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Featured Application: Urinary bladder cancer (UBC) is the second most common urogenital solid
tumor and the eleventh in the rank among all types of solid tumors. Although several oncogenes
and tumor suppressors are known to be implicated in the disease, the list of candidate prognostic
markers has recently expanded, as a result of the power of new high-throughput methodologies.
The prognosis and therapy of UBC have progressed greatly during the last years. However, a ma-
jority of the different tumor subtypes still relapses, manifesting poor prognosis. Here, we iden-
tified gene expression patterns being common across different histological phenotypes of UBC.
Such an approach could be useful in the discovery of prognostic and therapeutic targets able to
be applied in the majority of the tumor’s subtypes.

Abstract: Although several genes are known to be deregulated in urinary bladder cancer (UBC),
the list of candidate prognostic markers has expanded due to the advance of high-throughput
methodologies, but they do not always accord from study to study. We aimed to detect global gene
co-expressional profiles among a high number of UBC tumors. We mined gene expression data from
5 microarray datasets from GEO, containing 131 UBC and 15 normal samples. Data were analyzed
using unsupervised classification algorithms. The application of clustering algorithms resulted in
the isolation of 6 down-regulated genes (TMP2, ACTC1, TAGLN, MFAP4, SPARCL1, and GLP1R),
which were mainly implicated in the proteasome, base excision repair, and DNA replication functions.
We also detected 6 up-regulated genes (CDC20, KRT14, APOBEC3B, MCM5, STMN, and YWHAB)
mainly involved in cancer pathways. We identified lists of drugs that could potentially associate
with the Differentially Expressed Genes (DEGs), including Vardenafil, Pyridone 6, and Manganese
(co-upregulated genes) or 1D-myo-inositol 1,4,5-triphosphate (co-down regulated genes). We propose
12 novel candidate markers for UBC, as well as potential drugs, shedding more light on the underlying
cause of the development and progression of the disease.

Keywords: urinary bladder cancer; microarray; common gene expression; unsupervised machine
learning algorithms

1. Introduction

Urinary bladder cancer (UBC) is the second most common cancer of the human uro-
genital system [1–5]. In the United States alone, it is the sixth most common malignancy
representing 4.6% of all cancers, while globally it ranks eleventh in frequency [2–5]. The tu-
mor’s diagnosis is not related to age, yet its occurrence is very rare before the age of 40,
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with an average diagnosis at 65–70 years [2–5]. The male to female ratio is approximately
4:1. In men, UBC is the seventh most frequent tumor precedent by those of the prostate,
lung, and colon. Differences in male to female ratio are probably attributed to the gender-
related life-style, to the effect that androgenic hormones have, compared to estrogens,
as well as to the process of oncogenesis in the bladder [2–5].

Depending on their histological type, urinary bladder tumors are classified into
transitional cell carcinomas (TCC, 95%), squamous cell carcinomas (SqCC, 1–2%), adenocar-
cinomas (1%), and small cell carcinomas (SmCC, <1%). Finally, there are even rarer forms,
of epithelial or non-epithelial origin, such as leiomyosarcoma, lymphoma, carcinosarcoma,
and rhabdomyosarcoma [6]. The staging and grading of the tumor are both critical param-
eters for the likelihood of its recurrence and progression. Although both give an overview
of the disease state, they have limited prognostic capacity in terms of the recurrence of the
tumor, patient survival, or response to treatment. Therefore, efforts are constantly made
to detect new biomarkers (genes), using a sufficient sample of cancer patients of different
tumor stage and grade [1,4,5,7].

Several genes are well-known to participate in the malignant transformation of
cells in UBC. These include proto-oncogenes, which once aberrantly expressed, inter-
fere with normal growth mechanisms. The best example of this case is the RAS family of
genes, which encode a group of proteins (P21 or G) that indirectly regulate cell growth,
where RAS mutations lead to uncontrolled cell growth [8,9]. Other known oncogenes
include MYCC [10], HER2 (Cerb-B2) [11], MDM2 [12], FGFR3 [13,14] and ERBB1 [15–17].
Several cycle-regulatory genes are also involved in the onset of the disease.

DNA microarrays constitute a high-throughput technology used for the study of gene
expression patterns. Common applications of microarrays include the study of changes
in gene expression between different conditions [18]. The present work compares two
different classes, healthy tissue used as controls and tumors from all stages and grades of
the urinary bladder.

The determination of gene relationships or groups of genes and the identification of
biological functions of interest is carried out using machine learning algorithms, such as
clustering and classification [18]. A major challenge in the analysis of gene expression is
the manipulation of the large number of genes found in the original dataset, which could
be up to tens of thousands. Many of these genes are not related to grouping or classification
and therefore, the data must be adapted somehow, to enhance the relationship between
genes and samples. Data (genes) that do not provide any additional information, will add
significant complexity to the study, if not removed [19]. For example, if the expression
of a particular gene is the same in all samples, this gene will consequently not be able
to distinguish between sub-groups. Conversely, if a gene is expressed differently, e.g.,
between control-disease groups, then, it is probably useful for the distinction. Therefore,
the selection of an optimal gene identification subset from the original dataset is an impor-
tant step before grouping or classifying, and it is customary to call such a subset of genes,
“differentially expressed genes” (DEGs) [19]. In the present work, we utilized computa-
tional methods, aiming to detect common gene expression patterns in UBC, among different
subtypes of the tumor. We have previously used a similar approach, through which we
identified that CDC20 is a possible gene marker for the disease [20,21]. Here, we expanded
our investigation by collecting gene expression data from various UBC subtypes and de-
tected more candidate genes, which were commonly deregulated across them. Importantly,
we validated most of these in an independent sample cohort. Our hypothesis is that gene
expression should manifest common profiles across urinary bladder cancers, despite their
histological differences. Although gene expression profiling has been widely used for
tumor sub-classification, our attempt is to use it in order to find common expressional
profiles, and therefore, common prognostic and/or therapeutic targets.
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2. Materials and Methods
2.1. Dataset Collection

We mined gene expression data from five distinct datasets all freely available in
the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA). All data derived from gene expression DNA
microarray experiments were performed on the tissues of patients with bladder cancer
(disease samples), as well as on healthy tissues (control samples) (Supplementary Table S1).
In particular, the collected datasets were GSE27448 (consisted of 10 UBC and 5 control sam-
ples), GSE89 (consisted of 40 pathological samples), GSE3167 (consisted of 41 pathological
samples and 19 controls), GSE7476 (consisted of 9 pathological samples and 3 controls)
and GSE12630 (consisted of 19 pathological samples). The aforementioned datasets were
selected on the basis of tumor type, i.e., UBC samples representing a complete spectrum of
subtypes (e.g., Ta, Tis, T1, muscle-invasive, metastatic, grade 1–4). In total, we collected
gene expression data from 131 cancer samples and 15 control samples and analyzed them
computationally.

2.2. Data Pre-Processing

The aforementioned datasets were produced by different microarray platforms, whereas
each platform contained a different number of probes ranging from 7000–50,000. In order
to create a common gene dataset, present across all microarray platforms, the “annotation
tables” of all platforms were used, in which the detailed information of each probe was
available. Gene IDs and the corresponding gene symbols were used as the common
identifiers for gene selection, as these are the official identifiers listed on the NCBI website.
For example, the gene with the official gene symbol TP53 has a gene ID# 7157. This final
selection of genes based on the above criteria resulted in 2266 common genes among
all experiments.

2.3. Background Correction and Normalization

Background correction was performed as previously described [20,21]. Normaliza-
tion was implemented using quantile normalization [20–24]. Both were executed in the
Matlab® computational environment (The Mathworks Inc., Natick, MA, USA).

2.4. Differentially Expressed Genes (DEGs)

To evaluate the DEGs between UBC and control samples, a permutation test with
10,000 iterations for each gene was utilized with t-statistic with unequal variance. The esti-
mated p-values were calculated based on the common distribution of all calculated t-scores
derived from all permutations for each gene. So, in total we calculated 10,000 × 2226 t-scores,
thus the minimum p-value that could be obtained was 1/(10,000 × 2266) = 4.4 × 10−8. Ap-
plying previous algorithms [25], based on the distribution of p-values, we also estimated
the coefficient π0 = m0/m. This gives an approximation of how many genes are truly null,
i.e., not differentially expressed. Therefore, approximately 0.4169 × 2266 = 944.69 genes
were not differentially expressed. Therefore, if all genes were selected this would result
in a false discovery rate (FDR) equal to 41.6%. In addition, the above algorithm derives
the q-value for each gene. Based on these, we obtained the corresponding FDR value for
all the genes that were considered to be statistically significant (Supplementary Figure S1).
Based on the FDR, one can select the q-value (hence the p-value cutoff) and at the same
time, examine the number of false positives [25].

Consequently, by choosing a cutoff p-value = 0.01, we obtained a q-value = 0.021;
i.e., FDR = 2.2% and thus, 440 genes were selected as differentially expressed, among which,
9.4 false positives are expected (Supplementary Figure S2). The final calculated param-
eters were m = 2266, m0 = 944.7, S = 440 and F = 9.4, FPR (false positive rate) was
equal to 9.4 / 944.7 (1%), specificity = 1-FPR = 99%, FNR (false negative rate) = 67.4%
and sensitivity = 1-FNR = 32.6%. The results are summarized in Supplementary Table S2.



Appl. Sci. 2021, 11, 1785 4 of 21

2.5. Unsupervised Classification Methods

We used unsupervised machine learning classification algorithms, which included
hierarchical clustering (HCL) with the unweighted pair group method with arithmetic
mean (UPGMA) and k-means clustering. Both methodologies were applied to the set of
DEGs, in order to unravel expression patterns, as well as common expressional profiles
across all UBC samples. The k-means algorithm was applied with 100 iterations and
the optimal cluster number for the k-means algorithm was estimated using the Calinski–
Harabasz criterion. We complementarily used the Davies–Bouldin algorithm for detecting
the optimal number of clusters [26].

2.6. Common Expression Patterns in UBC

The DEGs were examined for taking part in possible common expression patterns, i.e.,
genes that were either down- or up-regulated across all UBC samples, irrespectively of
the tumor diagnosis. The clusters revealed by unsupervised classification were examined
separately. Each gene was counted for its occurrences in up- or down-regulation across
all samples and the result was divided by the total number of samples, providing the
percentage of up- or down-regulated samples for the respective gene. We looked for genes
that were co-up or down-regulated, either across all UBC samples (100%), or in 90–99% of
them, respectively.

2.7. Gene Ontology (GO) Enrichment

GO enrichment was performed using gprofiler [27] and WebGestalt [28–31]. Gene def-
initions and functions were based on the databases of the National Institute of Health (NIH,
Bethesda, MD, USA).

2.8. Inter-cohort Validation of the DEGs

We validated the top deregulated genes using expression data from the Cancer
Genome Atlas Bladder Cancer (TCGA-BLCA) dataset, composed of 404 urinary blad-
der cancer samples and 19 normal bladder samples. To increase the number of the normal
samples, we also used 9 normal samples from the GTEx project, having a total of 28 normal
bladder samples. We used log2 (TPM + 1) to log-scale the expression values and the one-
way ANOVA to assess statistical differences between bladder cancer and normal samples
from both the TCGA and GTEx projects. A log2FC = 1 and a p = 0.01 were used as cutoff
thresholds for statistical significance.

3. Results
3.1. HCL of DEGs

The DEGs were initially clustered using HCL, to detect patterns of expression. Inter-
estingly, we found a cluster of genes exhibiting global down-regulation across all cancer
samples. In addition, high grade and metastatic tumors were clustered together, as well
as grade 4 tumors clustered with Ta/T1 grade 3 ones. T1/T2 grade 2 and grade 3 cancers,
also appeared to manifest common patterns of gene expression (Figure 1).

3.2. K-Means of DEGs

To investigate further the profile of the DEGs, we clustered them using k-means
(Figure 2). We broke-down the globally DEGs and separated them. In particular, the Davies–
Bouldin criterion manifested that the optimal numbers of clusters were 2, 3 and 4 (Figure 2A).
Clustering for k = 2 (Figure 2B) manifested two clusters, where the first included 49 genes
and the second 391 genes. The first cluster showed probable candidate genes for global
down-regulation, while the second manifested a variety of gene expressional profiles.
Therefore, we clustered genes for k = 3 (Figure 2C) and k = 4 (Figure 2D). For k = 3, the first
cluster remained the same and the next two clusters manifested up-mid, up- and down-
regulated genes (Figure 2C). A further separation with k = 4, still manifested the cluster
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with the possible 49 down-regulated genes, while it revealed a cluster of 278 genes with
possible up-regulated genes (Figure 2D).Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 20 
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3.2.1. Globally Down-Regulated Genes

The previous results gave us a hint that clusters A (Figure 2D) and B (Figure 2D) include
genes that could be possibly up- and down-regulated, globally. Therefore, these clusters
(cluster A with 49 genes and B with 278 genes, Figure 2D) were chosen for further analysis.

Additionally, we performed a k-means clustering analysis for cluster A (Figure 2D),
which resulted in two sub-clusters, termed “A1” and “A2” (Figure 3A,B). This further
classification was attempted in order to further separate genes based on their expressional
profile. Indeed, the genes of cluster A were separated in two clusters, one of which
manifested genes with lower expression (cluster A2) compared to those in cluster A1
(Figure 3B). For visualization purposes, we also performed an HCL clustering in all three clusters
(Figure 4), resulting in clusters A (Figure 2D), A1 (Figure 3B), and A2 (Figure 3B). In particular,
HCL manifested and visually confirmed the down-regulated pattern of k-means clusters
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A (Figure 2D), A1, and A2 (Figure 3B), which are presented in Figure 4A–C. The globally
down-regulated genes are also summarized in Table 1.
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Table 1. Globally down-regulated genes in at least >89% of all samples.

Inv. Gene Name Cluster n (%)

1 ACO1 A1 128 97.71%
2 CCKAR A1 128 97.71%
3 JAK3 A1 128 97.71%
4 GLP1R A2 127 96.95%
5 RNASE3 A1 127 96.95%
6 GJB1 A1 126 96.18%
7 KRT83 A1 126 96.18%
8 MPZ A1 126 96.18%
9 PDE6G A1 126 96.18%
10 TPM2 A2 126 96.18%
11 AMHR2 A1 125 95.42%
12 CD40LG A1 125 95.42%
13 GYPC A1 125 95.42%
14 PTPN1 A1 125 95.42%
15 SLC5A2 A1 124 94.66%
16 WNT10B A1 124 94.66%
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Table 1. Cont.

Inv. Gene Name Cluster n (%)

17 MFAP4 A2 123 93.89%
18 TAGLN A2 123 93.89%
19 AMPD3 A1 122 93.13%
20 CHRNG A1 122 93.13%
21 GNB3 A1 122 93.13%
22 NHLH1 A1 122 93.13%
23 ACTC1 A2 121 92.37%
24 DBH A1 121 92.37%
25 FUT2 A1 121 92.37%
26 NPY6R A1 121 92.37%
27 TACR3 A1 121 92.37%
28 BMP4 A1 120 91.60%
29 GPA33 A1 120 91.60%
30 RBMS2 A1 120 91.60%
31 RELN A1 120 91.60%
32 TRAF6 A1 120 91.60%
33 BIN1 A1 119 90.84%
34 CRYGD A1 119 90.84%
35 LIF A1 119 90.84%
36 SPARCL1 A2 117 89.31%

3.2.2. Globally Up-Regulated Genes

Similarly, we followed this procedure for the up-regulated genes. In particular, the op-
timal number of clusters was calculated to be 6 and 7 (Figure 5A), presented as k-means
clusters (Figure 5B,C). The clusters B1, B2, B6, and B7, manifested possibly globally up-
regulated genes (Figure 5C), whose HCLs are presented in Figure 6. We identified 30 genes,
which were globally up-regulated in >80% of all tumor samples (Figure 6). The identified
genes included YES1, PMM1, IRF3, ARL6IP1, CYTH2, LASP1, PSMD2, PSMD7, DDOST,
NDUFV2, RALY, ADRM1 (Figure 6B), HMGA1, RPN1, TXN, TYK2, UNG, EBNA1BP2,
IGF2R, PCNA, PTMA, SNRPB, USP7, and VDAC1 (Figure 6C), CDC20, KRT14, APOBEC3B
(Figure 6D), YWHAB, STMN1, and MCM5 (Figure 6E). The globally up-regulated genes
are summarized in Table 2.
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Table 2. Globally up-regulated genes in ≥80% of all tumor samples.

Inv. Gene Name Cluster n (%)

1 YES1 B1 125 95.42%
2 PMM1 B1 123 93.89%
3 CDC20 B6 123 93.89%
4 IRF3 B1 122 93.13%
5 MCM5 B7 122 93.13%
6 ARL6IP1 B1 121 92.37%
7 CYTH2 B1 121 92.37%
8 LASP1 B1 121 92.37%
9 PSMD2 B1 121 92.37%
10 PSMD7 B1 121 92.37%
11 DDOST B1 120 91.60%
12 NDUFV2 B1 120 91.60%
13 RALY B1 120 91.60%
14 STMN1 B7 120 91.60%
15 ADRM1 B1 119 90.84%
16 HMGA1 B2 119 90.84%
17 RPN1 B2 119 90.84%
18 TXN B2 119 90.84%
19 TYK2 B2 119 90.84%
20 UNG B2 119 90.84%
21 EBNA1BP2 B2 118 90.08%
22 IGF2R B2 118 90.08%
23 PCNA B2 118 90.08%
24 PTMA B2 118 90.08%
25 SNRPB B2 118 90.08%
26 USP7 B2 118 90.08%
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Table 2. Cont.

Inv. Gene Name Cluster n (%)

27 VDAC1 B2 118 90.08%
28 YWHAB B7 118 90.08%
29 APOBEC3B B6 106 80.92%
30 KRT14 B6 96 73.28%

3.2.3. Cohort Validation

We validated 25 upregulated and 19 downregulated genes (83.33% and 63.33% ac-
curacy, respectively) out of the top 30 DEGs in bladder cancer, compared to a mixed
sample of normal urothelia extracted from the TCGA-BLCA and GTEx projects. The genes
MCM5, STMN1, APOBEC3B, KRT14, CDC20, SNRPB, PCNA, UNG, RPN1, HMGA1a,
and ARL6IP1 exhibited the highest upregulation across all urinary bladder cancer samples
(log2FC > 1, p < 0.001); whereas, ACTC1, BIN1, BIMP4, GYPC, MFAP4, MPZ, NPY6R,
RELN and SPARCL1, the highest downregulation (log2FC < 1, p < 0.001) (Figure 7).
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3.3. Functional Annotation of the DEGs

Our analysis manifested globally up- and down-regulated genes that were further
analyzed for their functional annotation.
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3.3.1. Functional Annotation of Globally Down-Regulated Genes

The down-regulated genes did not manifest any significant gene ontological function;
yet they participated in “Pathways in Cancer” and “Basal Cell Carcinoma”, along with “sig-
naling pathways regulating pluripotency of stem cells” (Figure 8A). In addition, we queried
for drug annotations related to these genes and found that they are related to Vardenafil,
Pyridone 6, Manganese, Disulfiram, Cholecystokinin, Tofacitinib, Pranlukast, 3-isobutyl-1-
methyl-7H-xanthine, Ertugliflozin, and Semaglutide (Figure 8B). Among the drugs with
the highest enrichment ration, Vardenafil and Disulfiram, an erectile dysfunction drug and
a proteasome inhibitor, respectively, were of particular interest. Ertugliflozin and Semaglu-
tide are also two drugs of potential interest since both constitute glucose resorption factors.
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3.3.2. Functional Annotation of the Globally Up-Regulated Genes

Similarly, we assessed the functional annotation of the globally up-regulated genes
across all UBC samples and found that the DEGs participate in protein binding, in terms
of their molecular function. In addition, they are related to the proteasome (Figure 9A,
Table 3). These findings were confirmed by the pathway annotation analysis, where the
DEGs manifested participation in the proteasome and cell cycle pathways, but also in base
excision repair, DNA replication, N-glycan biosynthesis, and cell cycle and Epstein - Barr
virus infection, among others (Figure 9B). Finally, the investigation of drug annotation
showed that DEGs were related to Pyridone 6, 1D-myo-inositol 1,4,5-triphosphate, Tofaci-
tinib, Inositol 1,3,4,5-tetrakisphosphate, S,S-2(-Hydroxyethyl) Thiocysteine, Formic Acid,
Liothyronine, Phenethyl Isothiocyanate, Dasatinib and Medical Cannabis (Figure 9C).
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Figure 9. Functional annotation of the globally up-regulated DEGs in UBC. The annotation analysis includes gene ontology
(GO) enrichment (A), pathway analysis (B), and drug annotation (C) (Legend: MF: molecular function, BP: biological process,
CC: cellular component, KEGG: KEGG pathway database, REAC: reactome pathway database, WP: Wikipathways, TF:
transcription factor-binding motifs, MIRNA: MiRNA targets, HPA: he Human Protein Atlas, CORUM: The Comprehensive
Resource of Mammalian Protein Complexes, HP: human phenotype ontology).
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Table 3. Gene Ontology annotations of the globally up-regulated genes, as depicted in Figure 8A.

ID Source Term Term ID Padj Genes

1 GO:MF protein binding GO:0005515 0.009515

YES1,PMM1,CDC20,IRF3,MCM5,ARL6IP1,CYTH2,LASP1,PSMD2,
PSMD7,DDOST,NDUFV2,RALY,STMN1,ADRM1,HMGA1,RPN1,TXN,
TYK2,UNG,EBNA1BP2,IGF2R,PCNA,PTMA,SNRPB,USP7,VDAC1,
YWHAB,APOBEC3B,KRT14

2 GO:MF dolichyl-diphosphooligosaccharide-protein
glycotransferase activity GO:0004579 0.019061 DDOST,RPN1

3 GO:MF oligosaccharyl transferase activity GO:0004576 0.025388 DDOST,RPN1

4 GO:MF protein-containing complex binding GO:0044877 0.044508 CDC20,LASP1,ADRM1,UNG,PCNA,SNRPB,VDAC1,YWHAB,KRT14

5
GO:BP viral process GO:0016032 0.021014 IRF3,HMGA1,UNG,IGF2R,PCNA,USP7,VDAC1,YWHAB,APOBEC3B

GO:BP interspecies interaction between organisms GO:0044419 0.031201 IRF3,PSMD2,PSMD7,STMN1,HMGA1,TYK2,UNG,IGF2R,PCNA,USP7,
VDAC1,YWHAB,APOBEC3B

6 GO:BP symbiotic process GO:0044403 0.034472 IRF3,HMGA1,UNG,IGF2R,PCNA,USP7,VDAC1,YWHAB,APOBEC3B

7 GO:CC proteasome regulatory particle GO:0005838 0.001241 PSMD2,PSMD7,ADRM1

8
GO:CC cytosol GO:0005829 0.001839

YES1,PMM1,CDC20,IRF3,MCM5,ARL6IP1,CYTH2,PSMD2,PSMD7,
STMN1,ADRM1,HMGA1,RPN1,TXN,TYK2,PTMA,SNRPB,USP7,
YWHAB,KRT14

GO:CC proteasome accessory complex GO:0022624 0.001847 PSMD2,PSMD7,ADRM1

9 GO:CC catalytic complex GO:1902494 0.007993 CDC20,PSMD2,PSMD7,DDOST,NDUFV2,RALY,ADRM1,RPN1,
PCNA,SNRPB

10 GO:CC intracellular organelle GO:0043229 0.035435

YES1,CDC20,IRF3,MCM5,ARL6IP1,CYTH2,LASP1,PSMD2,PSMD7,
DDOST,NDUFV2,RALY,STMN1,ADRM1,HMGA1,RPN1,TXN,TYK2,
UNG,EBNA1BP2,IGF2R,PCNA,PTMA,SNRPB,USP7,VDAC1,YWHAB,
APOBEC3B,KRT14

11 GO:CC proteasome complex GO:0000502 0.036772 PSMD2,PSMD7,ADRM1

12 GO:CC endopeptidase complex GO:1905369 0.038428 PSMD2,PSMD7,ADRM1

13 GO:CC oligosaccharyltransferase complex GO:0008250 0.042715 DDOST,RPN1
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Table 3. Cont.

ID Source Term Term ID Padj Genes

14 GO:CC intracellular membrane-bounded organelle GO:0043231 0.043905
YES1,CDC20,IRF3,MCM5,ARL6IP1,CYTH2,PSMD2,PSMD7,DDOST,
NDUFV2,RALY,ADRM1,HMGA1,RPN1,TXN,TYK2,UNG,EBNA1BP2,
IGF2R,PCNA,PTMA,SNRPB,USP7,VDAC1,YWHAB,APOBEC3B,KRT14

15 KEGG Proteasome KEGG:03050 0.022187 PSMD2,PSMD7,ADRM1

16 KEGG Cell cycle KEGG:04110 0.031652 CDC20,MCM5,PCNA,YWHAB

17 REAC Ub-specific processing proteases REAC:R-HSA-5689880 0.002821 CDC20,PSMD2,PSMD7,ADRM1,USP7,VDAC1

18 WP Cell Cycle WP:WP179 0.029044 CDC20,MCM5,PCNA,YWHAB
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4. Discussion

In the present work, we investigated for the first time the presence of globally up- and
down-regulated genes in UBC. Microarray experiments consist of a series of experimental
and analysis steps, among which, the clustering of the data at hand is of major importance.
Clustering is one of the most important functions in data analysis [32]. Some of the
main tasks that clustering algorithms are called upon to solve, is gaining insight into
data, classifying, and compressing them [33]. Clustering approaches aim to extract sets
of genes with similar expression profiles across all samples, or in a subset of them [34].
This is mainly accomplished by using 2D matrices of the form Genes × Samples, on which
appropriate clustering algorithms are applied. The k-means or bi-clustering techniques
are good examples of such algorithms [35–41]. There are also numerous proposals in the
literature regarding the analysis of time-series microarray data. In such cases, a series of
cDNA microarray experiments are performed in different time points, and then clustering
techniques on a 3D matrix of the form Time × Genes × Samples are applied [34,42–51].

In the present study, our main approach was to use different clustering methods. We fo-
cused, however, on the k-means algorithm, since it is very efficient for grouping expression
patterns. It is also relatively easy to implement, it can be used for large datasets, and has
the significant advantage of calculating data trends by estimating the centroids [52–55].
For small cluster numbers (k values), it converges very quickly to the local optimal, allow-
ing a sufficient number of initializations to be used [56–60]. An important methodological
parameter is the number of clusters. It is considered a difficult task since it influences the
final outcome, i.e., which genes will be clustered together. A frequent approach is to test
several appropriate values of k, in order to find patterns in expression data. In the present
work, the Davies–Bouldin criterion helped in this direction, which successfully gave the
optimal k clusters [61].

Unlike k-means, hierarchical clustering algorithms do not offer user-defined config-
uration options. The only option that can be made is to calculate the distance between
clusters. In this case, we chose to use the UPGMA method, which defines the distance
between two blocks as the average distance between all elements. Therefore, we used
UPGMA in combination with k-means clustering. It has been previously shown that HCL
groupings based on k-means clusters, perform well [18]. A major disadvantage of the HCL
algorithm is that it requires large amounts of memory in order to store the “Dissimilarity
Matrix”, making it difficult to implement when the number of data is large.

This mode of analysis led us to the identification of 36 globally down-regulated and
30 globally up-regulated DEGs. The co-up-regulated genes could pose a more interesting
therapeutic target since gene inhibition is probably easier, compared to the induction of
gene expression. The genes YES1 and PMM1 were the ones with the highest percentage
of up-regulation among all tumor samples. To our knowledge, there is no known relation
between YES1 or PMM1 and UBC. In addition, no known relations were found for the
role of IRF3, ARL6IP1, CYTH2, PSMD2, PSMD7, NDUFV2, RALY, ADRM1, RPN1, TYK2,
UNG, EBNA1BP2, SNRPB, and VDAC1 in UBC; therefore, these genes could be the topic of
future studies.

Among the co-upregulated genes, we found CDC20, which was also previously re-
ported to be deregulated in urinary bladder cancer [20]. The rest genes were not previously
identified as co-DEGs in UBC. CDC20 encodes the cell-division cycle protein 20, a regula-
tory protein that interacts with several other proteins at multiple points in the cell cycle [62].
It has been observed to be highly expressed in high-grade cancers and is associated with a
poor prognosis in breast, pancreatic, bladder, and lung cancers [62]. In previous studies,
specifically conducted on bladder cancer, CDC20 was presented as a biomarker that asso-
ciates with poor prognosis [63,64]. Another report showed that in breast cancer, CDC20
limits the activity of the tumor suppressor SMAR1 [62], while there is evidence that the
tumor suppressor TP53 inhibits the growth of cancer cells through indirect regulation
of CDC20 [65]. In all, CDC20 is often cited in the literature as a “potentially innovative
therapeutic target” for cancer treatment [65,66].
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The MCM5 (Minichromosome Maintenance Deficient 5) gene, also known as CDC46,
encodes the DNA replication licensing factor protein MCM5, which is implicated in ini-
tiating DNA replication. The MCM5 protein is up-regulated during the transition from
the G0 phase to the G1/S phase of the cell cycle and can be actively involved in its regu-
lation. Previous studies have shown that the MCM5 protein is a very reliable biomarker
for the diagnosis and prognosis of bladder cancer. Completely differentiated cells of
the healthy epithelium do not express this gene, yet cancer cells that show intense cell
division strongly express MCM5, making its protein detectable in urine [67]. Among sev-
eral FDA-approved diagnostic tests for the early detection of bladder cancer (cystoscopy,
urine cytology, ImmunoCyt, and UroVysion), as well as for the detection of the biomarkers
NMP22 (Nuclear matrix protein 22), BTA (bladder tumor antigen), MCM5 is a very reli-
able biomarker, regardless of the cancer type, with >70% sensitivity and >95% Negative
Predictive Value (NPV) [67–70].

Interestingly, LASP1 has been previously reported in the literature as a potential
diagnostic marker of UBC [71–73]. The above-mentioned reports are in good agreement
with our findings.

In another report, the DDOST gene was found to be hypo-methylated and over-
expressed in the majority of UBC samples. In particular, DDOST was in the core of the
built protein-protein network in these tumors [74]. Although this was a single report on
DDOST in UBC, it is also in agreement with our findings.

SMTN1 is another interesting gene that we revealed. This gene encodes the Stathmin
protein, which is also known as oncoprotein 18. This is very important for the regulation
of the cytoskeleton, which is involved in many cellular processes, such as cytoplasmic
organization, cell division and cell division [75]. In a recent report, it was shown that
Stathmin is highly expressed in a wide range of cancers [76], including those of the lung,
esophagus, breast, cervix, bladder urothelial carcinoma, and glioblastoma. In addition,
the same study concluded that targeting this gene reduces cell proliferation, cell motility,
and increases the apoptosis of neoplastic tumors. Specifically in UBC, it has been reported
that Stathmin was found: (a) to be low or even not-expressed in the healthy urothelium,
(b) to correlate between high protein expression and tumor high stage and degree, (c) to be
expressed in the majority of metastatic cancers. These studies are in agreement with our
report, declaring STMN1 as a potential therapeutic target of great potential [77].

HMGA1 is another interesting up-regulated gene, connected to the tumor’s progres-
sion and therapy resistance [78–82]. These reports are in accordance with our findings
since HMGA1 was also up-regulated in >90% of tumors in our study, indicating that they
indeed manifest similar genotypic profiles.

Another interesting report showed that the TXN gene is probably a direct target of
luteolin, which inhibits tumor proliferation through the rapamycin pathway [83]. On the
other hand, PTMA [84], IGFR2 [85], and YWHAB [86] are reported in the literature as three
genes whose down-regulation is related to poor prognosis, cell proliferation enhancement,
and anti-apoptosis, and are thus suspected to act as tumor suppressors. This is in con-
trast to our findings, where these genes were globally up-regulated. Our finding that
USP7 is globally up-regulated, is in line with two previous reports, which indicated that
USP7 inhibition is a potential therapy for UBC [87,88].

In addition, PCNA was found to be globally up-regulated in UBC. This is one of the
best-studied genes in this tumor type. It is a well-known proliferation marker, related to
tumor progression and anti-apoptosis; thus, it acts as an oncogene. The majority of studies
agree that PCNA over-expression is related to tumor progression and survival [89–93].
In addition, PCNA inhibition was directly connected to UBC therapy, where it has been
shown to function as an anti-tumor agent [90,94–96]. These findings are in good agreement
with our results, in which PCNA was globally up-regulated in UBC.

The accumulation of various mutations may be due to exogenous or endogenous
factors and is closely related to the development of carcinogenesis. There is increasing
evidence that APOBEC3B is a broadly mutagenic agent in multiple tumor types [97]. It also
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shows increased expression, affecting the ontogenesis and progression of various cancers,
including those of the neck, breast, lung, head, and bladder. The APOBEC3B gene functions
as a cytidine to uridine (C-to-U) editor, and it is heavily implicated in innate and adaptive
immunity with important roles in antibody diversification and antiviral response [98].
It also plays an important role in the functions of the immune system, introducing mu-
tations to the viral genomes [99–102]. This was confirmed by our functional annotation
analysis showing that the identified DEGs, manifested antiviral-related functions. It is
reasonable to assume that APOBEC3B inhibitors can prevent the accumulation of mutations
in certain cancers, making it a promising therapeutic target. APOBEC3B is often reported
in the literature with the terms “mutagen” and “tumor mutator” [103–107].

Another interesting gene that our analysis revealed is KRT14. This encodes the
protein keratin 14, which is a type I keratin being part of the cell skeleton of epithelial
cells. The bladder epithelium, also known as the urothelium, is made up of 3 different
cell types. The first layer, or superficial layer, coats the inner surface of the bladder
and is made up of “umbrella cells”. The next layers consist of the intermediate and the
basal layers, which come in contact with the skin. In several studies performed in mice,
it has been shown that the cells of the basal layer, expressing KRT14, are responsible for
the regeneration of urothelium in the event of injury, and are cells responsible for the
oncogenesis in the bladder [108,109]. According to a previous study, KRT14 expression
in bladder cancer is strongly associated with poor prognosis for survival, regardless of
other clinical variables such as the stage of cancer, age, or sex [110]. Thus, it has been
suggested that KRT14 is a possible prognostic biomarker for distinguishing between high
and low-risk patients.

Finally, we observed that the globally up-regulated genes were mostly involved in
molecular functions related to the proteasome and protein-protein binding, while the
annotated pathways, included viral carcinogenesis and proteasomal functions. On the
other hand, the globally down-regulated genes were found to participate in different
pathways in cancer, as well as basal cell carcinoma pathways.

5. Conclusions

In the present work, we identified 36 down-regulated and 30 up-regulated genes,
across different subtypes of urinary bladder cancer stemming from various microarray
datasets. Importantly, we validated most of these DEGs in an independent dataset from
the TCGA, where gene expression was assessed using RNAseq. To the best of our knowl-
edge, there is no previous work identifying common gene expression patterns in UBC.
Our study identified genes that are in agreement with previous studies regarding their
implication in the disease, as well as working as predictors of tumor prognosis, progression,
and therapy. The methodology of finding co-deregulated patterns of gene expression across
different studies could constitute a basis for the discovery of tumor biomarkers for therapy,
prognosis, and diagnosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/4/1785/s1, Figure S1: Calculated False Discovery Rate (FDR) for the common gene dataset
(Legend: π̂0 = m0

m , where, m0 and m are the number of true null hypotheses and the total number
hypotheses tested respectively, p-value is the obtained p-value for each gene, q-value is the respective
q-value for each gene, λ is the threshold after which the proportion of truly null features equals
the number of p-values greater than λ divided by m(1 − λ)). Figure S2: Schematic representation
of p-values vs. q-values (A), the q-values vs. the expected number of significant genes (B) and the
number of expected significant genes vs. the number of false positives (C). Table S1: Summary of
the microarray experiments (data series) used in the present study (Legend: UBC: Urinary Bladder
Cancer, the indication GrX implies a UBC of unknown grade). Table S2: The estimated parameters of
the FDR calculations.
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