 family
in the suppression of EMT have been extensively studied in
lung cancers (164). The miR-200 family also regulates multiple
signaling cascades, including theWNT andNotch pathways (165,
166). TP53 is the most frequently mutated cancer gene among
most cancer types and acts as a tumor suppressor (167). ZEB1
and ZEB2 expression can be downregulated by TP53, which
activates miR-200 and miR-192, which in turn repress ZEB1 and
ZEB2, resulting in EMT inhibition (168). miR-200 family has
been reported to regulate pancreatic β cell survival in type 2
diabetes (169) and to be downregulated in high-fat diet-induced
obesity in murine adipose tissue (170). In cancer cells it seems
to be directly or indirectly intertwined with glycolysis (Figure 1)
and TCA cycle metabolic pathways (Figure 2) (171, 172).

Other miRNAs in EMT
Other miRNAs can also regulate EMT, apart from the miR-
200 family. For example, miR-9 and miR-10b can directly
inactivate E-cadherin expression, promoting cell motility and
metastasis (173–177). In breast cancer, miR-10b expression
in otherwise non-metastatic tumors, promotes metastasis and
correlates with clinical outcome (178). Also, silencing of miR-
10b inhibits metastasis (179), suggesting its value as a putative
therapeutic target. MYC and MYCN activate miR-9 inducing
EMT in breast cancer and its expression is correlated withMYCN
gene amplification in neuroblastoma (173). In addition, miR-
29b and miR-30a inhibit the expression of SNAIL1 (156, 180).
In prostate cancer, miR-29b levels are decreased and in prostate
cancer cells its expression upregulates epithelial markers and
downregulates mesenchymal markers (180). miR-34 and SNAIL1
both negatively control the expression of each other (181).
During TGFβ-induced EMT, SNAIL1 suppresses the expression
of miR-34. In breast cancer, miR-203 and SNAIL1 also negatively
control the expression levels of each other (182). Similarly, there
is a double-negative feedback loop between SNAIL2 on one hand,

andmiR-1 andmiR-200b on the other (183). miR-21 has an EMT-
promoting activity and is overexpressed in many cancers. It can
up-regulate PTEN which in turn phosphorylates EMT factors to
inhibit the EMT process (184). miR-23b targets ZEB1 (185). miR-
424 is upregulated early during TWIST1- or SNAIL-driven EMT
with roles in promoting the mesenchymal transitioning, without
altering epithelial attributes (186). miR-205 family downregulates
the expression of ZEB1/2 and in conjunction with the miR-
200 members, it promotes MET (161). As a result of the above,
multiple miRNAs are involved in the regulation of EMT across
different cancer types and with a multitude of targets. Even
though there is evidence that most of these described miRNAs
play some roles in metabolic processes in normal cells, there is
no concluding evidence that these, with the exception of miR-
200, play specific roles in cancer cell metabolism with relevance
to EMT process. Consequently, in the sections on EMT and
metabolism below miR-200 is discussed more extensively and is
depicted in summary Figures 1, 2.

Other Long Non-coding RNAs
Long non-coding RNAs (lncRNAs), i.e., non-coding RNAs of
>200 nucleotides in length, are also involved in a plethora of
biological processes, including EMT (187, 188). Hundreds of
lncRNAs are deregulated during EMT (187), either promoting
(189–192) or inhibiting it (193–196). Among their functions in
EMT control, they can regulate signaling pathways including
that of TGFβ (197), they can function as competing endogenous
RNAs (ceRNAs) for miRNAs (198) or influence the expression
of EMT-associated genes, including EMT master TFs (198–
200). A 5′UTR intron at ZEB2 mRNA contains an internal
ribosome entry site, which is required for its expression. ZEB2-
AS1 lncRNA prevents the splicing of the 5′UTR intron, and
enables the production of ZEB2 protein, which then inhibits E-
cadherin expression (199). In breast cancer cells, UCA1 lncRNA
promotes EMT through the activation of the Wnt/β-catenin
signaling pathway (201). Its knock-down induces E-cadherin
expression and it also reduces the mesenchymal characteristics of
the cells and their invasiveness (201). H19 lncRNA is activated by
hypoxia and TGFβ and promotes EMT. In particular, it inhibits
E-cadherin expression, increasing the invasiveness of cancer cells
and acts as a ceRNA for miR-138 and miR-200a (202, 203).
These selected examples demonstrate the plethora and diversity
in lncRNA functionalities relevant to EMT. Our understanding
of the roles of lncRNAs is rapidly advancing. Expression levels of
disparate lncRNAs are being investigated as clinical biomarkers
of cancer diagnosis and prognosis (188) and could harbor clinical
opportunities for intervention in EMT. Ofcourse, the research
on the role of lncRNAs on metabolism is expanding (204) but
currently there is not a lot of studies (205) linking them with
cancer cell metabolism and specifically the ones that are related
with the EMT process.

METABOLIC PATHWAYS INVOLVED IN EMT

Metabolic changes during tumor development, of which themost
thoroughly described mechanism has been the Warburg effect
that facilitates the production of energy mostly from glycolysis
and less from oxidative phosphorylation (206), potentiate the
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aggressive proliferation of cancer cells. However, it is important
to note that cancer cells do not exclusively use glycolysis
for energy production (207, 208) and studies have shown
that oxidative phosphorylation promotion through enhanced
mitochondrial biogenesis (209) or function (210) can also
promote tumorigenesis progression and EMT. A key work (211)
has shown that mesenchymal-like cancer cell lines exhibit a
common metabolic gene signature that includes genes related
to nucleotide, lipid, amino acid, glycan, carbon, and redox
metabolism, and on top of that, known TFs affecting the EMT
process, are co-expressed (up- or down-regulated) with these
genes. Other individual studies focusing on specific cancers or
cell-lines, also point to the same direction. In the following
sections we summarize the most important metabolic pathways
and their main players that are changing along with EMT, as
well as how these can be potentially regulated by known EMT-
driving TFs and other regulators. We also discuss if and how
these metabolic processes can have an effect on EMT per se.

Glycolysis
Fructose-1,6-biphosphatase 1 (FBP1) is an enzyme that
hydrolyzes fructose 1,6-bisphosphate to fructose 6-phosphate
and inorganic phosphate and regulates gluconeogenesis. SNAIL1
was found to directly represses the expression of FBP1 in
two luminal breast cancer cells lines (212) and this led to
enhancement of glycolytic flux, impaired oxygen consumption
and reduced reactive oxygen species (ROS) production. FBP1
repression appears to occur due to de novo DNA methylation
of its promoter. It is also interesting that ectopic overexpression
of FBP1 in the SNAIL1-overexpressing cell lines inhibited
the initiation of EMT and abrogated the downregulation of
E-cadherin that is required for EMT (212). Downregulation of
FBP1 has been shown to be a poor prognostic factor in gastric
cancer (213) and in aggressive glioblastomas (214), as well
indicating the importance of this finding.

Phosphofructokinase 1 (PFK1) is an important glycolytic
enzyme that has the opposite function of FBP1; it catalyzes the
conversion of fructose 6-phosphate to fructose 1,6-bisphosphate.
Its increased expression facilitates the glycolytic flux and it
is usually induced under hypoxic conditions as part of a
wider transcriptional response induced by hypoxia-inducible
factor 1 (HIF-1) (215, 216). Increased HGF signaling has been
shown to lead to increased PFK1 activity and to EMT in a
human hepatocarcinoma cell line (217). However, in cases where
nutrients from cancer cells are depleted, glycolysis is no longer
the “preferred” pathway for these cells and the glycolytic flux
is diverted to pentose phosphate pathway (PPP) and PFK is
repressed. SNAIL, a key EMT-TF has been described to repress
PFKP, a major isoform of PFK1 (73). In breast cancer cell lines,
under conditions of limited nutrients, it promotes PPP that
generates NADPH, a reducing equivalent, and precursors for the
synthesis of fatty acids, amino acids and nucleotides (73). In
this way, the “stressed” cancer cells can survive in conditions of
nutrient deprivation and its metastatic potential increases.

Hexokinases are enzymes that phosphorylate glucose to
produce glucose-6-phosphate, which is the first step in most
glucose pathways, including glycolysis. Hexokinase 2 (HK2)

is the major isoform that is overexpressed in cancers (218)
and its depletion can ameliorate the outcomes in a model
of hepatocellular carcinoma (219). There are some indications
that, under hypoxic conditions, the overexpression of HK2 can
facilitate EMT (220). Another hexokinase isoform (HK3) has
recently been described to be associated with EMT in colorectal
cancers (221). Exact molecular mechanisms have not been
described and these data are mainly based on association studies.

Pyruvate Dehydrogenase Kinase 4 (PDK4) is located in the
mitochondrial matrix and inhibits the pyruvate dehydrogenase
complex via phosphorylation. Thus, it inhibits the conversion
of pyruvate to acetyl-CoA decreasing the metabolites flux to
tricarboxylic acid cycle, down-regulating aerobic respiration
and promoting glycolysis and fat metabolism. PDK4 has been
described to have oncogenic roles in human colon cancer cells
(222) and its increased levels to be related with aggressiveness and
chemoresistance in bladder cancer (223). However, low PDK4
levels were found to be associated with poorer prognosis in a
series of non-small cell lung cancer samples (194).

Pyruvate kinase (PK) catalyzes the transfer of a phosphoryl
group from phosphoenolpyruvate to ADP, generating ATP and
pyruvate, which is actually the last step of glycolysis. A splice
variant of PK, PKM2, is expressed in fetal tissues and cancers
(224) and has been shown to be part of EMT in human colorectal
cancer cells. Specifically, PKM2 translocates in the nucleus during
EMT where it represses E-cadherin transcription by interacting
with TGFβ-induced factor homeobox 2 (TGIF2) (225). This role
of PKM2 can be described as non-canonical, as it does not refer
directly to the classic role of this enzyme (catalysis of glycolysis)
but it also shows that metabolism-related enzymes can acquire
alternative functions in cancer cells that may be critical in the fate
of cancer cells. Of course there are several instances where it is
shown that PKM2 expression is enhanced in cancers and favors
the glycolytic pathway and potentially the metastatic potential
such as in pancreatic ductal adenocarcinoma tissues and cell
lines (226).

Enolase 1 (ENO1) catalyzes the conversion of 2-
phosphoglycerate to phosphoenolpyruvate and it is usually
overexpressed in cancers, such as those in head and neck or
lung (227, 228). Lung adenocarcinomas show increased ENO1
expression and its silencing represses EMT in the relevant cell
lines models (229). Proteomic analysis in gastric cancer cells has
revealed that ENO1 is central to a protein-protein interaction
network that regulates tumor growth and metastasis (230).

Phosphoglucose isomerase (PGI) converts glucose-6-
phosphate to fructose-6-phosphate. Interestingly this protein can
also be secreted by cancer cells and act as a cytokine (autocrine
motility factor; AMF) promoting migration, invasion and
metastasis (231). PGI has also been shown to promote EMT in
breast cancer cells by repressing miR-200 and inducing ZEB1/2
(171) and silencing of PGI expression promotes mesenchymal to
epithelial transition in human lung fibrosarcoma cells (232).

Aldolase A (ALDOA) catalyzes the conversion of
fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and
dihydroxyacetone phosphate. ALDOA is usually overexpressed
in cancers and it is usually associated with poor prognosis (233).
Downregulation of ALDOA in squamous lung carcinoma lines
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led to reduced expression of mesenchymal markers (234). Its
overexpression in colon cancers is also associated with worse
outcomes and also leads to EMT as shown by RNA-seq based
transcriptomics analysis (235). Supportive of this role of ALDOA
are other studies showing that silencing of ALDOA increased
E-cadherin (epithelial marker) and decreased N-cadherin
(mesenchymal marker) in pancreatic cancer (236) and bladder
cancer cell lines (237).

Glucose transporters 1 and 3 (GLUT1, GLUT3) facilitate the
entrance of glucose in cells in an insulin-independent manner.
GLUT1 is expressed at different levels in all tissues and mostly
in fetal tissues while GLUT3 is most abundant in neurons.
Cancer cells usually overexpress GLUT1 and GLUT3 to facilitate
the uptake of glucose independent of insulin levels, and high
levels of GLUT1 and GLUT3 are usually associated with poor
prognosis (238, 239). In laryngeal cancer cells GLUT1 expression
correlated with Vimentin and N-cadherin expression that are
markers of EMT (240). GLUT3 has been found overexpressed in
mesenchymal cells of non-small cell lung cancer and ZEB1 can
induce GLUT3 expression in these cancer cells (241), indicating
that GLUT3 is an important component of EMT. In Figure 1

we briefly summarize the role of the glycolytic pathway in the
EMT process.

The Tricarboxylic Acid Cycle (TCA) Cycle
Fumarate hydratase (FH) converts fumarate to malate. Loss
of functions mutations of FH lead to leiomyomatosis, renal
cancer and pheochromocytomas (172, 242). Accumulation of
fumarate, due to these mutations, can lead to EMT in renal
cancer cells. Specifically, fumarate can inhibit Ten-Eleven
translocation (TET)-mediated demethylation of the regulatory
region of miR-200. Hence, fumarate can ultimately inhibit miR-
200 family expression and thus, abrogate miR-200-mediated
EMT suppression (172).

Succinate dehydrogenase (SDH) catalyzes the oxidation of
succinate to fumarate. Loss of function mutations of SDH are
found in paragangliomas, gastric stroma tumors and pulmonary
chondromas (243, 244). Metastatic pheochromocytomas and
paragangliomas with reduced SDH expression due to SDHB
mutations, show an EMT signature based on transcriptomics
analysis and increased SNAIL 1/2 protein expression (245).
Interestingly, breast cancer cell lines undergoing EMT show
reduced SDH expression and hepatocellular carcinoma cell lines
with reduced SDH expression show increased expression of EMT
markers (246), indicating there may be a link between EMT
and SDH (247) with molecular mechanisms that warrant further
investigation. There is a hint that accumulation of succinate due
to SDH mutations can induce EMT with a similar mechanism
with fumarate (172).

Isocitrate dehydrogenases (IDH) catalyze the conversion of
isocitrate to α-ketoglutarate. Three isoforms exist in humans:
IDH1 and IDH2which are NADP+ dependent, and are unrelated
to IDH3. IDH1 and IDH2 catalyze reversible reactions while the
reaction catalyzed by IDH3 is not reversible and is subject to
allosteric modifiers (248). Mutations of IDH1 and IDH2 have
been described in cancers and specifically in gliomas (249) and
leukemia (250). IDH1 and IDH2mutations render the enzymes to

mainly produce 2-hydroxyglutarate, instead of α-ketoglutarate.
Accumulation of 2-hydroxyglutarate leads to an EMT phenotype
that is dependent on upregulation of ZEB1 and downregulation
of miR-200 family (121). In colorectal cancer cell lines 2-
hydroxyglutarate increased ZEB-1 expression by trimethylation
of histone H3 lysine 4 of the promoter region of ZEB1 (251).
In Figure 2 a brief visual summary of the main TCA cycle
interactions with EMT is provided.

Lipid Metabolism
De novo lipogenesis is the synthesis of fatty acids from non-
lipid precursors (mostly carbohydrates in the form of acetyl-
CoA). Ultimately, the fatty acids are esterified to glycerol to form
triglycerides. Cancer cells usually show increased lipogenesis
(252) and this is the reason why lipogenesis has been proposed as
a target for cancer treatment. Little is known though for the role
of lipogenesis genes in EMT. We summarize below the current
knowledge regarding them.

Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of
acetyl-CoA to malonyl-CoA. Two ACC isoforms exist: ACC1,
that is found in cytoplasm and regulates de novo lipogenesis;
and ACC2, that is found at the mitochondrion membrane and
mainly regulates fatty acid oxidation. ACC1 has been found to
be overexpressed in cancers, such as those of the breast (253)
and liver (254), and blocking of ACC1 has been shown to reduce
lung tumor growth in mice (255). However, there is limited data
on the role of ACC1 in EMT, with the exception of a relatively
recent paper on breast cancer cells, that suggested an alternative
non-canonical role for ACC1 in EMT. Specifically, it was shown
that leptin and TGFβ can inhibit the activity of ACC1 through
AMPK-phosphorylation of ACC1 at Ser79 and promote EMT
(256). It was suggested that this effect should be mediated by
accumulation of acetyl-CoA because of ACC1 inhibition and by
the concomitant increased acetylation of SMAD2 that mediates
the TGFβ-induced EMT. It, thus, seems that even though ACC1
expression is found increased in some cancers including breast
cancer, it does not necessarily mean that it would be a good
treatment approach to silence ACC1 as it can increase metastatic
potential by favoring EMT.

Fatty acid synthase (FASN) is a multifunctional protein with
its main function being the synthesis of palmitate from acetyl-
CoA and malonyl-CoA. In some cancers, a fusion of FASN and
Estrogen receptor α (ER-a) genes has been described that may
play a role in estrogen signaling (257). Overexpression of FASN
has been described in cancers like gastrointestinal stromal tumors
(257), breast (258), ovarian (259), and lung cancers (260). It
has been proposed that enhanced FASN expression in cisplatin-
resistant non-small cell lung cancer cells promotes EMT through
TGFβ signaling (260). Other smaller studies have suggested
that FASN may mediate EMT, but they have not provided any
mechanistic insight (261).

Stearoyl-CoA desaturase-1 (SCD-1) is an enzyme anchored
in endoplasmic reticulum that catalyzes the formation of
monounsaturated fatty acids (oleate and palmitoleate from
stearoyl-CoA and palmitoyl-CoA, respectively). SCD-1 is
overexpressed in cancers such as lung adenocarcinoma and
its increased expression correlates with poor prognosis (262).
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Silencing of SCD-1 in breast cancer cells has led to impairment
of their EMT-like behavior and to decreased nuclear localization
of β-catenin, a known EMT mediator (263). ATP citrate lyase
(ACLY) converts mitochondrially-derived citrate into acetyl-
CoA and oxaloacetate providing the acetyl-CoA necessary for
lipogenesis. ACLY is usually overexpressed in cancers (264, 265)
and has been shown to promote EMT phenotypes in colon
cancer cells at least partly through β-catenin signaling (266).
Inhibition of ACLY has been proven effective to prevent EMT
induced by ambient fine particulate matter (PM2.5) (267) and to
reverse EMT phenotype in a lung adenocarcinoma cell line (268).

Acyl-CoA Synthetase Long Chain Family Member (ACSL)
catalyzes the formation of fatty acyl-CoA from fatty acids and
isoforms 1, 3, and 4 are more often overexpressed in cancer
cells and specifically in colorectal (269), breast (270) and prostate
cancers (271). Each isoform uses different substrates e.g., ACSL1
uses oleate and linoleate, ACSL3 uses myristate, palmitate,
arachidonate and eicosapentaenoate and ACSL4 arachidonate
(272). This activation of fatty acids by ACSL is a necessary step
for the synthesis of cellular lipids as well as the β-oxidation. In
colon cancer cells increased expression of ACSL1 and ACSL4 is
associated with EMT features of these cells (273). Themechanism
is not clear but one report suggests that this offers a metabolic
advantage in the cancer cells by making them more energy
efficient and by increasing the expression of SNAIL2 and N-
cadherin (274).

Last, the metabolism of complex lipids and specifically
glycosphingolipids has been shown to affect EMT. GM3 synthase
converts lactosyl ceramide to a simple ganglioside called GM3
which is known to promote EMT by interacting with TGFβ
receptors (275). It has been shown that ZEB1 can induce GM3
synthase gene by binding to its promoter and by repressing the
micro-RNA mediated suppression of GM3 synthase in human
lung cancer cells (122). Further work is needed to evaluate the
importance of this regulation of glycosphingolipids metabolism
in EMT in various types of cancer. Figure 3 summarizes the main
lipid metabolism pathways that interact with EMT process.

Amino Acid Metabolism
Amino acid metabolism is essential for the maintenance of
cellular homeostasis. In cancer cells there is an increased need for
nitrogen for biosynthetic reactions, amino acids are consumed
quickly and there is increased demand for non-essential amino
acids that exceeds the supply (276). It is also impressive that in
most cancer cells glutamine is the second highest nutrient in
demand after glucose (277). Herein, we focus on the amino acids
of glutamine, asparagine and cystine that have been described to
be at least partly implicated in EMT in cancers.

Glutamine is the most abundant amino acid in serum and is
highly consumed by many cancer cells. It provides also the major
source of α-ketoglutarate in glutamine-dependent cancer cells to
be used in TCA cycle through a process called glutaminolysis
(278). Glutaminases 1 and 2 (cytosolic GLS1, mitochondrial
GLS2) catalyze the hydrolysis of glutamine to glutamate and
ammonia. GLS1 can be induced by TGFβ and Wnt and can
promote EMT in a SNAIL-dependent manner while silencing
of GLS1 prevents EMT (279). In contrast with GLS1 which

is ubiquitously expressed, GLS2 is mainly expressed in brain,
liver and pancreas and is inversely associated with EMT in
breast cancer and hepatocellular carcinoma cells (279, 280).
Interestingly, GLS2 levels are inversely correlated with GLS1
levels in breast cancer and it seems that at least in breast
cancer cells GLS2 downregulation is the result and not the
driver of EMT; silencing of FOXC2 led to increased levels of
GLS2, did not affect GLS1 levels and led to inhibition of EMT
(280). These observations mean that there may be required
a fine tuning of glutaminolysis in different compartments of
the cancer cells, reflected by the GLS1/GLS2 ratio, to support
EMT and interfering with this can be a promising method for
EMT inhibition.

Asparagine is a non-essential amino acid in humans and its
abundance has been associated with EMT and the metastatic
potential of breast cancer cells. Increased intake of asparagine
with diet or increased asparagine synthetase activity led to
increased incidence of metastases whereas reduced diet intake
of asparagine or decreased asparagine synthetase activity or
treatment with L-asparaginase reduced metastatic potential
without affecting the growth of the primary tumor (281).
Asparagine can become an essential amino acid in cases of
glutamine deprivation in the tumor microenvironment so as
to maintain protein synthesis and cell proliferation (282).
Proteins that are upregulated during EMT have a ∼20% higher
asparagine content (281). Thus, it is rational to hypothesize that
reduced asparagine availability would inhibit EMT at least at
the translational level. However, it not clear how asparagine
can transcriptionally regulate EMT genes like TWIST or N-
cadherin (94). Further investigation is warranted to unravel all
the potential mechanisms of asparagine’s contribution to EMT.

Cystines formed by the oxidation of two cysteine molecules
and their link by a disulfide bond. It is the main circulating form
of cysteine that can be uptaken by cells. Cancer cells can become
“addicted” to cysteine (283) and their reliance on cystine may
be associated with EMT (284). Overexpression of miR-200c, that
inhibits EMT, in cystine-addicted breast cancer cells resulted in
these cells being less vulnerable to cystine deprivation (284). This
is an indication that cystine can become an essential amino-acid
during EMT at least in breast cancer cells but it is not known
if and how it can affect EMT. Figure 4 summarizes briefly the
interplay of amino-acid metabolism with EMT process.

EXISTING OR PROMISING METHODS FOR
INTERVENING IN THE EMT PROCESS

Cancer is highly prevalent and remains a leading cause of death.
The identification of novel treatments for the primary tumor
as well as the discovery of potent inhibitors of metastasis is
imperative. EMT and partial EMT can confer metastatic and
stem cell properties to tumor cells (13, 285) and are correlated
with the clinical outcome for cancer patients across multiple
cancer types. It has also been demonstrated that EMT is linked
to drug treatment resistance for multiple drugs (286, 287)
and to multidrug resistance phenotype (288). EMT could be
an attractive target to halt invasive and potentially metastatic
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FIGURE 4 | Points of convergence between amino acid metabolism and EMT. Enzymes are depicted in yellow font, EMT-related factors are depicted in red font. →

denotes induction.

cancer cells and to address treatment resistance. As a result,
research in the development of EMT inhibitors for combinatorial
cancer treatments is pivotal. In this section, we discuss multiple
promising EMT targets including targets that link metabolic
pathways with EMT.

The activity of EMT-TFs can be modulated by a number of
kinases, which are therefore putative targets for intervention.
In pancreatic cells, SB431542 blocks TGFβ-induced EMT by
targeting the activity of TGFβ receptor kinase (289). In breast
cancer cells, AG1478 targets EGFβ receptor kinase to halt EMT
induction (290). Another small molecule inhibitor, BGB324 (also
known as R428), blocks Axl kinase and inhibits metastasis
(291). The signaling pathways involved in EMT are also putative
therapeutic targets. TGFβ has been a target in several cancer types
with Fresolimumab (GC-1008), which is a monoclonal antibody,
in trials targeting EMT (292–294). Notch-2 is a signaling factor
that promotes EMT. In pancreatic cancer, inactivation of Notch-2
by γ-secretase inhibitor IX resulted in selective inhibition of EMT
(295). The mesenchymal phenotype of cancer cells has been the
target of multiple additional intervention strategies. Withaferin
A promotes the degradation of Vimentin (296) and can halt
the migratory and invasive properties of cancer cells, therefore
inhibiting the metastatic process. Antibody development against
mesenchymal factors is also being pursued. For instance, an
antibody raised against N-cadherin inhibits prostate cancer
growth and metastasis (297). Certain miRNAs can halt the EMT
induction while others promote it. In pancreatic cancer, miR-
200 and let-7 upregulation by the natural compounds 3,3’-
diindolylmethane and isoflavone results in a partial reversal of
the EMT phenotype (298). Targeted inhibition of miR-21 has
also been pursued with the development of a small molecule
inhibitor, AC1MMYR2, which reverses the EMT process (299).
Also, recent studies are unraveling the contribution of different
lncRNAs in EMT regulation and have indicated that many
lncRNAs could be utilized as clinical biomarkers such as
prognostic and diagnostic biomarkers of metastasis and as
potential therapeutic targets to inhibit cancer metastasis (188,
300).

Targeting metabolic pathways important for EMT has also
been considered an alternative means of halting the EMT

process (301). However, as most of these metabolic pathways
are also essential for the survival of non-cancer cells, it is
important to target as specifically as possible a certain pathway
and ideally focus the treatment on the tissue and cells of
interest and of course on the specific type of cancer. The
metabolic pathways we describe herein in the context of EMT
(glycolysis, TCA cycle, lipidmetabolism, amino acidmetabolism)
have also been described as targets for treatment of cancer
(302) and thus we could make use of the knowledge on
targeting these pathways and affect the metabolism-dependent
EMT. Specifically, glycolysis can be targeted at various levels
(303, 304). For example, small molecule inhibitors of GLUT1
like fasentin (305), HK2 inhibitors like 3-bromopyruvate,
and lonidamine (306) and PKM2 inhibitors (307) could be
good candidate substances to be tested for EMT inhibition
purposes. TCA cycle enzymes like IDH have been targeted
in leukemias with inhibitors (e.g., AGI-6780) (308) and could
also be the focus of studies on EMT. Lipogenesis inhibitors
such as specific ACC1 inhibitors (309), SCD1 inhibitors
(310) and ACLY inhibitors (311). Furthermore, methods to
interfere with amino acid metabolism and specifically glutamine,
asparagine and cystine would require even more fine tuning
and targeted approaches given the differential role these amino
acids may play in the original cancer and in the existing
metastasis (94).

Last, the ideal scenario of intervening in the connection
between EMT and cancer and especially in the possible
hybrid mesenchymal-epithelial states of cancer cells warrants
further investigations. Such research studies have shown for
example that it is more effective to suppress TGFβ-driven
EMT through targeting elements of the feedback loop between
SMAD mediators of TGFβ signaling and EMT components in
parallel and this intervention also inhibits these highly metastatic
“hybrid” cancer cells (312). A combination of bioinformatics
analyses (313) and single-cell sequencing studies (314) along with
clinical cohorts of specific cancers (208) will be instrumental
to unravel critical targets of EMT pathways and metabolism
in parallel for the maximal effect on inhibiting EMT, haltering
cancer progression and avoiding the formation of hybrid-state
cancer cells.
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CONCLUDING REMARKS

In this review, we summarize the current knowledge on: (a)
main molecular players underlying the EMT process; specifically
transcription factors SNAIL, TWIST, ZEB, other non-canonical
transcription factors and non-coding RNAs, and (b) the major
metabolic pathways associated with EMT (glycolysis, TCA cycle,
lipid and amino acid metabolism). We also review how these
pathways can crosstalk with the molecular players. It is gradually
becoming evident that there is a network of factors being affected
by (and affecting) the metabolism of the pre-cancer or cancer
cells, which change the fate of the cells through EMT, with
major implications in cancer development. In Figures 1–4 we
summarize the points where factors that affect EMT interplay
with metabolic pathways. It is important to note that the data
we summarize here emanate from studies on various cancer cell
types that are noted in each instance. Thus, although cancers
share certain common pathways, researchers should be cautious
not to extrapolate results from one cancer type to another,
but perform similar studies to their cancer of interest, before

arriving to a conclusion. The metabolic features of cancer cells
are an expanding field of study, as they are distinct from non-
cancerous cells and could harbor therapeutic opportunities for
intervention in EMT. Of course, suppressing EMT is an emerging
prospect of preventing metastases, but it needs to be taken into
consideration that this process represents a dynamic spectrum
and once cancerous cells invade a tissue, they can undergo
MET (315). Therefore, interference with the EMT process could
promote metastasis if not targeted specifically at the site of origin.
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