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ABSTRACT 

EL-SALEM, ALAA, AHMED Masters: January: 2021, Applied Statistics 

Title: Log-logistic Cox Model for Breast Cancer Partly Interval Censored Data 

Supervisor of Thesis: Faiz Ahmed Mohamed Elfaki 

The research in this study is concerned with implementing techniques in data 

which include censored observations for the evaluation of survival analysis. Analysis 

of survival research has numerous distinctions in the areas of health, architecture, 

finance, science, and other fields and it is recognized as failure time analysis. Partly 

Interval Censoring (PIC) is one of the censoring strategies used in the survival analysis, 

which may help with several forms of data, especially the incomplete ones. Log-logistic 

distribution is perhaps the most widely employed lifetime delivery in durability 

applications. We use the log-logistic Cox model in this thesis focused on adjusted 

medical with PIC data, as well as simulation data based on PIC. 

We find that our model is effective and flexible for breast cancer PIC data and 

simulated data. From the analysis of our real medical data and simulation data for this 

specific case, we may infer that our suggested distribution better represents the 

complexity of the model in terms of the importance of predictions of the scale and the 

shape parameters. Survival distribution feature plots against failure periods are used to 

analyze the predicted trends of survival for the two kinds of failures. 
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CHAPTER 1: INTRODUCTION 

CHAPTER OVERVIEW 

The introduction and Background of the survival study, censored data, and log-

logistic distribution model are presented in this chapter. The chapter also presents the 

statement of the problem, the purpose and the study scope. 

1.1 Introduction and Background 

The goal of data analysis is to find out useful information to make appropriate 

decisions and suggest conclusions in various studies and researches. It is needed in all 

fields such as engineering, medical science, business, social science, etc. There are 

many methods for analyzing data like, the study of events that happen during the time. 

One of the methods of data analysis is called survival analysis, to which much attention 

was given in the last few decades. 

Survival analysis or lifetime failure time analysis was described as one of the 

most significant research approaches to statistics in the past centuries (Sam and Krongs, 

2008). In fact, Singh and Totawattage (2013) noted that this is a significant statistical 

priority, since it includes the failures of death and as well as the tools. The survival 

analysis was described by Kleinbaum and Klein (2005) as the statistical method that 

assesses the outcomes and the timely consequence before an occurrence might occur. 

There are several applications of survival analysis for example in; medical 

science, engineering, education, economic and other areas. Usually the approach to 

survival research has been commonly utilized in both electronics and biomedical 

applications. As stated by Xian Liu (2012), one of the examples of engineering 

applications dealing with the method of survival analysis is the reliability of a 

mechanical or an electrical system on the existence of research. The scientist is 

implementing this technique to monitor the life span of the products and material in 

order to estimate the reliability of the product. 
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Patient / participant chance can survive this is the key period estimate or 

calculate a survival function in survival analysis. Demographers and social scientists 

are involved in the length of any human life.  Lawless, (2003) defined the length of a 

marriage as lifetime; a marriage can end because of annulment, divorce, or death. 

Another illustration from the educational field, as stated by Eagle and Barnes (2014) 

used the survival method analysis to measure time before an incident might happen and 

compensate for teachers attrition. 

Emmert-Streib and Dehmer (2019) described survival analysis in general, as the 

set of statistical research techniques for data analysis in which time is a variable 

outcome. The time refers to the one preceding a given occurrence. For example, an 

event can include mortality, heart attack, drug use, divorce or parole violation. Through 

such varied cases, it is evident that the survival approach can be extended to other 

situations in various fields. In fact, survival approach is used in many fields; such as 

genetics, medical science, engineering, marketing, and social or behavioral sciences. 

The extensive usage of this approach in various areas led to the development of many 

synonyms. 

Yin et al., (2012) defined the variable which measures the survival time from a 

starting time to a specific endpoint of interest. For every research there are some 

subjects could not complete a survival time due to censorship and some time we don't 

know exactly how long they survived. Within the following section the censored data 

would be introduced. 

 

1.2 Censored Data 

Survival analysis is included in all areas of life; it plays an important role in the 

medical field. It depends on the time until an event occurs, such as time to die, time to 

be sick, time to get a job, etc. We might have censorship, that happens when one or 
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more than one of the patients is excluded during the observation period, and that’s 

because some patients may leave the study before the end of the observation period 

(loss of follow-up), or the study ended and the event did not yet occur or because the 

individual has been withdrawn from the study for some reasons. 

Right censorship, left censorship or interval censorship are the general types of 

censorship. Kartsonaki (2016) discussed that the easiest and most common type of 

censorship handled by the survival analysis is the right censorship. The latter can occur 

when an individual is followed-up from the begging of the study and he/she has not get 

the event of interest. Right censored may occur when an individual is excluded from 

the study before  the study ended, or because of the event didn’t occur and the study 

already came to an end.  

Prinjaet et al., (2010) defined the left censored if the patient had been on risk 

for a period of time before starting the study. For example, consider the event is the age 

at which children are able to learn the alphabet at school. There may be some children 

who are able to recite the alphabet before starting school; these subjects are left 

censored (Islam 2016). 

Censorship of intervals usually reflected an incomplete data structure 

(Zhang2009). Through interval censorship, we say that a random interest variable is 

only known to lie into interval. In survival analysis, the random variable is the time to 

some event, such as death, a recurrence of the disease. There is one common example 

of medical or health studies that require regular follow-up.  

Lu and Tsai (2009) used lifetime distribution for log-logistic based on interval 

censored sampling plans. Dugueet al., (2016) discussed that the exact moment at which 

the event occurred is unknown in the censored data frames, although there was a time 

period during which the event occurred. In such cases the dataset includes two 
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variables: T1 and T2. The time period between T1 and T2 is the time frame during 

which the event occurs . 

Partly interval censored (PIC) contains accurate data and censored intervals. 

This means that all subjects with equal failure times are measured, but the survival time 

of interest for the remaining subjects is found to belong only to an interval (Kim, 2003). 

PIC data, which deals with an exact observation as a very short interval-censored 

observation Peto and Peto (1972). However, in this study, the log-logistic Cox model 

will be used based on PIC data. In the next section  the log-logistic model will be 

introduced. 

1.3 Log-logistic Distribution Model 

The log-logistic distribution is an alternative model of Weibull distribution. The 

log-logistics is one of the parametric models used in survival time to which the hazard 

rate may be increasing, or decreasing or it may increase and then decrease (hump-

shaped). Also, the distribution has a fairly flexible functional form. The log-logistic can 

be a mixture of Gompertz distributions and gamma distributions mixture variable with 

mean and variance equal to one. 

Several researchers used log-logistic regression in their study based on survival 

analysis as; Abbott (1985) used log-logistic regression when the event time was 

grouped into interval. In their study, they found that log-logistic regression is useful 

compared to Cox based and this conclusion is based on censored data.  

In particular, the log-logistic distribution is useful for modeling unimodal (i.e., 

non-monotone) hazard functions. Let T has a log-logistic distribution then; 

logY T W     

WhereW has a standard logistic distribution, with probability density (pdf) as; 
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By changing the variables into T (since W has the extreme value distribution,

log   and 1/p  ), we find that the pdf, survivor and hazard based on the log-

logistic distribution respectively given as;  
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, 0p  ; 0    (1.3) 

where 0t   is the distribution support, while 0p   and 0  are the parameters,   is 

reparametrized in terms of predictor variables and regression parameters, the shape 

parameters p  is held fixed. It is easy to check that the log-logistics distribution's 

hazardous function is monotonous, decreasing in the case of 1p  ,  and unimodal in 

the case of 1p   as shown in Figure 1. 
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Figure 1: The graphs for hazard, cumulative hazard, density and survival functions 

Based on log-logistics distribution. 

 

 

The log-logistic distribution is commonly used to characterize the course of a 

disease in which mortality reaches a peak after certain specified time duration, then 

gradually declines (Bennett 1983). For example, the log-logistic model can be used to 

explain the lifetimes of patients with breast cancer (peak mortality of patients with 

breast cancer occurs after around three years (Langlands et al., 1979). 

Bayaga (2010)found that the dependent variable should be binary so the  

relationship between independent variables and dependent variables is based on binary 

log-logistic regression. However, it can be as a problem in survival analysis after the 
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event time’s group into interval. They showed how binary logistic regression can be 

viewed as a special case of survival analysis. Also the model obtained from survival 

analysis with logistic distribution is the same as logit and probit models. The 

distribution mostly used in the survival analysis and the failure-time data is called 

Weibull distribution. Bennett (1983) stated that the logistic distribution is an alternative 

useful way in modeling the survival and failure time data to Weibull distribution. 

Tang et al., (2017) Extended log-logistic regression to transformed fractional 

responses from censored survival data. By developing a median test for censored 

survival data that can be used to measure a group impact that can be adjusted for 

multiple confounding factors. A quasi-likelihood inferential procedure to construct the 

test statistics is adopted. Simulation studies show the probability of empirical form I 

error and the powers for the modified two sample median test are rational. The approach 

is demonstrated with a dataset on breast cancer. Under certain conditions a parametric 

model can produce estimates that are more efficient than nonparametric.  

Gupta et al., (1999) analyzed lung cancer data based on Log-Logistic model via 

Maximum Likelihood Estimator (MLE). Chatterjee and Chatterjee (2010) applied 

binary logistic regression for survival analysis. Cithoet et al. (2012) analyzed the skin 

test reactivity based on ordinal logistic regression.  

Khan and Khosa (2016) proposed a model that has similar properties to log-logistic and 

Weibull distribution. Senaviratn and Cooray (2019) used logistic regression model for 

diagnosing multi-collinearity. In this study, we will consider PIC in log-logistic Cox 

model based on simple imputation techniques which are used to simplify the procedure. 

We are also, looking to apply our model which will be significantly used in medical 

data. 
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1.4 Problem Statement 

Among several studies of logistic regression in survival analysis, Abbott 

(1985)used the mentioned model when the event time is grouped into intervals based 

on Framingham Heart study. Bayaga (2010) showed the relationship between 

independent and dependent variables based binary logistic model. Bennett (1983) 

showed that logistic distribution is an alternative useful way in modeling the survival 

and failure time data to Weibull distribution. Tang et.al.(2017) extended logistic 

regression to transformed fractional responses from censored survival data. Khan and 

Khosa (2016) compared the generalization of log-logistic distribution with different 

models based on several data sets. 

One of our interests will be modelling breast PIC data and predicting future 

observations. The aim is to estimate the parameters of the flexible log-logistic Cox 

model based on MLE method via imputation techniques.   

1.5 Objective 

In this study, we would like to focus on the prediction of patients’ survivability 

in the hospital based on the log-logistic Cox model in the present of medical PIC data. 

Maximum likelihood estimator will be used to estimate the parameters in the model. 

Moreover, the main objectives of this study are: 

 To modify the log-logistic Cox model to render its suitable with cancer PIC data 

based on imputation techniques. 

 To estimate the survival function when the data is PIC.  

 To investigate the performance of our model using the likelihood ratio test.  

 To use real data and simulation data. 
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1.6 Research Questions and/or Working Hypothesis 

 Is the modified log-logistic suitable for PIC data? 

 Is the simple imputation technique suitable for PIC data? 

1.7 Organization of Thesis 

The research study is limited to partially use interval censored data from breast 

cancer based on the Cox model to predict Hamad Medical Corporation's survival-ability 

of patients. This model is defined in Chapter III, and the MLE is used to estimate the 

model parameters. It will also use simple imputation techniques to modify the real data 

set into PIC data. Chapter 2 presents the literature review of the survival analysis, Log-

logistic distribution, partial interval censorship and Cox model. The Cox model will be 

presented in Chapter 3, based on survival analysis and maximum likelihood estimator 

derivation for parameters. Also, the techniques of likelihood ratio research and 

imputations will be discussed in Chapter 3. At the end of Chapter III, data will be 

presented on the real set of Breast Cancer data and the process to be viewed as survival 

time. Additionally, the simple imputation techniques used to alter educational data to 

be right, interval and PIC. Cox model which is appropriate for our updated data sets 

based on simple methods of imputation will be described in Chapter IV. At the end of 

this chapter, an example will be provided based on our secondary medical data model, 

real data set and simulated data. Finally, the results drawn in previous chapters are 

outlined in Chapter V and recommendations for future study are given. 
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CHAPTER 2: LITERATURE REVIEW 

CHAPERT OVERVIEW 

Throughout this segment, we will examine some current survival research based 

literature that has been applied throughout different fields such as medicine, 

engineering, economics …etc. Also some current similar literature for log-logistic 

distribution, and we will concentrate on one form of censoring data used in this thesis 

which is PIC. Eventually, any relevant literature referring to Cox model. 

2.1 Survival Analysis 

Giolo (2004) implemented the non-approach for estimating the survival 

function using censored interval data. Giolo used the Turnbull method to achieve the 

survival prediction parameters based on R program. It has been found that analyzing 

this form of censored data and then applying this approach to normal time to event data 

will lead to inferences that are worthless. Hence, Giolo recommends researchers to be 

more careful by using the new approaches to analyze censored data at intervals. 

Singh and Totawattage (2013) discussed survival research techniques through 

data on time failure intervals. Five separate parametric and non-parametric approaches 

were used. The methods used in their analysis were estimator Kaplan-Meier, process 

Turnbull, survival curve log spline, scale Weibull and piecewise exponential model to 

predict survival function parameters. To demonstrate the methodology of their analysis 

they used different data sets, which included AIDS, Hemophilia, and Breast Cancer. 

From their data, they showed that the parametric approach can be more satisfying in 

efficiency, particularly when the parametric estimation of the log-normal family or 

Weibull is chosen because it provides a broad range of distributive types. So, they 

recommend using a piecewise constant model of danger to enable additional robust 

simulation with weak parametric assumptions. 
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Singer and Willett (1993) studied the period and timing of events from the 

perspective of the application for education focused on a discrete-time survival study. 

Also, they found that the discrete-time survival model offers a readily accessible 

method for evaluating data on a form of case incident that is often obtained in 

educational studies. Interpretation of the parameters of the discrete-time hazard model 

that can be conveniently implemented basis on a conventional logistic regression study. 

Furthermore, the discrete-time method allows the analysis of the hazard function form 

which is opposite to the Cox regression model, where the hazard function form is 

neglected in favor of calculating only the change parameters correlated with covariates 

under the proportionality principle. 

Plank et al., (2008) Provides the survival of a high school student. Their research 

goal was to combine career and technical education (CTE) with core academic courses 

that affect the probability of school leaving. Throughout their research, they used one 

of the more popular models of calculating the danger rate for youth dropout, which is 

the Cox Regression model. It was found that the hazard model suggests that there is a 

strong curvilinear correlation between the CTE and the academic course taking ratio 

and the possibility of lowering it for younger and14-year-olds after reaching the ninth 

grade. 

Additionally, Eagle and Barnes (2014) used survival analysis to calculate the 

function of incident results and compensate for the depletion of participants using the 

process of Cox regression relative hazards and the Accelerated Failure Time (AFT). 

We are also shown that the time data obtained from smart tutors are appropriate for 

survival research and useful when a sample experiences turnover of participants. 

Weybright et al., (2017) defined the possibility of male and female adolescents 

dropping out of high school based on an approach to survival research. Based on 
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secondary empirical evidence, they analyze the effect of predictors of drug and leisure 

behaviors when accounting for demographics. To estimate the survival and hazard 

functions they used Kaplan-Meier (KM). They also used SAS PROC PHREG to 

approximate the parameters of the Cox Regression model with a separate time-survival 

study focused on variables of age, drug usage, and recreational activity to forecast 

dropout. 

Even though the studies reviewed are similar to our research, in the sense that 

they also focus on survival analysis, however, in many ways they are different from 

this research. For example, they are different as they used different types of censored 

data and methods as well. In this research, we will rather focus on the Cox log-logistic 

model based on PIC data. 

2.2 Log-logistic Distribution 

There are some studies that used log-logistic distribution in their research in 

survival analysis. Throughout survival analysis, logistic regression may be used where 

the time of the occurrence is divided into intervals. Abbott (1985) suggested that 

logistic regression in the study of survival evidence represents a viable solution for the 

proportional hazard model. 

Binary logistic regression is used to forecast the relationship between 

independent variables and dependent variables; binary will be the dependent variable. 

However, it may be a concern in the study of survival after the community of incident 

periods in intervals. Devlina et al., (2010) explored how to interpret conditional logistic 

regression as a specific survival study. The concept derived from a logistic regression 

survival analysis is often the same as the logit and probit methods.  

The distribution that used mostly in the analysis of survival and failure time data is the 

Weibull distribution. Steve (1983) provided that logistic distribution is an alternative 
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useful way in modeling the survival and failure time data to Weibull distribution. The 

model is fitted on GLIM and an example is given of its use with lung cancer survival 

data.  

Mayfield (1961 and 1975) used the Mayfield method to estimate the survival 

rates of nests. The logistic regression of Mayfield incorporates the strengths of two 

commonly used approaches into one approach. Kirsten (2004) discussed how Mayfield 

logistic regression widely looks relevant as nests are located at different stages of the 

nesting process and are of concern to numerous explanatory variables affecting nest 

survival. This expands the conventional estimator of Mayfield to include individual 

covariates in a system for evaluating logistic-regression. 

We will focus on the Cox log-logistic model based on PIC data in this thesis, 

the next section we will discuss the PIC data.  

2.3 Partly Interval Censoring  

Some researchers used PIC data in their research among them; Kim (2003) 

examined data slightly filtered by intervals utilizing the Cox model via MLE. In their 

analysis, they used two methods to estimate the regression parameter MLE variance–

covariance matrix which generalized missing information theory and generalized 

profile information method. The simulation experiments show that both approaches 

function well with moderate-size samples and bias in terms of variance. Furthermore, 

the researcher explained this approach using a Diabetes data program in Denmark.  

Zhao et al., (2008) used generalized log-rank research to analyze PIC failure 

results, as discussed by Peto and Peto (1972).They used a collection of actual data from 

a diabetes research and simulation tests to test the process. 

Alharpy and Ibrahim (2014) used PIC to several statistical test procedures that 

have been suggested to aid in solving the comparison problem. The suggested test 
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procedures included Finkelstein (1986) who came up with a score test to compare 

numerous survival functions under Cox model. Moreover, Pan (2000) used multiple 

imputation techniques, which depend on the approximate Bayesian bootstrap to 

compare between two interval-censored samples with proportional and non-

proportional hazards. In addition to that, Lim and Sun (2003) suggested nonparametric 

two sample tests for no proportional as well as proportional hazards.  

Research is still ongoing with regards to PIC, however with inadequate number 

of studies. Peto and Peto (1972) explained that PIC data are dealing with the same 

observations as the extremely short interval-censored observations. Huang (1999) 

extracted the asymptotic properties of the nonparametric estimation for the distribution 

function by the usage of PIC data.  

Guure et al., (2012) used PIC data that focused on Weibull distribution model 

with several estimates of parameter methods that were MLE, Least Square (LS) 

estimators of one variable over another variable to evaluate the survival estimator of 

these methods to estimate the parameters and to prove that the parameter bias of the 

estimators is valid values. Their used of MSE, bias in comparing their respective 

approaches dependent on simulation analysis. They noticed the MLE was best for 

calculating the parameter of the scale. On the other hand, the least square on the first 

variable was more accurate on estimating the form parameter with fairly limited 

samples, but the optimal approach was the least square for larger samples for the other 

side. 

Elfaki et al., (2012) used the Weibull parametric proportional hazard model, 

based on the AIDS research application's based on Expectation Maximization (EM) 

algorithm for PIC results. Partially filtered periods may also be used in their work 

mainly to measure the survivability of the failure rate. They studied the HIV / AIDS 
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diagnosis of hemophiliacs at two Sudanese hospitals. It was also shown in their analysis 

that there are no variations in actual data collection between the two therapies. 

Furthermore, for two tests the Likelihood Ratio Test (LRT) and Score Test (ST) based 

on PIC are provided. 

Alharpy and Ibrahim (2013) utilized parametric Weibull distribution. They 

found that the LRT is easier to check the parametric for PIC under Weibull distribution 

than the performance method. Elfaki et al., (2013) suggested a rival risk model focused 

on EM algorithm to approximate the parameters of the Cox's proportional hazards 

regression for PIC. They used two contrasting risk models which are the Complete 

Censoring (CC) model and the Weighting Technique (WT) model. They examined the 

possible correlation between treatments and anti-D in Rhesus time to search the impact 

of covariates on the occurrence of complications added to a collection of time results 

from anti-D in Sudan's Rhesus D negative pregnant women. 

Yousif et al., (2016) approximated the coefficients of regression for PIC data 

using Bayesian approach. Simulation studied is used in order to check the model 

concept and it showed that the method was performed well as if it was simple to use.  

Zyoud et al., (2016) used nonparametric analysis via imputation approaches to 

approximate the survival function based on PIC. They used several imputation 

techniques that included mean imputation, median imputation, conditional mode, 

multiple imputation and random imputation. Their proposal to approximate the survival 

function was introduced using R tools. They found the natural, standard, and median 

imputations are stronger relative to other strategies of imputation. 

Wu et al. (2017) suggested the semi-parametric based on MLE approach for 

evaluating censored data in PIC. They used the non-mixed Cox cure rate model and the 

semi-parametric spline via sieve MLE to evaluate these findings. Then, a strong sieve 
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estimator was noted. Simulation studied is illustrated to the efficiency of the proposed 

system, and found that the proposed method based on MLE was satisfying.  

 Noora & Elfaki studied (2020) used parametric Weibull model based on 

simulation PIC via education data sets. They found that the Weibull model based on 

simulation PIC data are much more suitable compared with interval data. 

As can be seen in this section, several experiments have used the PIC data dependent 

distribution process since its approach is flexible as used for parameter estimation. Our 

analysis attempts to adapt the Cox model via log-logistic distribution, which deals with 

data on medical PIC data. In addition to that, we are looking to examine the efficiency 

of the model and to check its efficacy using the suitable method. 

2.4. Cox Model  

Cox model is very popular in survival analysis, due to the two reasons: (a) the 

probability distribution of the survival times does not need any assumption, and (b) the 

data can be fitted well in the model regardless of the parametric model that is used 

(Khan and Khosa 2016). However, the model is flexible to the extent that it can be used 

as nonparametric, semi-parametric and fully parametric (Kalbfleisch and Prentice 2002; 

Lawless 2002). Therefore, for the parametric the examination of the appropriateness of 

the chosen distribution becomes a requirement.  

Hashemian et al. (2017) studied the affection of the survived patients with 

colorectal cancer based on the log-logistic model and non-parametric Cox model. They 

found that both models had almost similarly results; but, owing to the advantages of 

parametric models, log-logistic may be supplemented with Cox model in surveying the 

recovery period of patients with colorectal cancer based on Cox Snell residuals. Since 

the Log-logistic and Cox models used regression coefficients remained the same, given 

several researchers ' preference to use Cox model in survival analysis experiments, 
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parametric models will forecast the long-term likelihood of the goal occurrence and 

have a good view of the survival time and hazard function. 

Bender et al. (2005) described methods for producing survival functions from 

simulation experiments based on the Cox proportional hazards. They showed that the 

exponential, Weibull, and Gompertz distributions can be used to produce appropriate 

survival functions via simulation studies. The partial likelihood in the classic Cox 

model does not depend on the baseline hazard, the option of the distribution of the 

produced survival times in the Cox model via simulation studies is not given much 

consideration. In such situations, the distribution of the produced survival times should 

represent the condition of the data being considered in order to obtain sufficient 

simulation results. 

Khan and Ababneh (2016) used survival distribution and Kaplan-Meier for 

survival function as descriptive approaches to approximate a sample life table 

distribution of survival times. There are also many regression models to approximate 

the relationship of continuous variables to survival times which are commonly included 

in the Weibull regression and the Cox models. The model of Cox refers to a broader 

range of distributions which is a semi-parametric concept whereas the model of Weibull 

regression is a completely parametric model. When a data set is applies to the Weibull 

model then the Cox model could be used as an alternative model for the same data set. 

In their results showed that the Cox model are less reliable and less effective than those 

for the Weibull model. It also seems the tests for the Cox model are less efficient than 

those for the Weibull regression model. In fact, the parametric models can provide 

advantages over the Cox model because of the complexity of the process.  
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Rezaei et al., (2014) used generalized linear models based on ordinary least 

square for censored data. Cox (1972) introduced a modern approach that would be 

helpful in situations that require censored data. Several researchers continued utilizing 

this approach without mentioning models of reference hazards. These approaches are 

defined and compared to a modern hazard proportional model. In their study also they 

introduced the extended exponential geometric (EEG) of Cox model. They used 

different models that is the semi-parametric Cox model, the model of linear regression 

with and without log translation and generalized linear models, e.g. for which they used 

of purely positive values for the event. Survival theory explores and models the period 

required for incidence of the incidents. The distribution of survival times is main 

focuses of the survival study. 

There are well-known ways of calculating the distributions of unconditional 

life. Many important models of survival explore the interaction between survival and 

one or more predictors, typically referred to as covariance in the literature on survival 

research. However, in this thesis we will use the log-logistic Cox model based on partly 

interval censored data. 
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CHAPTER 3: METHODOLOGY 

CHAPTER OVERVIEW 

This chapter presents the estimation of the parameters of log-logistic 

distribution based on Cox model using maximum likelihood estimator and under PIC. 

The chapter also, presents the likelihood ratio test. At the end of the chapter, the simple 

imputation technique will be presented. 

3.1 Introduction  

The Cox PHRM is a technique of regression that allows estimation of survival 

times (or hazard functions) for the collection of exploratory variables of the model that 

was first developed by Cox (1972). The Cox model enables estimation of the survival 

function. The association between survival and a set of possible risk factors is widely 

used in medical research. The Cox model is used in randomized clinical trials to assess 

the efficacy of new treatments or interventions on survival or on the incidence of an 

unusual case. The Cox proportional hazard model may be called a Kaplan-Meier 

generalization (or product limit) estimator of a survival curve that describes both 

discrete and continuous risk factors. Compared to other regression methods, the 

benefits of Cox model for survival data lie in its consistency as well as the 

interpretability of its parameter estimates. 

As mentioned in one of the previous chapter of this thesis, the parametric model 

can be fitted with the data well regardless of the model that is used. The PHRM is 

considered the most common part in the survival analysis due the following reasons; 

the first one is the survival times distribution does not require any assumption (example 

when the model is a semiparametric), and the second reason is that it fits the data well 

usually when the model is parametric. Following that, a fully parametric PHRM is 

required for distribution assumption (Kalbfleisch 2020, Lawless 2003). Hjort (1992) 
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found that more efficient estimates of parametric models than the certain condition of 

the Cox model. In additional to that Collett (2003) found that there are small standard 

errors of estimation in the parametric model with valid assumption of the distribution 

than would be in the absence of the distribution assumption.  The most closed and 

common parametric under PHRM is the Weibull model. In this thesis, we will use 

parametric PHRM based on log-logistic distribution. 

Cox (1972) introduced the PH models with covariates 1 2( , ,..., )pz z z z   as; 

0( , ) ( ; )exp( )Th t z h t k z                             (3.1) 

where the baseline hazard h0(t; α) is defined by as the a vector of parameters α, and the 

regression coefficients by vector 1 2( , ,..., )p     . 

Khan and Khosa (2016) described the hazard function for a non-negative random 

variable T of log-logistic distribution as: 

1( )

1 ( )
( ; )

t

t
h t k





  






    (3.2) 

Here 0t  , ( , , )k      and , &   are parameters that have the conditions 

0, 0   and 0  .  

Lawless (2002) reduced (3.2) to the hazard function when  depends on   through 

  and 
1/   with 0  .  

Respectively the function of survivor and the function of probability density based on 

distribution of log-logistic given as; 

 
( )

( ; ) 1 ( )S t k t
 




     (3.3) 

1

( ) 1

( )

[1 ( ) ]

( ; )
t

t

f t k


 
 
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






     (3.4) 

The parametric log-logistic Cox model can be obtained when 0 ( ; )h t k  is full specify in 
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(3.1). Therefore, if we substituted (3.2) into (3.1) then (3.1) became as; 

/ / 1( )

1 ( )
( ; )

z ze e t

t
h t k
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





  


   (3.5) 

Thus, the Cox model based on log-logistic is closed under hazards proportionality. 

However, the semi parametric of Cox PH model when we left arbitrary of the baseline 

hazard function in (3.1) that can be denoted by 0 ( )h t . 

3.2 Estimations the Model Parameters 

Let the censored random sample consisted of the data ( , , )i i it z , 1,2,...,i n  , 

where iz  is defined in (3.1) and the failure or censoring time represent by it  according 

to 1i  or 0i  . The likelihood function for is given as; 

1

1

( , ) [ ( , , )] [ ( , , )]i i

n

i i

i

L k f t k S t k
    



  (3.6) 

By substitute equation (3.3) and (3.4) into (3.6) equation (3.6) become; 
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  (3.7)  

Following Khan and Khosa (2016), assume ( )i ia t  , iz

ib e


 , 
1

n

i

i

m 


 , and 

( , )k    then the function of log likelihood of (3.7) for model (3.5) given as; 

1 1

1 1
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log ( ) log( 1)
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i i i i

i i
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i i i i
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 
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  

 

 
 (3.8) 

The method of MLE will be used to estimate the parameters ( , , , )    . 

Solving the parameters that maximize equation (3.8) will yield the parameters 

for the PHRM model with log-logistics, which are obtained by solving the following 

partial derivatives 
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The n-th derivative for , ,    and   of the equation (3.8) are 
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 (3.9) 

Since ( )i ia t  , then; 
log
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Based on (3.10) we can obtain; 
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Where
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By substitute (3.10) and (3.11) into (3.13), equation (3.13) became; 
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In equation (3.12) we have
log
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i
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, then; 
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By substitute (3.10) and (3.11) into (3.15), equation (3.15) will be; 
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Also, 
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Since in equation (3.7) we have ( )i ia t  , then; 
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As we assuming in (3.18) that is
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i
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a

i a
d


 , and based on (3.20) we have; 
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Similarly, to (3.19) we can also have; 
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Now, similarly to (3.9), we can find the first and second derivatives for , ,    and  

  using equation (3.8) and (3.10) to (3.22) as follows: 
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The second derivatives given as; 
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Based on (3.10), then the second derivative of  is given by; 
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The second derivative of  based on (3.24) is given by; 
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The inverse of the information matrix, evaluated at ˆˆ ˆ, ,   and̂ , that is
1( )I 

,
1( )I 

,
1( )I 

 and )(1 I , is the estimated covariance matrix of ̂  and ̂  

respectively. Numerical methods such as Newton Rapson will be used to solve the 

system of the equations.  

3.3 Likelihood Ratio Test 

A likelihood ratio may be conceived of as a combination of two statistical 

representations of the evidence being studied. That model has a likelihood density for 

the measurements and several unknown parameters that can be calculated from the 

results. In a broad variety of specific cases, the density is the normal multivariate 

distribution, and the parameters are the results under various circumstances, along with 

the error variance. Despite of the restrictions on the state implies, the two models vary. 

For example, a model in which two ways of situation vary can be contrasted with a 

model in which the measures are similar. The match of each model and the observations 

may be estimated by measuring the data likelihood, provided the best estimates of the 

model parameters: the more probable the results are, the better the result. In this case, 

the better parameter estimates are those that maximize the likelihood of results and are 

referred to as maximum-likelihood estimates. The ratio of two such probabilities is the 

maximum likelihood ratio; it gives an overview of the relative correlation of the two 

equations to the results observed. 

Based on the details mentioned above and for a large sample size, the chi-square 

is an approximated distribution of the LRT. The degrees of freedom of this distribution 

is equal to the difference in the number of coefficients in the two models. This test is 

defined as: 
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  (3.30) 

The −2 in 𝐿𝑅 equation adjusts the test in a way that the chi-square distribution can be 

used to approximate the distribution of the test. 

3.4 Imputation  

Imputation approaches are sometimes used to transform the problem of 

analyzing data analysis. In this thesis, we will modify the data based on imputation 

technique to be PIC or interval censored data. 

The motivation behind that is that the imputation process is very simple and there are 

numerous methods to deal with the data. There are different imputations methods such 

as simple and multiple imputations methods. In this study we will use a simple 

imputation techniques. 

3.4.1 Simple Imputation  

The Simple imputation technique is one of the most common techniques used 

to treat the missing data. Because the simple imputation is conjectural and appealing , 

it is often used in the simple cases of observations. As mentioned by Zyoud, et al. 

(2016), the simple imputation methods such as; 

1. The right limit of the interval iR  which represents right point.  

2. The left limit of the interval iL that represents the left point.  

3. The midpoint of the interval ( ) / 2i iR L  for which represents the midpoint. 
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CHAPTER 4: RESULTS AND ANALYSIS 

 

4.1 Brest Cancer Data  

Breast cancer is Qatar's most common disease, as 31% of women have breast 

cancer. The risk of breast cancer development among women in the over all population 

is 56 per 100,000 (source: Qatar Cancer Register). However, breast cancer can affect 

both women and men. It is important to remember that many breast cancer cases can 

be treatable if patients are been diagnosed and checked up early, they will recover. 

The proposed methods in this thesis were applied to the data set taken from 

Hamad Medical Corporation (HMC). The data was collected from 2/1/2016 to 

1/19/2020 and it contains 24 variables. The First case was on 2/1/2016 and the last case 

was on 1/19/2020.The data consist of 1008 patients, 770 treated by surgery, 557 patients 

treated by chemotherapy, 555 treated by the hormone and 533 treated by radiotherapy 

(RT). In this study, the patients were observed at Al-mal clinic visits,  the event of 

interest was the time of the first occurrence of breast retraction, the actual dates of the 

event were recorded exactly if available otherwise the interval of events were noted. 

The main objective here is to compare the cosmetic effects of each treatment alone on 

women with early breast cancer. It is noted that the sample has interaction and some 

patients have undergone surgery treatment and additionally, later they undergo through 

other treatments. Therefore, we consider a dummy variable for our analysis in this 

section. In later section, the simulation study will be highlighted. 

As mentioned in chapter 3 that the log-logistic model can be used based on the 

Cox model by allowing α (scale parameter) to differ between the treatments, or more 

generally by introducing covariates that affects α but not β (shape parameter) by 

modeling log(α) as a linear function of covariates.  
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     Table 1: Log-logistic Model for Breast Cancer Data 

Treatment Parameter  Coefficient CI of 95% SE 

 Shape 3.751545 (3.55575, 3.958124)   0.102600 

Scale 656.4018 (619.453, 695.5546) 19.40320 

Hormone Coefficient 0.313580 (0.25079, 0.376375) 0.032039 

RT Coefficient 0.142124 (0.07885, 0.205398) 0.032283 

Chemotherapy Coefficient 0.061392 (0.02986, 0.119798) 0.029800 

 

 

The Likelihood Ratio Test (LRT) with p-value (-7254.742; 0.000045), together 

with test whether the model coefficients/parameters as a group equal to zero. In this 

case, larger LRT values and small p-values indicate a greater confidence in rejecting 

the null hypothesis. Therefore, based on LRT we can conclude that the model is fit well 

and the coefficient, shape and scale parameters cannot be equal zero as shown in Table 

1. Also, since the values of standard error (SE) are less than 0.05, therefore they are 

statistically significant in nature for all the treatments that are; hormones, radiotherapy 

(RT) and chemotherapy and all they affect survival. 

This means that the chances of survival depend on RT, hormones and 

chemotherapy with the impacts as shown in the result of data points in the Table 1 or 

the Figures 2, 3 and 4 also accurately provides the difference between the impacts of 

different treatments. 

From Figure 2, we can conclude that the chances of survival of a breast cancer 

patient increases or we can say that the likelihood of living for more number of days of 

the patient increases after radiotherapy. As per the expectations the likelihood of living 

more after surgery increases first and then decreases as the value of chances of survival 

decreases but the results shows that it is still always better to have radiotherapy. 
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Based on the value of coefficient and SE of hormone it accurately shows that 

there is a significant correlation between both failure times but while comparing among 

the three different treatment methods it can be classified as the second lowest. The 

chances of survival of breast cancer patient increases based on hormone treatment as 

shown in Figure 3 or we can say that the likelihood of living for more days increases 

after hormone. As per the expectations the likelihood of living more after hormone 

increases first and then decreases even though the chances of survival decreases, but 

the results shows that it is still always better to have hormone. 

Similarly the value of LRT and it’s p-value for RT treatment shows that there 

is a significant correlation between both the data sets but while comparing among the 

four different treatment methods it is second highest. 

 

 

 

Figure 2: The function of survival estimated by log-logistic model based on 

radiotherapy treatment 
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Figure 3: The function of survival estimated by log-logistic model based on hormone  

treatment. 

 

Based on Figure 3, we can conclude that the chances of survival of a breast 

cancer patient increases or we can say that the likelihood of the patient to live for more 

days increases after hormone. As per the expectations the likelihood of living more after 

surgery increases first and then decreases later. Even the value of chances of survival 

decrease but the results show that it is still always better to have hormone treatment. 

As per the data, hormone treatment has the highest shape parameter i.e. 

maximum dispersion which directly states that the chances of survival increases 

significantly when compared with a patient who haven’t gone through the hormonal 

treatment while fighting with breast cancer. However, based on SE it shows that there 

is a significant correlation between both data sets but while comparing among the three 

different treatment methods it shows the highest. 
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Figure 4: The function of survival estimated by log-logistic model based on  

chemotherapy treatment. 

 

Similarly based on Figure 4, we can conclude that the chances of survival of a 

breast cancer patient increases or we can say that the likelihood of living for more 

number of days of the patient increases after surgery. As per the expectations the 

likelihood of living more after surgery increases first and then decreases but the results 

shows that it is still always better to have chemotherapy. 

As per the data chemotherapy has the lowest value of shape parameter i.e. 

lowest dispersion which directly states that the chances of survival doesn’t increase 

significantly when compared with a patient who has not gone through the 

Chemotherapy Treatment while fighting with breast cancer.  In additional to that and 

based on the value of LRT and p-value we can conclude that there is no significant 

correlation between both the data sets but while comparing among the four different 

treatment methods it is lowest among four of them.  
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In summary, the result in this section suggested that it useful to use all three 

treatment that is the hormone as consider highly used then followed by RT and lastly 

chemotherapy for breast cancer patients.  

 

4.2 Simulated Data  

Simulation studies are computational tests involving the production of results through 

pseudo-random sampling from established probability distributions. They are 

indispensable resources for statistical analysis, especially in the appraisal of modern 

approaches and the evaluation of alternative approaches. Simulation experiments are 

commonly used in the pages of statistics in medicine; however our experience is that 

some statisticians lack the knowledge required to perform a simulation test with 

conviction, whereas others are over-confident and thus neglect to think carefully about 

the design and the recorded outcomes. 

Simulation experiments are used to produce scientific data on the efficiency of 

statistical methods under some situations, as opposed to more common analytical 

(algebraic) tests, which can include other situations. It is not often feasible or 

complicated to achieve empirical tests. Simulation experiments are self-contained 

where procedures make incorrect decisions or results become messy so they may 

determine the durability of procedures under these circumstances. It is not necessarily 

true for observational findings, as the conclusions will only be replicated where the 

details are extracted from a particular model. 

We carried out a simulation study based on the real breast cancer data (that 

highlighted in this thesis) to examine the influence of the log-logistic model and to 

compare the covariates in the data sets. The Normal distribution is used to generate the 

simulation data since we find that the normal one is  more reasonable as it is based on 

real data (graphics of the data are relatively similar to curves of normal) compared to 
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some other distributions such as Weibull and log-logistic as displayed in Figures 5, 6 

and 7. Moreover, the Akaike’s information criterion (AIC) was found to be 14610.14 a 

normal distribution, 15059.36 for log-logistic and 14672.15 for Weibull for which 

indicated and confirmed the mentioned results in the Figures (5, 6 &7). In addition to 

that, sample we used is 20000 times for each treatments. 

Mean and standard deviation of  0.3135801 & 0.032038 and 0.3418023 & 

0.03492 are used to generate the data for treatment with and without hormone 

respectively, based on  (0%, 25%, 50%, and 75%)  as percentage of exact observation 

for the partly interval censored (PIC) data.  

In each simulation data we obtained the function of survival for the two groups of each 

treatment that are based on the exact observation compared to the one estimated by 

imputations methods that is; mean, midpoint and left point via our model.  

The estimates approach in Figures 8, 9, 10, 11, 12, 13, 14, 15 and 16, shows that the 

estimate of the results based on exact observation, is similar compared with the one 

obtained by means and midpoint and left point. However, the group who used surgery 

treatment are more likely to survive longer compared to those without surgery, 

suggesting that our mean and midpoint methods provide an acceptable approximate 

estimation especially when more exact observations (25%, 50% and 75%) are used in 

the data compared to the less exact observations (0%) as displayed in Figures 17, 18 

and 19 (left point). 

Table 2 showed the results obtained by our model based on mean point 

imputation for surgery treatment with different percentages of exact and interval 

censored data. It showed significant concerning with respect to LRT and their p-value. 

These results indicate that for more exact observation in the data the results are better 

(as high value of AIC=286714.4 when 100% exact compare to AIC= 286904.3 for 0% 
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exact). Moreover, the chances of survival increase significantly when patient use 

surgery treatment compared with a patient who haven’t gone through the surgery 

treatment while fighting with breast cancer. 

 

 

Figure 5: The empirical quintiles, density function, empirical probabilities and 

cumulative density function obtained by Weibull Distribution. 
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Table 2: Result from simulation data for surgery based mean point via Log-logistic 

Model. 

Exact Parameter Estimate CI of 95% SE LRT*( P-value) 

0% 

 

Shape  3.720395 (3.6763, 3.765) 0.02262 -143354.2 (2e-16) 

Scale 730.2488 (723.44,737.12) 3.48957 

Coefficient 0.237332 (0.2246,0.2501) 0.00651 

25% 

 

Shape  3.717644    (3.6736, 3.762) 0.02260 -143369.8(2e-16) 

Scale 730.2005 (723.39,737.08) 3.49123 

Coefficient 0.237427    (0.2247,0.2502) 0.00651 

50% 

 

Shape  3.711552 (3.6676,3.7561) 0.02257 -143408.8(2e-16) 

Scale 730.4620 (723.64,737.34) 3.49568  

Coefficient 0.237076 (0.2243,0.2498) 0.00652  

75% 

 

Shape  3.707289 (3.6633,3.7517) 0.02255 -143432.6 (2e-16) 

Scale 730.5007 (723.68,737.39) 3.49868  

Coefficient 0.237042 (0.2242,0.2498) 0.00652  

100% 

 

Shape  3.703924 (3.6600,  3.748) 0.02253 -143449.1(2e-16) 

Scale 730.2192 (723.39,737.11) 3.49956  

Coefficient 0.237508 (0.2247,0.2503) 0.00653  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The empirical quintiles, density function, empirical probabilities and 

cumulative density function obtained by Normal Distribution. 
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Figure 7: The empirical quantiles, density function, cumulative density function and  

Empirical probabilities obtained by Log-logistic Distribution. 

 

Figure 8: The function of survival estimated by mean imputation for 75% exact data 

  based on surgery treatment. 
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Figure 9: Thefunction of survival estimated by mean imputation for 50% exact data  

based on surgery treatment. 

 

 

Figure 10: The function of survival estimated by mean imputation for 25% exact data  

based on surgery treatment. 

 



   

39 

 

 

Figure 11: The function of survival estimated by mean imputation for 0% exact data  

based on surgery treatment. 

 

Figure 12:Thefunction of survival estimated by midpoint imputation for 75% exact  

data based on surgery treatment. 
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Figure 13: The function of survival estimated by midpoint imputation for 50% exact  

data based on surgery treatment. 

 

 

Figure 14: The function of survival estimated by midpoint imputation for 25% exact  

data based on surgery treatment. 

 



   

41 

 

 

 

Figure 15:The function of survival estimated by midpoint imputation for 0% exact data  

based on surgery treatment. 

 

Figure 16: The function of survival estimated by left imputation for 75% exact data 

   based on surgery treatment. 
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Figure 17: The function of survival estimated by left imputation for 50% exact data  

based on surgery treatment 

 

 

Figure 18: The function of survival estimated by left imputation for 25% exact data  

based on surgery treatment 
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Figure 19: The function of survival estimated by left imputation for 0% exact data  

based on surgery treatment. 

 

To generate the data for the radiotherapy covariate (with RT treatment and 

without RT treatment) mean and standard deviations used as 0.2421249 & 0.0321832 

and 0.11227867 & 0.025425 respectively. Exact observation with different percentage 

that is 0%, 25%, 50%, and 75% in PIC data are also used and compared.  

Figures 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 show the results obtained 

based on our model mentioned in the early chapter based on different three imputations 

that are; mean point, mid-point and left point, respectively. The figures are acceptable 

since it showed similar result between the exact observation and the one obtained by 

our imputations methods mentioned except the one obtained by left point with exact 

observation of 0% and 25%.  

However, significant results are shown based on the midpoint imputation with 

respect to LRT and their P-value which indicate that the null hypothesis is rejected (H0: 

there is no different between patient who use RT and not use RT treatment) as shown 
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in Table 3.Clearlyour Cox model via log-logistic distribution with imputations method 

is easily implemented to partly-interval censored breast cancer data. 

 

Figure 20: The function of survival estimated by mean imputation for 75% exact data  

based on RT treatment 

 

Figure 21: The function of survival estimated by mean imputation for 50% exact data  

based on RT treatment. 
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Figure 22: The function of survival estimated by mean imputation for 25% exact data  

based on RT treatment. 

 

 

Figure 23: The function of survival estimated by mean imputation for 0% exact data  

based on RT treatment 
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Figure 24: The function of survival estimated by midpoint imputation for 75% exact  

data based on RT treatment. 

 

Figure 25: The function of survival estimated by midpoint imputation for 50% exact  

data based on RT treatment. 
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Figure 26: The function of survival estimated by midpoint imputation for 25% exact  

data based on RT treatment 

 

Figure 27: The function of survival estimated by midpoint imputation for 0% exact  

Data based on RT treatment. 
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Figure 28: The function of survival estimated by left point imputation for 75% exact  

data based on RT treatment. 

 

Figure 29: The function of survival estimated by left point imputation for 50% exact  

data based on RT treatment. 
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Figure 30: The function of survival estimated by left point imputation for 25% exact  

data based on RT treatment 

 

Figure 31: The function of survival estimated by left point imputation for 0% exact  

data based on RT treatment. 

 



   

50 

 

Table 3: Result from simulation data for Radiotherapy based midpoint via Log-logistic 

Model. 

Exact Parameter Estimate CI of 95% SE LRT*( P-value) 

0% Shape  4.074947    (4.0264,  4.124) 0.02491 -142665.5 (2e-16) 

Scale 769.0776 (762.33,775.88) 3.45678  

Coefficient 0.258039    (0.2464,0.2697) 0.00596  

25% Shape  4.064404 (4.0159, 4.113) 0.02485  -142720.1(2e-16) 

Scale 769.0731 (762.31, 775.9) 3.46350  

Coefficient 0.258181 (0.2465,0.2699) 0.00597  

50% Shape  4.064382 (4.0159, 4.113) 0.02485 -142721.6(2e-16) 

Scale 769.0425 (762.28,  775.86) 3.46309  

Coefficient 0.258267 (0.2466,0.26996) 0.00597  

75% Shape  4.058851 (4.0104, 4.108) 0.02482 -142748.7 (2e-16) 

Scale 768.9808 (762.22,775.80) 3.46589  

Coefficient 0.258240 (0.2465, .2699) 0.00597  

100% Shape  4.057459 (4.0091, 4.106) 0.02482 -142755.7 (2e-16) 

Scale 768.8760 (762.11,775.70) 3.46531  

Coefficient 0.258317 (0.2466,0.2700) 0.00598  

 

For the hormone treatment (with and without hormone treatment), the data we 

generate with mean and standard deviation as 1022.85 & 246.25 and 762.64 & 379.78 

via different exact observations of PIC that is with; 0%, 25%, 50%, 75% and 100%. 

Figures 32, 33, 34, 35, 36, 37, 38, 39,40, 41, 42 and 43 displayed the result of 

the estimated the function of survival obtained by our model and imputation techniques 

that is; mean point, midpoint and left point. These figures look almost similar in case 

of the one obtained by mean and midpoint especially for exact observation that more 

than 25%, but little difference compared with one obtained by left point in case of exact 

observation that more less  than 50%. However, the patient treated with hormone 

treatment have a long survival compared to those without hormone treatment as shown 

clearly in the figures above as well in Table 4 concerning LRT and p-value. In 

additional to that the null hypothesis (H0: there is no different between patient who use 

hormone and not use hormone treatment) is rejected. 
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Figure 32: The function of survival estimated by mean imputation for 75% exact data  

based on hormone treatment 

 

 

 

Figure 33: The function of survival estimated by mean imputation for 50% exact data  

based on hormone treatment. 
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Figure 34: The function of survival estimated by mean imputation for 25% exact data  

based on hormone treatment. 

 

 

Figure 35: The function of survival estimated by mean imputation for 50% exact data  

based on hormone treatment. 
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Figure 36: The function of survival estimated by midpoint imputation for 75% exact  

data based on hormone treatment. 

 

 

Figure 37: The function of survival estimated by midpoint imputation for 50% exact  

data based on hormone treatment. 
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Figure 38: The function of survival estimated by midpoint imputation for 25% exact  

data based on hormone treatment. 

 

 

Figure 39: The function of survival estimated by midpoint imputation for 0% exact  

data based on hormone treatment. 
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Figure 40: The function of survival estimated by left point imputation for 75% exact  

data based on hormone treatment. 

 

Figure 41: The function of survival estimated by left point imputation for 50% exact  

 data based on hormone treatment. 
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Figure 42: The function of survival estimated by left point imputation for 25% exact  

data based on hormone treatment. 

 

Figure 43: The function of survival estimated by left point imputation for 0% exact data 

based on hormone treatment. 
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Table 4: Simulation data for hormone based mean point via Log-logistic Model. 

Exact Parameter Estimate CI of 95% SE LRT*( P-value) 

0% 

 

Shape  3.95712   (3.9097,4.0052) 0.02437 -143114.6 (2e-16) 

Scale 734.632 (727.90,741.43) 3.45239 

Coefficient 0.32244    (0.3104,0.3345) 0.00613 

25% 

 

Shape  3.94721 (3.8998,3.9951) 0.02431 -143161.9 (2e-16) 

Scale 734.346 (727.60,741.15) 3.45737 

Coefficient 0.32279 (0.3108,0.3348) 0.00614 

50% 

 

Shape  3.93673 (3.8895,3.9846) 0.02425 -143216.3 (2e-16) 

Scale 734.391 (727.63,741.21) 3.46420  

Coefficient 0.32268 (0.3106,0.3347) 0.00616  

75% 

 

Shape  3.92707    (3.8799,3.9748) 0.02420 -143266.8(2e-16) 

Scale 734.239 (727.47,741.07) 3.46891  

Coefficient 0.32292    (0.3108,0.3350) 0.00617  

100% 

 

Shape  3.92137 (3.8742,3.9690) 0.02417 -143295.9(2e-16) 

Scale 734.165 (727.39,741.00) 3.47155  

Coefficient 0.32290 (0.3108,0.3350) 0.00617  
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Table 5: Result from simulation data for chemotherapy based midpoint via Log-logistic 

Model. 

Exact Parameter Estimate CI of 95% SE LRT*( P-value) 

0% 

 

Shape  4.037694 (3.9901, 4.0858) 0.02444 -142962.6 (2e-16) 

Scale 828.8237 (821.86, 835.84) 3.56489 

Coefficient 0.114750 (0.1030, 0.1265) 0.00601 

25% 

 

Shape  4.035990    (3.9884,4.0842) 0.02443 -142972.4(2e-16) 

Scale 828.8043 (821.85, 835.82) 3.56538 

Coefficient 0.114723    (0.1029,0.1265) 0.00601 

50% 

 

Shape  4.037423    (3.9898, 4.0856) 0.02444 -142966.5(2e-16) 

Scale 828.8207 (821.86, 835.84) 3.56439  

Coefficient 0.114801    (0.1030,0.1266) 0.00601  

75% 

 

Shape  4.032079    (3.9845, 4.0802) 0.02441 -142995.1(2e-16) 

Scale 828.7023 (821.74, 835.72) 3.56720  

Coefficient 0.115005 (0.1032, 0.1268) 0.00601  

100% 

 

Shape  4.032791 (3.9852, 4.0809) 0.02442 -142993.8(2e-16) 

Scale 828.6519 (821.69, 835.67) 3.56594  

Coefficient 0.115118 (0.1033, 0.1269) 0.00601  

 

 

To generate the data for the chemotherapy (with chemotherapy treatment and 

without chemotherapy treatment) the mean and standard deviation is used with a value 

of 948.28& 338.29 and 853.59 & 332.65 respectively. Exact observations with a 

different percentage of for PIC data are also used that is 0%, 25%, 50%, 75%  and 

100%.Figures 44, 45, 46, 47, 48, 49, 50, 51, 52 and 53 displayed the results obtained 

based on our model by three imputation methods mentioned earlier in this chapter. The 

figures are almost the same for the result obtained except for the one obtained by left 

point with exact 0% and 25% (Figures 55 and 56). However, significant results are 

obtained via midpoint imputation that has been shown concerning LRT and their P-

value (Table 5). 
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Table 5 showed the results obtained by our model based on midpoint imputation for 

chemotherapy treatment with different percentages of exact and interval censored data. 

It showed significant with respect LRT and their p-value. These results indicate that for 

more exact observation in the data the result are better (as lower value of AIC=285931.2 

when 100% exact compare to AIC= 285993.6 for 0% exact). Moreover, the chances of 

survival increases significantly when patient use surgery treatment compared with a 

patient who haven’t gone through the surgery treatment while fighting with breast 

cancer 

 

Figure 44: The function of survival estimated by mean imputation for 75% exact data 

 based on chemotherapy treatment. 
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Figure 42: The function of survival estimated by mean imputation for 50% exact data  

based on chemotherapy treatment. 

 

 

Figure 46: The function of survival estimated by mean imputation for 25% exact data  

based on chemotherapy treatment. 
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Figure 47: The function of survival estimated by mean imputation for 0% exact data 

based on chemotherapy treatment. 

 

Figure 48: The function of survival estimated by midpoint imputation for 75% exact  

data based on chemotherapy treatment. 

 



   

62 

 

 

Figure 49: The function of survival estimated by midpoint imputation for 50% exact  

data based on chemotherapy treatment. 

 

Figure 50: The function of survival estimated by midpoint imputation for 25% exact  

data based on chemotherapy treatment. 

 

 



   

63 

 

 

Figure 51: The function of survival estimated by midpoint imputation for 0% exact  

data based on chemotherapy treatment. 

 

 

Figure 52: The function of survival estimated by left point imputation for 75% exact  

data based on chemotherapy treatment. 
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Figure 53: The function of survival estimated by left point imputation for 50% exact  

data based on chemotherapy treatment. 

 

Figure 54: The function of survival estimated by left point imputation for 25% exact  

data based on chemotherapy treatment. 
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Figure 55: The function of survival estimated by left point imputation for 0% exact  

data based on chemotherapy treatment. 

 

We can conclude that our model which is Cox with log-logistic via simple imputations 

methods fits very well the PIC breast cancer data as well as the simulation data with 

different percentages of exact observation. We highlight in the data and in the 

simulation data two different failure rates for each treatment that is; with surgery& 

without surgery, with RT treatment & without RT, with hormone treatment & without 

hormone and with chemotherapy & without chemotherapy. The simulation study runs 

for 20000 times based on normal distribution. The results showed that patients who 

are treated with surgery, RT, hormone and chemotherapy have better opportunities to   

survive longer compared to those without treatment as shown in Figures 2 to 56and 

Tables 2 to 5.  
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Surgery is done to enhance the quality of living rather than to cure the disease itself, 

for example, to alleviate discomfort induced by a tumor that is crushing the nerve or 

bone, or to extract a tumor that covers the intestine. Radiation therapy may be used to 

cure virtually every stage of breast cancer.  

 

Radiation therapy is an effective approach used to reduce the risk of breast cancer 

arising after surgery. In addition to that, it is commonly used to treat cancer-induced 

complications that have been spread to other sections of the body. Hormone 

medication after surgery, radiation or chemotherapy have been proved effective in 

reducing the likelihood of recurrence of breast cancer in women’ s bodies at an early-

stage hormone-sensitive breast cancer. It also significantly reduces the chance of 

breast cancer development and advancement for people with hormone-sensitive 

tumors. Breast cancer chemotherapy is sometimes used in contrast to other treatments, 

such as surgery, radiation treatment or hormone therapy. It can affect the chances of 

success of a cure, minimize the possibility of recurrence of cancer, minimize the 

symptoms of cancer, or help people with cancer to survive longer with higher life 

quality. 
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CHAPTER 5: CONCLUSION AND SUGGESTION FOR FUTURE RESEARCH 

CHAPTER OVERVIEW  

There will be two parts to this chapter. The first part is about a conclusion that 

summarizes the results obtained in previous chapters. The second part will deal with 

possible suggestions for future research. 

5.1 Conclusion  

In this study, we used the log-logistic Cox model via simple imputation techniques to 

simplify the procedure for partly interval censored (PIC) data. Log-logistic distribution 

model has been mostly applied in medical experiments. The estimated of survival 

function was obtained using the maximum likelihood estimator and under PIC. 

Comparisons were made with existing one under the Weibull and lognormal 

distribution for generating the simulation data. The first step of this study is to look for 

real data set to confirm that our model is useful. Based on the result extracted from this 

data set, we found that our model fits well and  it is easy to be  implemented with respect 

to the survival functions estimated (Figures 2, 3, 4 and 5), the value of LRT and their 

p-value and AIC for four treatments that is; RT, surgery, hormone and chemotherapy.  

The medical data set used to implement our methods was collected from the Al-amal 

hospital in Qatar. The data was followed up the cancer patients from 2/1/2016 until 

1/19/2020. This study was implemented to compare cosmetic effects of each treatment 

alone for women in an early breast cancer stage and the event of interest was the time 

of first occurrence of breast retraction and the patients were observed at clinic visits, 

where the actual dates of the event were exactly recorded. 

Then, we modified the data set to be PIC data and interval data for research needs.  
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Overall, the results concluded from medical data have shown that, from survival curves 

for the two failure times for hormone (treated with hormone & without hormone), RT 

(treated with RT and without RT), surgery (treated with surgery and without surgery) 

and chemotherapy (treated with chemotherapy and without chemotherapy) are 

reasonable. In additional to that the breast cancer patients treated by hormone, RT, 

surgery and chemotherapy respectively, have more chances to survive longer compared 

with those who didn't receive  these treatments  as shown by  Figures 2 to 5 and LRT 

(Table 1). This result indicates how effective the methods of treatment are in increasing 

the survival chances for longer period compared with other treatments. 

In present research, we carried out simulation study based on the real breast cancer data. 

The data generated for 20000 times from the each treatments mentioned earlier in this 

thesis with different percentage of the exact observations that 0% (interval), 25%, 50%, 

75% and 100% via simple imputations methods (mean, midpoint, and left point) to 

achieve the partly interval data. The shape, scale and treatment coefficient using our 

Cox model with log-logistic based on MLE has been estimated. It has been witnessed 

that the our model with different imputations methods fits the data well especially when 

the data is partly-interval censored. Although the left point imputation in the simulation 

study is not performing well especially when we have less exact observation in the data. 

But the consistency, basic study and comparisons of present estimations and improved 

parameters (when left point is used) estimation will be conducted in future research. 

In a study conducted by researchers such as Kim (2003), Alharpy and Ibrahim (2013), 

Zyoud et al. (2016) based on PIC data, it was found that when there is more exact 

observations in the data are more likely to be correct and effective, the results become 

more stable. Similarly, we have obtained the same conclusion as theirs, hence, our 
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methods is strongly stable and flexible for PIC breast cancer compares to interval data. 

5.2 Suggestion for Future Research 

This study on breast cancer has utilized tools such as p-value, likelihood ratio test as 

well as the Cox model to help us arrive at the significance of the statistical decision. 

Once we can utilize these, we can make an educated analysis of the test. 

 There are a few scopes for further research. 

1. The biasedness of the sample needs to be checked to ensure there is no sampling

error in this case. 

2. More research is need when left point imputation are used.
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