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The autoimmune disease, Type 1 Diabetes Mellitus (T1DM), results in the destruction of

pancreatic β-cells, and the International Diabetes Federation reports that its incidence is

increasing worldwide. T1DM is a complex disease due to the interaction between genetic

and environmental factors. Certain dietary patterns and nutrients are known to cause

epigenetic modifications in physiological conditions and diseases. However, the interplay

between diet and epigenetics is not yet well-understood in the context of T1DM. Several

studies have described epigenetic mechanisms involved in the autoimmune reactions

that destroy the β-cells, but few explored diet components as potential triggers for

epigenetic modifications. Clarifying the link between diet and epigenome can provide

new insights into the pathogenesis of T1DM, potentially leading to new diagnostic

and therapeutic approaches. In this mini review, we shed light on the influence of the

diet-epigenome axis on the pathophysiology of T1DM.
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INTRODUCTION

T1DM is a metabolic disease resulting from chronic autoimmune destruction of the insulin-
producing pancreatic β-cells (1). It primarily affects children and adolescents and can lead to
complications including ocular damage, stroke, diabetic ketoacidosis, coma, and kidney failure (2).
The disease’s incidence is increasing worldwide, with approximately one million cases annually
[International Diabetes Federation (IDF) Diabetes Atlas 2014]. This may be due to recent advances
in early diagnosis and monitoring of T1DM (1). However, the sedentary lifestyle predominant
worldwide and especially in westernized countries has a strong impact toward developing
autoimmune disorders, including T1DM (3). This lifestyle, characterized by a high-fat/low-fiber
diet and lack of physical activity, is known to strongly modulate the immune system and can lead to
T1DM primarily through its impact on T-cells. For example, in the United states, T1DM incidence
increased by 21% among young adults (<20 years old) from 2001 to 2009 (4). Moreover, T1DM
is highly prevalent among those <19 years of age in countries with a crescent economy and a shift
toward a western-like lifestyle, as in theMiddle East region, including Kuwait (44.5%), Saudi Arabia
(33.5%), and Qatar (12.2%) (5). Similarly, in India the prevalence of T1DM is 31.9 per 100,000, with
higher prevalence seen in urban areas compared to rural areas (6). In Korea between 2007 and 2013,
the annual incidence of T1DM increased from 2.73 to 5.02 per 100,000 (7). These numbers illustrate
the increasing worldwide prevalence of T1DM and indicate a noticeable impact in countries that
have recently adopted a westernized lifestyle.
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T1DM involves a complex interaction between genetic and
environmental factors, and several genetic loci have been linked
to the disease (8, 9). This includes strongly-associated genetic
variants at the human leukocyte antigens DR and DQ (HLA-DR
and -DQ) that confer a high risk for the development of T1DM
(10). Variants in other autoantigens, such as those targeting
pre-proinsulin, β-cell specific zinc transporter 8, insulinoma-
associated antigen 2, the insulin gene, the cytotoxic T-
lymphocyte–associated protein-4, and the interleukin-2 receptor
are also known to contribute to the susceptibility of T1DM
(9, 11, 12). However, genetic factors cannot explain all T1DM
cases and sub-phenotypes. Many environmental factors have also
been associated with greater risk of T1DM, including infections,
dietary factors, old maternal age, psychological stress, use of
antibiotics, mode of delivery, and steroids intake (13, 14). Diet
and nutrients, among these factors, are known to exert a direct
effect on the epigenome (15).

Epigenetic modifications are influenced by the interaction
between genetics and the environmental stimuli, resulting
in a T1DM specific epigenetic status (16, 17). Moreover, it
is proposed that diet can lead to epigenetic changes and
immune dysregulation in T1DM pathogenesis with mechanisms
similar to what is seen in other inflammatory disorders
(18). Since T1DM is a complex disorder a multivariate
pathogenesis, a greater understanding of the interplay
between diet and epigenetics could provide new avenues
for early diagnosis, treatment, and a personalized therapy.
This review aims to summarize the role of both diet and
epigenome in T1DM development, as well as to clarify
the interplay of diet-epigenome in the pathophysiology
of T1DM.

THE ROLE OF DIET IN THE
PATHOGENESIS OF T1DM

Diet is considered an environmental trigger involved in the
development of various metabolic disorders, such as obesity,
type 2 diabetes mellitus (T2DM), and T1DM (19–21). Some
dietary factors such as fat, protein, and fibers are known to
affect the glycemic control in T1DM patients, but the molecular
mechanisms by which diet and nutrients impact the development
of T1DM are still unknown. Below, we summarize the recent
evidences on the role of nutrition in T1DM, focusing mainly on
food habits and nutrients that can exert epigenetic changes.

Early Nutrition
Since T1DM and its pre-clinical autoimmunity appear at
an early age, several studies highlighted the role of early
nutrition in the pathogeneses of T1DM and is also considered
a risk factor of the disease. Dietary habits after birth are
investigated as potential determinants of individual risk for
developing T1DM. Breastfed children, for instance, have shown
a lower risk of developing T1DM (22) due to the presence
of secretory immunoglobin A, lysosomes, and lactoferrin in
breast milk (23). In contrast, increased intake of cow’s milk
or formula milk, from 6 to 9 months of age, was suggested

to increase the risk of developing T1DM (23, 24). This
finding is likely, due to the presence of specific fatty acids
(e.g., penta-decanoic, myristic, and isomers of monounsaturated
palmitoleic acid), which may promote islet autoimmunity
(25). Moreover, the intake of hydrolyzed formula (lacking
of complex dietary proteins) has no effect on reducing the
incidence of T1DM in infants at high risk (26). In addition,
the early introduction of cereals that do or do not contain
gluten into the diet may promote the development of T1DM,
which can be attributed to the immature immune system and
undeveloped gut microbiota present in young children, whereas
late introduction (after 6 months) of gluten has no effect (27).
However, contrasting data showed that delayed introduction
of cereals containing gluten is associated with increased risk
of developing islet autoimmunity and progression to T1DM
(28). Furthermore, one study showed that serum fatty acids,
biomarkers of milk, and ruminant meat consumption, are
significantly associated with advanced β-cell autoimmunity in
children with conferred susceptibility to T1DM compared to
seronegative controls (19).

Diet in Adult T1DM Patients
In adults with T1DM, a low-carbohydrate/high-fat diet has
been associated with improved glycemic control, shown via low
hemoglobin A1c (HbA1c) and less glycemic variability. However,
this diet was also linked to an increased risk of hypoglycemia and
dyslipidemia (29). In the case of fiber intake, one study showed
that low intake of dietary fibers is associated with elevated levels
of HbA1c in T1DM patients, thus leading to a poor glycemic
control (30). On the other hand, another study showed that a
high fiber diet is associated with decreased protein synthesis and
degradation (post-absorptive protein turnover) in T1DM male
patients (31). Nutritional intake was also found to influence the
development of T1DM-related complications. A study conducted
by Beretta et al. showed that a diet containing high fibers
exhibited a significant reduction in BMI, systolic/diastolic blood
pressure, and reduction in energy intake compared to T1DM
patients with a low fiber diet (32) development of T1DM-related
complications has also been linked to nutritional intake. The
intake of complex carbohydrates was linked to the presence
of diabetic retinopathy in T1DM adult patients, whereas the
intake of unsaturated fat, particularly monounsaturated fatty
acids (MUFA), was associated with the absence of diabetes
retinopathy (33). In another study, a positive correlation was
observed between high intake of saturated fats and proteins
and the risk of developing coronary heart disease (CHD) in
T1DM patients, while high carbohydrate intake was negatively
correlated with CHD (34). Vitamin D also plays important
role in regulating both the immune system and metabolic
pathways, and several studies have demonstrated that vitamin D
supplementation lowers the risk of developing T1DM (35, 36).
This effect could be explained by the observation that vitamin
D down-regulates the response of T helper-1 lymphocytes (37).
However, other investigations did not confirm such effect of
vitamin D supplementation (38, 39). These discrepancies could
be attributed to the differences in the type of supplement (i.e.,
cholecalciferol, alpha-calcidol, or calcitriol), the vitamin dosage,
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the age group of the study participants, and/or the duration
of diabetes.

THE ROLE OF EPIGENETICS IN T1DM
PATHOGENESIS

Epigenetics is the activation and inhibition of gene expression
by factors that does not affect the DNA sequence itself (40).
Such epigenetic changes are affected by genetic variations as well
as environmental factors and influencing DNA accessibility by
transcription factors leading to the regulation of gene expression
(16, 17). It has been shown that epigenetic modifications, mainly
DNA methylation, microRNAs, and histone modifications, play
an important role in developing various autoimmune disorders,
including T1DM (41, 42). Several features of T1DM support
the involvement of epigenetics in its pathogenesis. These
include high discordance rates among monozygotic (MZ) twins,
offspring of an affected father rather than affected mother having
a higher risk of developing the disease, and the increased T1DM
incidence in genetically stable populations (41, 42) and countries
with a westernized lifestyle (3).

DNA Methylation Modifications in T1DM
DNAmethylation is defined as the formation of 5-methylcytosine
(5-mC) by the attachment of a methyl group on the fifth carbon
of cytosine, and it usually occurs in the CpG dinucleotides (43).
Three methyltransferases - DNMT1, DNMT3a, and DNMT3b
- are primarily responsible for regulating DNA methylation
process, which are DNMT1, DNMT3a, and DNMT3b (44).
The main function of DNMT1 is to maintain the methylation
status in the genome, restoring the methylation pattern in the
daughter strands during replication. DNMT3a and DNMT3b,
conversely, are responsible for establishing de novo DNA
methylation patterns (44). DNA demethylation on the contrary,
is a sequential oxidation of 5-mC and the removal of themodified
group by thymine DNA glycosylase (TDG) produce cytosine in
replacement of 5-mC. The demethylation process also involves
Ten-eleven translocation (TET) family dioxygenase enzymes,
which are TET1, TET2, and TET3 (45, 46). DNAmethylation has
been implicated in a number of autoimmune disorders, including
T1DM (47). Alterations in DNA methylation may cause changes
in the expression of genes responsible for β-cell survival,
insulin secretion, and autoimmunity, thereby influencing the
development of T1DM (42). This hypothesis is supported
by research from Rakyan and colleagues, who generated a
genome-wide methylation profile from T1DM-discordant MZ
twins. They identified 132 T1DM-associated methylation sites
in the promoter regions of genes associated with apoptosis,
inflammation, and immune regulation. Additional evidence
comes from Stefan and colleagues, who detected 88 differentially-
methylated CpG sites in T1DM-discordant MZ twin pairs
(48). Although, this is an observational study, the enrollment
of MZ twins as study subjects reinforces the value of the
findings, providing a strong evidence that DNA methylation
plays an integral part in T1DM development and thus not totally
explained by genetics.

The INS gene locus is closely involved with T1DM, and its
A/T single nucleotide polymorphism (SNP) rs689 in particular
has been associated with T1DM development (8). A number
of studies found DNA methylation of INS gene promoter in
pancreatic β-cells and thymic epithelial cells is significantly
implicated in T1DM development (49, 50). One study showed
that patients with T1DM have a higher level of methylation
at CpG−180 and lower level at methylation of CpG−19,−135,
and−234 in INS gene when compared to healthy controls (49).
They also found a strong correlation between high methylation
levels of CpG−69,−102,−180,−206, and T1DM. However, it is
unknown whether these epigenetic changes in T1DM precedes
or follows the development of the disease (49). In addition, a
study conducted by Rui et al. found that INS gene expression
is regulated by the methylation of Ins1 exon-2 and Ins2 exon-
1. The study showed, both in NOD mice (in-vivo) and in human
β-cells (in-vitro), that pro-inflammatory cytokines could activate
methyltransferases, leading to methylation of Ins1 exon-2 and
Ins2 exon-1 in the INS genes (50).

Interleukin 2 receptor α-chain gene (IL2RA) encodes the IL-2
receptor, which is highly expressed in regulatory T-cells Tregs and
plays a vital role in suppressing autoreactive T-cells. Like the INS
gene, epigenetic modulation of the IL2RA gene was implicated
in the development of T1DM. One study showed that T1DM
patients have a high methylation level at IL2RA CpGs −373 and
−456 compared to healthy controls (51). They found that the
DNA methylation at IL2RA CpGs −373 was associated with 16
known SNPs to be involved in T1DM.

DNA methylation was also implicated in the complications
associated with T1DM, such as diabetic nephropathy (52).
Methylation of 19 CpG sites was correlated with the development
and onset of diabetic nephropathy. Furthermore, one of the
methylated CpG sites was located near the transcription start site
of UNC13B (rs13293564), which is known to be involved the
development of diabetic nephropathy in T1DM patients (52).

Finally, it is worth noting that epigenetic mechanisms are
also implicated in the early development and function of the
insulin producing pancreatic β-cells. Different types of epigenetic
modifications were found to be involved in the development
of pancreatic cells from the endocrine progenitor cells (53).
Particularly, a study conducted by Neiman et al. found that
promoters of β-cell specific genes, such as Insulin 2 (INS2)
and Glucagon genes, were significantly hypermethylated in non-
endocrine tissues when compared to β-cells (54). The same study
also found different methylation levels of the CpG sites amongst
the endocrine cells’ subtypes (α-cells, β-cells, and δ-cells), that
may implicate a specific control of the gene expression in these
cells (54).

The Micro-RNA Modifications in T1DM
The micro-RNA (miRNA) are non-coding RNA molecules
ranging from 18 to 22 nucleotides that act as post-transcriptional
silencers (55), and are involved in several biological processes,
such as cell division, proliferation, and apoptosis (56). In the
nucleus, the miRNA is transcribed into primary miRNA by RNA
polymerase (RNase) II and III and then processed to precursor
miRNA by the complex Drosha/DGCR8. The precursor miRNA
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is finally processed into the mature miRNA in the cytoplasm
by RNase III Dicer complex (57). miRNAs exert their post-
transcriptional effect through binding to the 3′ untranslated
region of the targeted mRNA, leading to its cleavage, degradation
and translation inhibition (58). The effect of miRNAs on gene
expression was implicated in different autoimmune disorders,
such as autoimmune thyroid diseases (59) and rheumatoid
arthritis (60). In the case of T1DM, alterations in miRNA
levels may contribute to the disease pathogenesis by affecting
multiple pathways, such as insulin secretion, the programmed
cell death, the immune system, and the mitogen-activated
protein kinase (MAPK) signaling pathway (61). A group of
miRNAs (miR-210-3p, miR-155-5p, miR-103a-3p, and miR-
146a-5p) was identified as differentially regulated in T1DM,
and it was mainly associated with immune system functions
(61). Several studies identified the mechanism of single small
groups of miRNAs. To mention some, Krishnan et al. found that
upregulation of miR-155-5p in human islet derived exosomes
targets the mRNA of the transcriptional and immune response
regulator gene (TCIM) (62). Another study by Garcia-Diaz et
al., found that the upregulation of miR-155-5p has a role in
the inflammatory process in T1DM through binding to the toll-
like receptors and activating the NF-κB pathway (63). A more
recent study identified a different set of miRNAs (miR-142-
5p, miR-146a-5p, and miR-223-3p) positively correlated with B
lymphocyte, CD4+CD45RO+, and CD4+CD25+ immune cells
in T1DM patients (64). Low expression levels of miR-146a-
5p were consistently observed in T1DM patients, and it was
associated with overproduction of IL-6, which is an important
pro-inflammatory cytokine. Therefore, it could be suggested
that miR-146a-5p has a negative feedback effect on the NF-κB
pathway in regulating the inflammation status in T1DM (63, 65).
In addition, the overexpression of miR-23b, miR-98, and miR-
590-5p in CD8+ T-cells from T1DM patients was suggested to
target apoptotic genes (TRAIL, TRAIL-R2, FAS, and FASLG),
resulting in the excessive proliferation of autoreactive T-cell
and T1DM development (66). Furthermore, hyperglycemia was
found to influence the levels of certain miRNAs, such as miR-
125b-5p and miR-365a-3p that were positively correlated with
HbA1c levels (67). Circulatory miRNAs can also be used as a
biomarker for early detection of T1DM as they are stable and
easily detected (61). This was supported by a variety of studies;
for example, miR-125-5p and miR-320c were identified in early
onset-T1DM patients and were elevated before progression of
diabetes in NOD mice (68). Furthermore, urinary miR-377
was found to be positively correlated with HbA1c and urinary
albumin creatinine ratio in T1DM patients, which makes it a
possible biomarker for diabetic nephropathy (69). Identifying
early miRNA biomarkers may help in early diagnosis, treatment
and prevention of diabetic complication.

Histone Modifications in T1DM
Histones undergo different modifications, such as methylation,
acetylation, phosphorylation, and other mechanisms
(sumoylation and ubiquitination) in specific amino acid
residues located in the N-terminal part (70). The histone
methylation involves the addition of methyl groups to lysine

or arginine residues, resulting in activation or inhibition
of transcription based on the level of modification and the
affected region (71), while histone demethylation involve the
binding of a lysine specific demethylase-1 (LSD1) to the lysine
methylation site on the histone tail, removing the methyl
group (72). The histone acetylation involves the addition or
removal of acetyl group on lysine residues by the function
of histone-acetyltransferases (HATs) and histone-deacetylases
(HDACs), respectively (17). Histone acetylation promotes an
opened chromatin structure that is more accessible for gene
transcription by reducing the electrostatic affinity between
protein and DNA (73). Histone ubiquitination, is defined as the
addition of ubiquitin molecules to the conserved lysine residues
through the function of ubiquitin ligases (74). Furthermore,
sumoylation is defined by the attachment of ubiquitin like
modifier proteins covalently to histones through the action of
ubiquitin analog enzymes (75). Histone modification has been
associated with different pathological conditions, including
T1DM. One study found a significant increase of H3 lysine-9
di-methylation (H3K9me2) in T1DM patients’ lymphocytes
compared to healthy controls (76). They also found a strong
association between increased H3K9me2 promoter activity in
CLTA4 gene (T1DM susceptibility gene) and genes involved
in autoimmune and inflammatory pathways, such as TLR,
NF-κB, and p38-MAPK (76). Furthermore, T1DM patients were
found to exhibit marked variations in H3 lysine-9 acetylation
(H3K9Ac) levels at the upstream regions of HLA-DRB1 and
HLA-DQB1, which are susceptibility loci strongly associated
with T1DM (77). The same study further demonstrated that
THP-1 monocytes treated with interferon-γ and TNF-α showed
increased expression of HLA-DRB1 and HLA-DQB1 combined
with changes in H3K9Ac, similarly to what was observed
in T1DM patients (77). Moreover, another study showed an
increased level of H4 acetylation in T1DM patients, however
it was restricted to T1DM patients with no cardiovascular
complications, indicating that histone acetylation may have a
protective role against the development of T1DM complications
(78). More studies are needed to clarify the mechanism of
histone modifications affecting T1DM susceptibility loci and
their impact on the development of T1DM.

DIET AND EPIGENETIC INTERPLAY IN
T1DM PATHOGENESIS

The interplay between diet and epigenetics and how this link
contributes to the pathogenesis of T1DM is yet to be identified.
In this review, we suggest that dietary habits as well as specific
nutrients may result in certain epigenetic signatures contributing
to T1DM development.

In general, three possibilities have been postulated on how
nutritional factors modulate DNA methylation; first, by directly
providing the substrates needed in the methylation process
(methyl-donor nutrients, e.g., methionine, choline, and folate);
second, by providing co-factors needed for the function of
methyltransferases (e.g., vitamins B2, B6, and B12); third, by
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TABLE 1 | The interplay between diet and epigenetic modifications in different metabolic conditions.

Epigenetic

modification

Diet Affected genes and pathways Study

population/experimental

model

Metabolic disorder References

DNA

methylation

High fat diet Aberrant methylation at the

promoter region of the TCF7L2

in β-cells.

Mice (male C57BL6J) β-cells survival (84)

High fat diet 2-folds increase of 5 hmC (active

demethylation of 5 mC) of the

Rac1 promoter in T2DM mice.

Sprague Dawley rats (Male) T2DM (85)

Maternal high fat diet -Hypermethylation of insulin

receptor substrate-2 gene

(IRS-2).

-Hypomethylation of mitogen

activated protein kinase kinase-4

(MAP2K4).

Pups from female mice

(C57BL6J)

Diabetes (86)

High carbohydrate diet Differentially methylated genes

are involved in glucose

metabolism, insulin signaling,

and lipid metabolism.

Ctenopharyngodon idellus – (87)

GLP-1 agonist and

nutritional consultation

An increase in the FFAR3

receptor methylation level in the

obese group upon the nutritional

counseling intervention.

Diabetic and obese patients Diabetes and Obesity (88)

Low folate intake -Low methylation levels of

CAMKK2, thus increased gene

expression.

-Low methylation level of

CAMKK2 is negatively correlated

with insulin resistance

Obese patients Obesity (89)

Folic supplementation Differential methylation in 3,787

genes involved in insulin

secretion and pancreas function;

improved insulin resistance and

fat reduction.

Mice (male C57BL6J)

treated with high fat diet

Obesity (90)

Vitamin B12

supplementation

-589 differentially methylated

CpG and 2,892 differentially

methylated regions, mostly

hypomethylated.

-Significant enrichment in T2DM

genes and pathways.

-miR21 methylation that inhibits

its function and downstream

T2DM related genes.

Children with vitamin B12

deficiency

Vitamin B12 deficiency (91)

miRNA High fat diet Elevated expression of miR-495,

and consequent transformation

of macrophage M2 in to the

pro-inflammatory M1 and

increased insulin resistance.

Mice (male C57BL6J) T2DM (92)

High fat diet Enhanced expression of

miR-122 with downregulation of

the insulin-like growth factor 1

receptor (IGF-1R).

Sprague Dawley rats (Male) Diabetes (93)

High protein and fish oil Downregulation of miRNAs

(miRs-411,−155,−335,

and−21), involved in

inflammation, dyslipidemia, and

hyperglycemia.

Mice (NZ10 and SWR/J) Obesity/Diabetes (94)

High fat diet Overexpression of miR-125a

improving insulin sensitivity and

preventing hepatic lipid

accumulation by targeting

ELOVL6 gene.

Mice (Male C57BL/6 and

ob/ob mice)

Obesity (95)

(Continued)
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TABLE 1 | Continued

Epigenetic

modification

Diet Affected genes and pathways Study

population/experimental

model

Metabolic disorder References

Flavonoids

(isoliquiritigenin/liquiritigenin)

-Inhibition of miR-122 via

inhibition of JNK pathway and

restoring the function of

IRS1/IRS2 and insulin signaling.

-Abrogated the insulin resistance

observed in mice under high fat

diet.

Mice (Male C57BL/6) Obesity induced insulin

resistance

(96)

LC-PUFA Downregulation of

5-lipoxygenases through

miR-146a-5p, which targets

pathways related to TGF-β,

ECM-receptor signaling, fatty

acid and steroid biosynthesis.

Mice (Female C57BL/6) Allergic Asthma (97)

Histone

modification

Maternal fat diet Significant decrease in the level

of both H3K9Ac and H3K9me1;

and increase in H3K4me3

Mice (C57BL/6) Obesity (98)

High amylose maze starch

acetylated (HAMSA)/or

butyrylated (HAMSB)

HAMSB diet increased the

abundance of acetylated H3K9

and H4 at the Foxp3 promotor in

T-cells.

Mice (NOD/Lt, C57BL/6

and NOD 8.3)

T1DM (99)

Resveratrol -Decreased expression of CCR6

gene, encoding the chemokine

c-c motif receptor.

-Reduced levels of CCR6+

IL-17-producing cells and

CD11b+F4/80hi macrophages in

spleen and pancreatic cells.

NOD Mice (H-2G7 and

BDC2.5)

T1DM (100)

altering the activity of the enzymes involved in the methylation
process [e.g., polyphenols; (79)].

Most of the dietary factors known to be involved in the
pathogenesis of T1DM, such as breastmilk, fibers, MUFA,
vitamin D, etc., are also known to have an epigenetic function
(80–83), but their mechanism of action is not fully understood in
the context of T1DM. We reviewed the major studies identifying
a mechanism or a potential link of diet with DNA-methylation,
histones modifications and miRNA in T1DM (Table 1).

Cow’s milk allergenicity is considered one of the dietary risk
factors for T1DM, as shown in a study where A1 beta-casein
from cowmilk was associated with an increased T1DM incidence
and sub-clinical insulitis across generations (101). The authors
suggested that beta-casomorphin peptide (BCM-7) released from
A1 beta-casein may cause epigenetic alterations that lead to
T1DM development. In gastrointestinal diseases, BCM-7 was
found to act as a epigenetic modulator and to differentially
methylate genes involved in these diseases (102). It is therefore
speculate that the beta-casein effect observed in T1DM can cause
differential DNA methylation of similar or other genes.

High intake of fat was reported to be associated with risk of
islet autoimmunity, poor glycemic control, and development of
T1DM-related complications during both infancy and adulthood
in T1DM patients (34, 103). High fat diet was found to
epigenetically impact TCF7L2, a transcription factor required
for pancreatic β-cell survival (84). An experimental study

demonstrated that mice treated with high fat diet showed an
aberrant methylation at the promoter region of the TCF7L2 in
β-cells compared to mice fed with a normal diet (84). Although
defects in TCF7L2 were commonly detected in T2DM patients, a
subset of non-obese T1DM patients were also found to have the
same defect (104). Another animal study using a high fat induced
hyperglycemic rats showed epigenetic involvement in T2DM
animals (85). The study showed a significant 2-folds increase of
5 hmC (active demethylation of 5 mC) of the Rac1 promoter
in high fat induced T2DM compared to healthy animals and
compared to T1DM animals fed on normal diet. Moreover, high
intake of saturated fatty acid was associated with low levels of
adiponectin in T1DM patients (105) and several studies showed
that dietary fatty acids regulate adipocyte function through
epigenetic modifications, mainly polyunsaturated fatty acids
(PUFA) and saturated fatty acids (86, 106, 107). In a similar
human study, the high intake of saturated fatty acids and PUFA
was associated with increased DNA methylation level in the
adipose tissue, which was correlated with increase in body weight
(106). A total of 1,797 genes were deferentially methylated under
high PUFA, whereas 125 genes were deferentially methylated in
the case of saturated fatty acid intake. An animal-based study
found that maternal high fat diet leads to hypermethylation of
insulin receptor substrate-2 gene (IRS-2) and hypomethylation
of mitogen-activated protein kinase kinase-4 gene (MAP2K4)
in mice offspring; thus, decreasing and increasing the gene
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expression, respectively, and elevating pup’s risk of developing
diabetes in the future (86). Maternal high fat diet has negative
effects on the pancreatic β-cells of male mice offspring, in which
proliferation defects and insulin degranulation were detected
(107). However, this phenotype was reversed and offspring
were protected from developing insulin resistance through early
transition from high fat diet to normal fat diet (107).

The diet-epigenetic axis is also implicated in pathways related
to glucose metabolism and insulin signaling, as demonstrated
in animal models. Whole genome DNA methylation analysis
of the grass carp, Ctenopharyngodon idellus, revealed no
significant changes in methylation level of metabolic genes
between different nutritional conditions (high carbohydrate diet/
normal diet) (87). However, the deferentially methylated genes
in Ctenopharyngodon idellus with a high carbohydrate diet
were enriched in pathways involved in glucose metabolism,
insulin signaling, and lipid metabolism. Most of these obesity
and T2DM- involved methylation changes were also observed
in mammals (87). Moreover, folic acid (synthetic form of folate)
is mainly involved in the methylation processes acting as a
methyl donor for the synthetic process of S-adenosylmethionine
(108). Low folate intake was associated with the methylation
of Calcium/Calmodulin Dependent Protein Kinase Kinase 2
(CAMKK2), which is an important gene involved in glucose
homeostasis and adiposity. Obese patients with low folate
intake, showed lower methylation levels of CAMKK2, a
condition correlated with increased insulin resistance (89). A
study conducted by Li and his colleagues found that folate
supplementation in mice treated with high fat diet reduced
fat mass and improved insulin resistance (90). They also
found that deferentially methylated regions associated with
folic supplementation mainly affected adipose genes and were
involved in pathways related to insulin secretion and pancreatic
function. Vitamin B12 also found to be involved in the
synthesis of S-adenosylmethionine through acting as a coenzyme
that catalyzes the methylation of homocysteine to methionine,
supporting its essential role in the methylation process (109). A
recent study detected 589 differentially methylated CpG upon
vitamin B12 supplementation, in which 73.3% of the genes
were hypomethylated (91). In the same study, pathway analysis
revealed significant enrichment in pathways related to T2DM,
such as glycogen synthesis and adipogenesis pathways. Among
the identified genes that were differentially methylated, the
authors focused on the differential methylation of miR21, which
is known to target different genes involved in T2DM. Their
analysis found that miR21 was repressed upon vitamin B12
supplementation leading to inhibiting of its targeted genes (FTO,
TCF7L2, CREBBP/CBP, and SIRT1) (91).

There is presently a lack of studies that demonstrate an
interaction between diet and miRNA levels in T1DM. However,
there are a number of studies that show this correlation
in other metabolic disorders, such as in T2DM and obesity
[Table 1; (92–95)]. An animal-based study found that mice given
high fat diet showed elevated expression of miR-495, which
caused the transformation of macrophage M2 into the pro-
inflammatory M1 and increased insulin resistance (92). This
study has showed the possible mechanism of miR-495 that

acts as a negative regulator to the FTO gene and induces
adipose tissue inflammation in T2DM mice given high fat
intake. Another study showed enhanced expression of miR-122
accompanied with downregulation of insulin-like growth factor
1 receptor (IGF-1R) in the liver of diabetic rats given high
fat diet (93). Furthermore, in mice susceptible of developing
obesity and diabetes, a diet rich with protein and fish oil has
been found to override this genetic susceptibility (94). It has
been shown that certain miRNAs (miRs-411, 155, 335, and 21)
involved in inflammation, dyslipidemia, and hyperglycemia were
downregulated in mice fed with high protein and fish oil diet
(94). A study conducted by Liu and colleagues showed that
miR-125a level was downregulated in both genetic and dietary
(high fat diet) mouse model of obesity (95). In obese mice
treated with high fat diet, overexpression of miR-125a improved
insulin sensitivity and prevented hepatic lipid accumulation by
targeting Elongation of very long chain fatty acids protein 6
(ELOVL6) gene, which is a microsomal enzyme that catalysis
the elongation of both saturated fatty acid and MUFA (95).
In addition, long chain PUFA (LC-PUFA) was found to
modulate miRNA expression in a murine allergic asthma model,
where it plays a protective role in the inflammatory process
associated with asthma (97). After LC-PUFA supplementation,
21 out of 62 dysregulated miRNAs in asthmatic mice were
restored, in which some of the restored miRNAs (mainly
miR-146a-5p) are implicated in the function of TGF-β,
ECM-receptor signaling, fatty acid and steroid biosynthesis.
Mechanistically, the study found that LC-PUFA downregulates
5-lipoxygenases through modulating the expression of miR-
146a-5p; thus, acting as an epigenetic regulator. However, it
was also found that LC-PUFA downregulates 5-lipoxygenases
independent of miR-146a-5p (97). Furthermore, in obese mice
fed a high fat diet, flavonoids were shown to inhibit miR-122
dysregulation through the inhibition of JNK, thereby restoring
the function of IRS1/IRS2 tyrosine phosphorylation and insulin
signaling (96).

The correlation between diet and histone modification in
T1DM development is yet to be identified, but several studies
were conducted in other metabolic disorders (Table 1). In
T1DM, NOD mice treated with resveratrol, a polyphenol
known to enhance the activity of sirtuin 1 (NAD dependent
histone deacetylase), showed a reduced expression of CCR6
gene, responsible for encoding the chemokine c-c motif
receptor (100). It also reduced the level of CCR6+ IL-17-
producing cells and CD11b+F4/80hi macrophages in spleen
and pancreatic cells (100). One study has identified 21 core
histone marks with at least 1.5-folds change in a prediabetic
animal model of high-fat diet induced obese mice (110). Diet
and histone modification interplay was also implicated in
maternal obesity and diabetes, where appropriate fatty acid
intake during gestation in mice were found to help offspring
to cope with obesogenic conditions (98). In obesity resistant
mouse model, a significant decrease was observed in the level
of both H3K9Ac and H3K9me1 compared to control mice.
However, no significant change was observed of histone markers
between obesity resistant mice and obesity prone mice (high
fat diet/obesogenic diet), a finding potentially due to the effects
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FIGURE 1 | The figure summarizes the potential diet—epigenetic axis in T1DM development. The intake of unhealthy diet may lead to T1DM development through

epigenetic modifications (DNA methylation, miRNA, and histone modifications). Diet nutrients can contribute to the hypermethylation and subsequent downregulation

of IRS-2 leading to insulin deficiency. In addition, diet can contribute to the up- and down-regulation of certain miRNAs activates NF-kB pathway and the activation of

the inflammatory response. The role of histone modification in T1DM is explicated mainly through elevating the expression of H3K9Ac and H4 in the promoter region of

Foxp3. Finally, unhealthy diet affects the gut microbiota and its metabolites, such as SCFA. The failure of SCFA binding to the free fatty acid receptors 2/3 (FFAR2 and

FFAR3) due to its absence or reduction, leads to the activation of histone deacetylase (HDAC1, HDAC3) and the inflammatory cascade that contribute to β-cell

depletion and T1DM development (Created using Biorender.com).

of their different diets. In addition, level of H3K4me3 was
elevated in both obesity mice models in comparison to healthy
controls (98).

The interaction between diet and epigenetics in T1DM
pathogenesis could involve the gut microbiota. Specific dietary
factors that potentially influence T1DM, including breastfeeding,
high fiber intake, and low-fat diet, affect the composition
of the gut microbiota and their metabolites (111, 112).
Dietary fibers also affect the gut microbial composition as
they are digested solely by these organisms, primarily the
lower gastrointestinal tract (113). Fermentation of fibers by
the gut microbiota produces short-chain fatty acids (SCFA),
contributing to gut microbiota diversity (114). These SCFA,
such as butyrate, acetate, and propionate, will lead to the
specific activation of free fatty acid receptors 2/3 (FFAR2 and
FFAR3). This activation inhibits histone deacetylase, leading
to inhibition of the inflammatory cascade and the activation
of Tregs (18). Administration of dietary fibers to non-obese

diabetic (NOD) mice elevated their levels of SCFA, reduced
the levels of inflammatory mediators, enhanced the integrity
of the gut barrier, and activated Tregs, thereby reducing the
incidence of T1DM (99). In patients with T2DM, SCFAs
are involved in DNA methylation and histone modifications
(88). More specifically, butyrate inhibits histone deacetylases,
resulting in inhibition of NF-κB (115) and activation of
the MAPK and ERK pathways (116) in intestinal Tregs,
thereby down-regulating the pro-inflammatory cascade (117).
In addition, in T2DM patients, binding of SCFA to the
promoter region of FFAR3 reduces methylation of the CpG
islands (88). Since some of the genetic and environmental
factors associated with T1DM and T2DM are similar, studies
should be designed to identify potentially similar underlying
epigenetic mechanisms.

Although epigenetic factors can affect the immune system
directly in a manner that leads to T1DM (118), the molecular
mechanism(s) underlying these epigenetic changes remain
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unclear. Our hypothesis is that, as in the case of T2DM and
other metabolic conditions, different dietary factors contribute to
the pathogenesis of T1DM by inducing epigenetic modifications
directly or through the involvement of the gut microbiome
[Table 1 and Figure 1; (18, 119)].

CONCLUSIONS

T1DM is a complex disease caused by the interaction of many
factors, both genetic and environmental, including epigenetics
and dietary factors. Specific dietary patterns and nutrients can
exert a direct impact on the immunopathogenesis of T1DM
through epigenetic modifications. A deeper understanding of
the interplay between the diet and epigenetics will improve
our knowledge concerning the pathogenesis of T1DM
and it will help identifying new therapeutic targets. We
propose here a mechanism by which nutrients can trigger
epigenetic modifications leading to β-cells depletion and T1DM
development (Figure 1). A better characterization of the specific
dietary patterns and nutrients that can exert such effects may

help prevent and/or ameliorate T1DM and applying personalized
nutrition approaches.
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