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ABSTRACT

Name, Fawaz Ahmad Kserawi, Masters : June: 2021, Master of Science in Computing

Title: Privacy-Preserving Data Aggregation in Smart Power Grid Systems

Supervisor of Thesis: Dr. Qutaibah m. Malluhi.

Smart Meters (SMs) are IoT end devices used to collect user utility consumption with

limited processing power on the edge of the smart grid (SG).While SMs have significant

applications in providing data analysis to the utility provider and consumers, private user

information can be inferred from SMs readings. Several methods are developed in the

literature that uses perturbation by adding noise to alter user load, hide consumer data,

and preserve privacy. Most practices limit the amount of perturbation noise using

differential privacy to protect the benefits of data analysis. However, additive noise

perturbation may have an undesirable effect on billing. We present a virtual battery

model that uses perturbation with additive noise obtained from a virtual chargeable

battery. Ourmodel uses fog aggregationwith authentication and encryption that employs

lightweight cryptographic primitives. We use Diffie-Hellman with a two-way challenge-

response method for symmetrical key exchange. A hash-based message authentication

code (HMAC) is used for integrity and authenticity, and Advanced Encryption Standard

(AES) for encryption. We present our differentially private model with bounding

parameters and a dynamic window algorithm to preserve privacy budget loss in infinite

time series.
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CHAPTER 1: INTRODUCTION

1.1.Motivation

With the need for efficient energy, intelligent energy distribution, and renewable

energy integration, traditional electric grids are converted into smart grids (SG). Smart

grids are implemented for better reliability, performance utilization, and consumer in-

volvement. In some cases, smart grids can be a requirement imposed by governmental

policies to achieve environmental and economic objectives such as the EU 20-20-20

goals to increase renewable resources and decrease Co2 emissions [1]. SG systems

employ an Advanced Metering Infrastructure (AMI) that provides bi-directional com-

munication between energy or utility providers and consumers to ensure optimization in

real-time. Within the AMI, distributed smart meters in homes, businesses or factories,

provide on-demand or scheduled data reports to the utility service providers or data

aggregators (DA). The provided data can then be used for accurate meter readings, re-

moving randomness in cost estimations, optimizing consumption with dynamic billing

and power generation, and transmission planning. Such data provides helpful informa-

tion for the end consumer to optimize billing prices and utility companies by providing

load distribution, load management, generation, consumption monitoring, billing settle-

ments, and price optimization. A critical aspect of SG is gathering or aggregating the

smart meters data to predict power usage and future grid planning.

While accurate data readings and updates to service providers or DAs are essential to

achieve the previous goals, periodical data updates can cause serious privacy issues. In a

fine-grained data consumption aggregation, several attacks can infer useful information

from the data by eavesdropping on the communicated packets. Such attacks can reveal
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personal information and may be exploited by untrusted parties.

Simultaneously, complete hiding of user data may render the collected data useless

when considering the SG benefits in billing, advising user consumption, and network

load consideration. It is clear that there is a need to protect the data on all SG components,

be it the SM data, the aggregators’ network, or the utility provider services and servers.

Data hiding and consumer privacy protection should be the primary concern for any SG

system. Another consideration is the bandwidth and processing costs of implementing

a security solution. Processing and network cost are essential as smart meters are IoT

(Internet of Things) devices that do not hold high processing capabilities. Bandwidth

is another factor to consider as the large amount of data transmitted from all SMs to a

single aggregation server can cause network congestion.

Most privacy-preserving methods in the literature involve power load perturbation

by adding noise to the consumer load [2][3][4][5][6][7][8][9]. Noise can be generated

from a physical chargeable battery by charging or discharging it. When the battery

is charging in a physical battery model, the charging amount is considered a negative

noise added to the power load. Conversely, when the battery is discharging, the noise

is positive with a value equivalent to the discharged amount. Charging and discharging

the battery is usually done using a separate hardware component, usually a controller.

The chargeable battery model has some limitations, as the battery’s size can impact the

volume of the added noise and is more costly to implement. Other works consider using

low noise with differential privacy while preserving data analytics [3]. However, such

models do not consider the loss of cost from the added noise since reconstructing time

series with noise may lead to data losses [10].
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In this work, we propose secure, lightweight, and cost-effective data aggregation

techniques that ensure the consumer’s privacy and guarantee safe transmission of smart

meter data. We use light cryptographic methods for encryption and authentication,

which protect against possible eavesdropping attacks. Additionally, we use perturbation

noise from a virtual value to maintain cost and hide fine-grained load data from potential

hostile aggregators or utility providers while keeping data analysis. We present a fog

aggregation architecture and a dynamic window differential privacy algorithm for a

differentially private Gaussian mechanism.

1.1.1.Problem Statement

This work focuses on building a privacy-preserving aggregation framework that

protects smart meters privacy while considering billing cost. Since smart meters are

IoT devices, a complete understanding of their properties, including security, privacy,

and risk, is required for such devices to be used for industries [11]. Lack of a security

model in the smart grid can lead to severe threats, some of which are presented in

[5]. For example, an attacker or untrusted aggregator may analyze the collected data

to conclude the number of residents in a house, residents’ availability, and types of

appliances used. Such data can be sold, shared, and exploited by third parties such

as insurance companies, entertainment companies, and government agencies [12]. A

user load profile can reveal various private information such as the time of appliance

usage during the day[13] as described in Figure 1.1. Another form of attack on privacy

is to reveal power consumption data that may lead to production patterns in industrial

factories and businesses to competitors. Other risks are presented when the collected

data is used to detect a vulnerability within the grid. Furthermore, sensitive information
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related to power distribution and energy production patterns might be leaked. To tackle

the above issues, several cryptographic methods, data perturbation using differential

privacy, and chargeable batteries are proposed in the literature. However, most of these

methods do not consider the effect of noise addition on billing and the deterioration of the

privacy budget. Another consideration to achieve privacy is to consider the aggregator

or the utility provider as a possible adversary since such data can be exploited, sold, or

published in a non-private manner. Limited memory constraints, the processing power

Figure 1.1: Household Electricity Demand Profile [13]

of end devices, and network bandwidth may limit the effectiveness of privacy-preserving

algorithms and cryptographic methods.

A potential solution to resource limitations is to use Fog aggregation architecture.

Fog aggregation can provide better communication and reduce energy consumption

as described in [14]. We present a Fog aggregation architecture to overcome the
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resource limitations and a Virtual Battery model with differential privacy to ensure

billing accuracy. The network communication is encrypted to guarantee authentication

and integrity of the data. Moreover, we present algorithms and a methodology to

preserve the privacy budget, as privacy budget is usually lost over time in infinite time

series.

1.1.2.Methodology

Wepropose a secure, lightweight, and cost-effective data aggregation framework that

ensures the consumer’s privacy and guarantees the safe transmission of smart meter data.

The presented techniques offer a modifiable protection level by specifying the maximum

error of perturbed data. We apply differential privacy using an algorithm that modifies

the aggregation window to include more data values regarding error constraints for

more coarse-grained data and a better privacy budget. A Fog aggregation architecture

is presented where aggregators add more privacy guarantees by applying differential

privacy over more coarse-grained data obtained from smart meters. Aggregators in

our framework also summarize the periodical regional power load of a given region

differently. A region contains several smartmeters that report relatively fine-grained data

to a single aggregator that aggregates the region’s overall power consumption; for a faster

reporting of regional power load. The virtual battery in our model produces the noise to

differentially private algorithms for billing accuracy. Additionally, it limits the consumed

power in the perturbed data to a maximum power value to keep the perturbation within

a specific error range. We use lightweight cryptographic techniques for encryption

and authentication, which protect against possible eavesdropping attacks. Additionally,

we use perturbation noise from a virtual value to maintain cost and hide fine-grained
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load data from potential hostile aggregators or utility providers while sustaining data

analysis.

1.1.3.Objectives and Contribution

In this thesis, we have the following major objectives:

1. Create a complete Fog aggregated architecture to distribute processing costs and

reduce network congestion. The smart meter owner can consider the Fog aggre-

gators or the utility provider as an adversary.

2. Maintain user’s privacy by applying perturbation with possible minor noise to

maintain utility and billing accuracy.

3. Use and specify variable parameters that allow for a dynamic level of error.

4. Create algorithms that guarantee our previous objectives to optimize our presented

framework and provide the parameters connection.

5. Guarantee authenticity and the integrity of the transmitted packets and encrypt

transmitted user data over the network.

Therefore, the contributions can be summarized as follows:

1. We create a Fog aggregated architecture where processing is done on Fog nodes

to improve end-user privacy, calculate regional power load and aggregate these

values to the utility provider.

2. We maintain user’s privacy by applying differential privacy with smaller possible

noise to maintain utility and billing accuracy.
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3. We use a virtual battery model to maintain the cost of added noise for consistent

billing while keeping the noise private.

4. We introduce a dynamic window size, max power loads to guarantee a specified

perturbation error rate while maintaining privacy budget loss to a minimum.

5. We use HMAC cryptographic techniques that guarantee authenticity and the in-

tegrity of the data over the network and protect the transmitted packets from

eavesdropping or man-in-the-middle attacks.

1.1.4.Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 describes the main

concepts, terminologies, and the current state-of-the-art models. Chapter 3 Describes

the implementation of our model. In chapter 4, we validates the security of our model.

Chapter 5 concludes our work and suggests future work.
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CHAPTER 2: BACKGROUND AND RELATED WORK

2.1.Background

2.1.1.Fog Aggregation

Due to the resource constraints usually found in IoT devices (in this thesis, the IoT

devices are smart meters), fog computing architecture is used to enhance the framework

performance [3]. Fog computing is used to distribute computing over Fog nodes,

also known as edge nodes. Fog nodes process data collected from periphery devices,

such as smart meters, and forward them to the cloud servers, which in our model are

the smart grid’s utility provider servers. When handling a large amount of data, the

benefit of using Fog computing is to dedicate processing tasks to Fog nodes that do

the processing instead of directly forwarding raw data. The use of Fog computing

Figure 2.1: Fog Architecture Layers

dramatically reduces bandwidth and processing power on the cloud servers or, in our
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case, utility provider servers. In a typical Fog-enabled smart grid, the Fog layers is a

secondary layer that aggregates several smart meters data to the utility provider. The

use of such architecture reduces communication complexity [15]. Figure 2.1 shows a

typical Fog architecture. The advantages of Fog computing aggregation with regards

to communication and processing are presented in [16] and [3]. In our work, we

assume that the aggregator is not to be trusted and cannot infer individual user’s data

as the received data is perturbed with noise that offers differential privacy guarantees.

The Fog aggregators provide statistics for regional consumption in addition to coarse-

grained individual consumption statistics over a specified time window. We reduce

communication costs since the aggregation is mostly done on Fog nodes rather than

sending individual and sensitive raw data to the utility provider. In our article, we

refer to Fog nodes as aggregators and end nodes as smart meters; both terms are used

interchangeably.

2.1.2.Differential Privacy

A smart meter privacy model was introduced in [17] where the adversary attempts

to obtain accurate smart meter readings in two scenarios. The challenge is for the utility

provider to perturb and present the time series data using algorithms that make both

scenarios indistinguishable when analyzed by the adversary. An acceptable level of

privacy is reached if the adversary cannot correlate which response is given for which

scenario with a much better chance than random guessing. However, it was found that

the adversary’s advantage grew when observing several messages or at periods where

the power consumption is large. Thus, the approach is either not accurate enough or not

private enough [4]. A guarantee of privacy is achieved with various methods proposed

9



in the literature. It is a common practice to use differential privacy.

Differential privacy is a system first introduced by [18] for sharing public information

about a data-set by specifying all the patterns within the data-set without releasing

information about individual contributors in the data-set. The leading theory describing

differential privacy is that if a single user’s data were small enough, a query result would

not expose much information about that user. Therefore, the overall result would not

change when changing, deleting, or adding the data of any single user, thus providing

contributors anonymity. Differential privacy is presently widely trusted in the literature

as a powerful concept of privacy. Differential privacy offers a level of confidentiality

by perturbing aggregated readings to prove that the value can be differentially private.

Differential privacy provides intriguing properties, namely post-processing closure, and

composition.

Definition of Differential Privacy Assuming a mechanism M : Xn → Y . For any

two neighbouring data-sets X,X ′ ∈ Xn that are different in one entry. We say that

M is ε-differentially private if, for all neighboring X,X ′, and all T ⊆ Y , we have:

Pr[M(X) ∈ T ] ≤ eεPr[M(X ′) ∈ T ], where M is a randomization mechanism and

can be an algorithm that introduces additive noise to the original dataX . In the literature

related to differential privacy, the word mechanism is often used; however, both terms

"mechanism" and "algorithm" are used interchangeably.

In the literature, usually, Laplacian or Gaussian noise is introduced. Several algo-

rithms and differential privacy properties are discussed in [19]. The previous definition

states that if the effect of making an arbitrary single replacement in the database is small
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enough, the query result cannot infer a single individual’s data. The difference between

X and X ′ is the data related to one person (or entity). Therefore, we can get one data

set from the other one by either adding, removing, or changing this person data.

There are algorithms that, by result perturbation, can turn query results into a dif-

ferentially private one. In a smart grid, we consider a single query to be equivalent to

one aggregate. In differential privacy, a parameter ε shows the privacy strength and is

referred to as the privacy budget. The perturbation applied on the data in differential

privacy is inversly proportional to ε. This means that a smaller ε produces better privacy

but less accuracy and vise versa. It is a challenge in smart metering to balance this value

to tweak the added noise that does not break privacy while preserving utility of the data.

A trade-off between privacy and accuracy is presented in [17].

ApproximateDifferential Privacy An algorithmM : Xn → Y is (ε, δ)-differentially

private if, for all neighbouring databases X,X ′ ∈ Xn , and all T ⊆ Y :

Pr[M(X) ∈ T ] ≤ eεPr[M(X ′) ∈ T ] + δ

Here, δ value is considered to be "cryptographically" small. That is, "δ should be

smaller than the inverse of any polynomial in the size of the data set" [20]. .

Properties ofDifferential Privacy Differential privacy offers several convenient prop-

erties that make it reasonable to think about it in a very modular fashion and make it

"user friendly."

1. Post-Processing: A valuable property of differential privacy is that once the data
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is privatized with differential privacy, the privacy will not be breached if the data

is not used again.

Let M : Xn → Y be ε-differentially private and F : Y → Z be an arbitrary

randomized mapping. Then F o M = F (M(X)) is ε-differentially private.

2. Composition: Suppose M = (M1, ...,Mk) is a sequence of algorithms, where

Mi is (εi, δi)-differentially private and the algorithmsMi’s are potentially chosen

sequentially and adaptively. Then M is (
k∑

i=1

εi,
k∑

i=1

δi)-differentially private.

It is not always clear what the values of ε should be to maintain privacy [21] since

differential privacy is usually added to static data by a trusted curator. In time series and

evolving data sets, it is unfeasible to apply differential privacy with a constant ε as the

data is continuously growing. One crucial property to solve this is the composition of

differential privacy. In a composition of T independent queries, the privacy parameters

ε, δ add up.

For example, at each time iteration, ti with applying differential privacy of the power

load at windows wj and each window contains the sum of power loadX(t); for the first

period of 10 minutes t = 0 to t = 10 the w0 value is w0 =
10∑
t=0

X(t). Therefore the

window wj between t = i and t = i ′ values can be calculated by:

wj =
i ′∑
t=i

X(ti). (2.1)

Say we apply differential privacy with parameter ε1, ε2 and ε3 on time windows w1, w2

and w3 respectively; the composition property states that the overall privacy of all three

windows is: εtotal = ε1 + ε2 + ε3. The previous equation 2.1 shows that over time,
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the values of ε will increase. We found that many solutions in the literature ignore the

deterioration of ε over time, and we will present our solution for this in later sections.

Sensitivity is another parameter to consider in differential privacy. Sensitivity captures

the quantity by which a single data entry can affect the mechanism in the worst case and

therefore change the perturbation level needed to hide all data. Thus, the sensitivity of

a function bounds the perturbation level we must introduce to preserve privacy. For

example, in counting queries, it is recognized that the sensitivity is equal to 1. Sensitivity

in general metric spaces is defined in [18] as: Let M be a metric space with a distance

function dM (., .). The sensitivity SM (f) of a function f : Dn →M is the amount that

the function value varies when a single entry of the input is changed.

SM (f)
def
= supx,x ′:dH(x,x ′=1)dM (f(x), f(x ′)). (2.2)

Where x, x ′ in equation 2.2 are two neighboring data sets that differ in only one entry.

In the case of real-valued function f in 1-dimensional space, the sensitivity 4f can

be calculated by: 4f = max|f(x) − f(x ′)|. For functions running under multi

dimensional data the sensitivity is measured under `1 and `2 norms. In additive noise

differential privacy `1-sensitivity is used with Laplace mechanism where `1 is calculated

from:

4(f) = max‖x−x ′‖1=1 ‖ f(x)− f(x ′) ‖1 . (2.3)

Another mechanism is the Gaussian mechanism that uses `2-sensitivity and is given

by:

42(f) = max‖x−x ′‖1=1 ‖ f(x)− f(x ′) ‖2 . (2.4)
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The definitions of both Laplace and Gaussian mechanisms with `1 and `2 sensitivities

are given in [19]. In smart metering data, which is a time series, the maximum global

value is unknown, making it challenging to measure sensitivity. Substantial values that

are unknown to us, since the value can come up in the future, can destroy differential

privacy.

2.2.Related Work

Various techniques have been developed for private and secure data aggregation

in the literature. Such as cryptographic techniques [14][22][23][24][6], noise addition

[2][4][5][7][8][9], or hybridmethods [3][5][25][26]. Cryptographicmethods are usually

used to encrypt user data during network transmission. Cryptographic techniques, such

as homomorphic encryption, allows aggregators to perform arithmetical functions on

encrypted user data while being oblivious to the actual data. Other cryptographic

methods, such as public-key encryption, are used to ensure authentication. Choosing

the proper cryptographic method is essential for considering the added processing costs

on smart meters and aggregators devices and for maintaining an appropriate privacy

level for consumers.

2.2.1.Preserving Privacy Using Cryptography

Baloglu U. B. et al. [10] merged encryption using Decisional Diffie-Hellman with

perturbation to produce a lightweight data aggregation scheme in which the aggregated

data is lossless. A task scheduler is used for data transmission and aggregation by

appending perturbed time series data with encrypted noise. Additionally, algorithms

are used to continuously monitor user data transmission to two processing nodes for
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robustness and integrity. The model is scalable with fast and lightweight encryption.

However, there is no level of protection againstmalicious aggregators or utility providers.

Lyu et al. [3] used a multi-layered encryption scheme using an efficient stream cipher

with public-key crypto in a Fog aggregation architecture. Homomorphic encryption is

used with a one-time pad encryption key. However, the application of homomorphic

encryption introduces additional processing requirements, and public key exchange

requires a third party for reliable distribution of public keys, which adds more cost

to the model. A complete security model is presented by Mahmood et al. [27] by

introducing a lightweight elliptic curve cryptography (ECC) scheme that allows for

mutual authentication. The ECC scheme protects against insider adversary and man-in-

the-middle attacks and provides integrity and encryption with good performance. The

scheme is explicitly proposed for a smart grid; however, it requires a trusted anchor

that will store keys. Adding a trusted anchor to the system will result in additional

costs; moreover, trusting an anchor could mean trusting a possible adversary. Gai et al.

[28] presented a model that combines blockchain with edge computing technology to

preserve smart grid privacy and provide energy security. A hidden authorization channel

and group signatures are used for authentication and user validation. In addition, smart

contracts are used to devise a security strategy that runs on the blockchain. The model

offered optional anonymity and key exchange with a lightweight authentication protocol

by utilizing the blockchain properties.

2.2.2.Privacy Using a Chargeable Battery

Adding noise to user data can achieve user privacy by turning the user load using

energy from storage devices or rechargeable batteries. While this will not affect long-

15



term billing, altering the user load with a large amount of noise will eliminate the

aggregated data analysis’s benefits. Furthermore, such methods require the additional

cost of power storage devices and may not be applicable for non-electric utilities, for

example, gas or water. Kalogridis et al. [2] used power routing to alter the consumers’

load signature formasking usage data using a rechargeable battery for powermanagement

and a power-mixing algorithm. A method for hiding consumption data is introduced by

combining load signature with energy from a rechargeable battery. A tweakable privacy

moderation algorithm is developed, allowing consumers to control their privacy and

set an evaluation methodology for privacy evaluation. However, using a rechargeable

battery requires extra cost, and the battery size offers a limit on how much of the data

can be hidden. Varodayan et al. [6] improved on the best effort algorithm introduced in

[2] by using a trellis algorithm and stochastic battery policies with 26% less information

leakage than the previous work. This percentage was calculated by a methodology that

quantifies information leakage. While this improves the rechargeable battery model,

the proposed solution suffers from the power storage cost and user data loss for data

analysis. In [9], Zhang Z. et al. provided a cost-effective model using a chargeable

battery with limited capacity and differential privacy guarantees. A domain-limited

noise distribution parameter is used to lessen the lead range on the small capacity

battery’s limited power. Smart meter readings are perturbed using a battery controller

that charges or discharges the battery. A switching method is presented to prevent SM

from reporting its reading when violating battery limits. The noise taken from the

battery is used as Laplacian noise with narrowed domain to compensate for the limited

size of the battery. A multi-armed bandit algorithm is used to reduce cost. This method

showed a privacy level nine times better than traditional privacy models; however, some
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extra cost of setup and future maintenance is not considered.

2.2.3.Preserving Privacy by Additive Noise

Similar to the noise added from a chargeable battery, adding random noise using

noise generators can mask user load profiles protecting consumer data. However, adding

noise destroys billing accuracy causing coarse-grained billing data to be sent separately.

While long-term billing can be sent independently, accurate fine-grained data is needed

for dynamic billing when the consumption is relative to the time of the day. Furthermore,

the amount of noise added can destroy the benefit of the data for utility and data analysis.

Therefore, the amount of noise added must be small enough not to disturb data analysis

or billing accuracy.

Noise Generation

In [7], Sankar L. et al. presented a theoretical framework for smartmeters that ensures

utility requirement while maintaining privacy utilizing tools derived from information

theory and the Markov model. The presented framework uses power spectra from a

high-power, less private appliance as distortion noise and removes the frequency of

low-powered elements. In this model, the appliance state’s measurement controls the

load measurement modeled after random Gaussian variables, where these variables

correspond to actual values. The framework uses an interference-aware reverse water

filling technique that filters low-power frequency components by summoning a distortion

noise from always-on appliances with less privacy concern. The model offers a tunable

tradeoff between privacy level and the usefulness of data analysis. Such a model is

agnostic to future data collection techniques. However, as the noise load is used from
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a used appliance continuously, such appliance’s privacy is not considered. While it is

possible to obtain the noise from a chargeable battery instead of a constantly powered

appliance, it suffers from other issues that the previous chargeable battery models suffer

from except for keeping user data analysis possible.

Differential Privacy

Another commonly used technique to achieve privacy is using differential privacy.

Differential privacy is introduced in [18] and [19] where aggregated data is perturbed in

a way that preserves privacy and maintains the overall data attributes for analysis. Here,

a privacy algorithm injects noise so that an attacker cannot extract and discover user data

from a data set. A privacy parameter ε determines the privacy level. The added noise

can be obtained using various algorithms; however, mainly Gaussian Mechanism and

Laplace Distribution are used to introduce the noise for time series data. Traditionally,

utility providers or aggregators that end-users already trust use differential privacy to

publish statistical data to the public. A distributed formof differential privacy can be used

to achieve privacy from multiple data sources to protect against untrusted aggregators.

Dwork et al. [20] created a protocol that uses distributed differential privacy (DDP) by

shares of randomly generated noise by online entities.

Savi, M et al. [8] investigated the privacy-utility trade-off considering the aggregated

set size by calculating an attack success probability against presented perturbation.

Colored noise and white noise is introduced and measured against SMART dataset

[29]. An ε-Privacy model is proposed with a Gaussian noise perturbation to measure

privacy. The ε-Privacy measurement is then used against white and colored noise and
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the measured perturbation was introduced to the sample dataset. By measuring the

ε-Privacy level, it was proven that by introducing the proper colored noise, a lower noise

variance could be used on the user data while preserving privacy. Furthermore, the

effect of data group size, the interval of observation, and the sampling period on privacy

level were measured. Results revealed that no attack on privacy is possible using such

a framework.

Eibl et al. [4] implemented differential privacy over actual smart metering data

considering applying differential privacy on utility for the large data sets of smart

meters. Point-wise privacy is used with epsilon noise for each aggregation period

with ε = 1 considering the overall privacy budget from the composition property of

differential privacy. Additionally, the perturbed data is smoothed to increase utility while

keeping it differentially private exploiting the post-processing property of differential

privacy. For the usability of data statistics, it was found that a large amount of data

is required, with thousands of smart meters, to achieve a useful utility after applying

differential privacy. Such implementation does not consider the deterioration of privacy

budget ε. Improving on the work in [4], an advanced algorithm for protecting peak

power values for renewable energy resources is introduced by Hassan et al. [30]. Power

load is made using a differentially private real-time load monitoring (DPLM) algorithm

with Laplacian noise. Point-wise privacy from [4] is used to apply ε-differential privacy

for a small periods. Furthermore, the (DPLM) algorithm limited peak power values

by trimming them from the current reading and adding excessive energy for the next

iteration period. A promising error rate of 1.5% is achieved for specific peak values.;

however, the point-wise differential privacy does not account for the deterioration of the
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privacy budget due to the composition properties.

Differential Privacy with Fog Aggregation Lyu L et al. [3] proposed PPFA, a private

aggregation system using distributed differential privacy on a fog-cloud architecture. In

this work, fog nodes, or aggregators, aggregate data from smart meters and, in turn,

send their aggregated data to the cloud. A Gaussian mechanism is used in distributed

differential privacy for fog nodes and cloud aggregation. Two-level encryption is used:

OTP for noisymeasurements and public key encryption for authentication. TheGaussian

noise is produced with regards to (ε, δ)-differential privacy in the SM nodes. The

measurement plus noise is sent to the fog nodes using homomorphic encryption to

enable fog nodes to aggregate results while being oblivious to the actual user power

consumption. After aggregation, fog nodes add their own produced noise for all data

aggregated at the cloud level. Public key encryption is used to guarantee authentication.

The presented framework kept user privacy while maintaining utility. Additionally,

the use of fog-cloud architecture reduced the bandwidth and power cost. However, the

authors used a third party for public-keys distribution and aggregators aggregatemultiple

meters only for data analysis, ignoring tariff data. Another framework called RE-ADP,

made for aggregating time series of IoT devices, is presented by Huo et al. [31]. It

employs an adaptive w-event differential privacy by applying differential privacy on

dynamic w time stamps over infinite time series in a fog aggregation architecture. RE-

ADP uses a privacy-preserving stream data aggregation with an adaptive time window

size (w) that depends on a proposed metric called quality of privacy (QoP). Additionally,

an adaptive sampling scheme is used to improve aggregated data accuracy by using long

short-term memory (LSTM) machine learning model. Subsequently, a smart-grouping
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perturbation is presented using K-means to group IoT sensors and injecting additional

noise. While applying group policy did provide better privacy, it may not apply for

smart metering billing data unless cost data is sent separately.
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CHAPTER 3: VIRTUAL BATTERY MODEL

In our model, the SMs at the end nodes are assumed to be tamper-free to prevent

end-users from changing the virtual battery’s values. It is possible to achieve a tamper-

free smart meter by running our code inside a secure enclave similar to Intel SGX

as explained in [32]. Changing the virtual battery value may result in manipulating

billing rates when the billing rate is reliant on the time of consumption. We use a fog

distribution model with a virtual battery value that guarantees accurate billing values

while offering perturbation from adding noise collected from the virtual battery. Several

perturbation models can work with this architecture, such as physical chargeable battery

noise perturbation. Using our virtual battery model comes with the benefits of a large

battery power capacity as the battery is virtual. Our model follows a distributed fog

aggregation where noise is generated at SMs and fog aggregators. We assume that

aggregators and utility providers are not trusted and use distributed differential privacy.

3.1.Virtual Battery

A virtual battery is an acknowledged value between the SM and the utility provider

server. Figure 3.1 shows the architecture for exchanging this value.

Table 3.1 contains a list of symbols used in this section. We use V B(t) to denote the

VB value at time t. Therefore, V B(0) is the initial VB value at the beginning of period

m, and V B(m) is the VB value at the end of period m. In the first update of the smart

meter in periodm, the value of V B(0) is zero; the smart meter then transmits this value

to the utility at the end ofm for the next period. The following steps explain the process

of applying noise perturbation with a virtual battery on a single SM without encryption:
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Figure 3.1: Virtual Battery Model Architecture for a Single Smart Meter

1. At the beginning of a period of m, typically a month, the value V B(0) is sent to

the utility provider for acknowledgment. For the first smart meter update to utility

provider of the first periodm0 : V B(0) = 0.

2. For a short period t1, the SM applies perturbation by adding a noise valueN to its

power consumption and sends the perturbed load to the aggregator. Subsequently,

the SM subtracts the value of the noise from the virtual battery preserving the cost

value of the added noise shown in equation (3.1):

V B(t1) = V B(0)−N(t1). (3.1)
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Table 3.1: Table of Symbols for the Virtual Battary Model

Symbol table

Symbol Meaning

m long time period for example a month

ti The time period of smart meter reading at iteration i

Xn(t) The power load reading of smart meter n at time t

Ln(t) The encrypted power load reading plus noise of smart meter n at time t

V Bn(t) The VB value of smart meter n at time t

Nn(t) The noise added at time t to power load of smart meter n

Na(t) The noise added at time t to power load of an aggregator a

An(t) The coarse grained aggregated value of smart meter n load plus noise

TCn(t) The total consumption for the smart meter n

U(t) The total consumption of all smart meters at time t

3. At the end of period m, the SM sends the value V B(m) to the utility provider

server where:

V B(m) =
m∑
i=1

V B(ti)−
m∑
i=1

N(ti). (3.2)

4. The aggregator calculates A(m) from equation 3.3 and sends it to the utility

provider. The utility provider receives A(m), the aggregated consumption with

noise for periodm obtained from:

A(m) =
m∑
i=1

(X(ti) +N(ti)). (3.3)
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The utility provider then subtracts the value of VB consumption of period m

which is V B(0)− V B(m) to calculate total consumption TC:

TC(m) = A(m)− (V B(0)− V B(m)). (3.4)

5. The security of the VB value transmission is discussed later in section 3.4. The

exchange of the finally consumed or added load from the battery is only done after

a long period to confirm billing, for example, once per month. The effect of this

is that the utility provider cannot infer any useful information from the consumed

value of the virtual battery. This effect holds since the operation of subtracting

virtually provided power is done only by end nodes (SMs).

For dynamic billing, it is possible to use multiple virtual batteries; for example, when

billing is different between daytime and nighttime, we can use V Bday(m), V Bnight(m).

Where noise added at daytime is added to V Bday and nighttime noise is added to

V Bnight. Both values are sent from the smart meter to the utility provider.

In contrast to privacy models that use an actual chargeable battery for the load [2]

[6], the use of a virtual battery will cut down the cost of the power storage device and

its maintenance. A benefit of using the virtual battery is that our model works with

non-electric utility, for example, gas or water, as the battery is virtual. Adding to that,

for frameworks that require load from other appliances, such as [7], we can replace the

appliance load by load from a virtual battery. Models that use differential privacy [29]

[3] can use the Gaussian Mechanism noise from the virtual battery for robust billing.

For example, when a user has a sudden substantial power consumption, the volume of
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noise required to hide it may be too large. This added noise may not be accounted for in

billing. We can ensure that the consumer power load does not exceed a certain amount

by thresholding the power load at maximum value and adding the subtracted value to

the virtual battery. For example, if Ppeak is exceeded at time ti−1 the value of V B(ti)

will be the previous virtual battery value V B(ti−1) minus the absolute value of Ppeak

subtracted from X(ti−1) as shown in equation 3.5.

V B(ti) = V B(ti−1)− |X(ti−1)− Ppeak|. (3.5)

Additionally, it is possible to use a significant noise and add its consumption to the

battery since the battery value will be sent for billing eventually. It is possible to give the

SM another level of privacy where the virtual battery’s noise is used for a low value of

ε in differential privacy. This guarantees a high level of privacy at the price of limiting

data analysis and maintaining billing accuracy. In our model, we use a distributed form

of differential privacy.

3.2.Aggregation Architecture

Our Fog architecture consists of three layers, as shown in Figures 3.2 and 2.1. The

bottom level consists of all smart meters, Fog aggregators in the middle and the utility

provider servers at the top. Several delivery algorithms that can be used for the smart

meter-aggregator communication are mentioned in [33].
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Figure 3.2: Distributed fog aggregation with Virtual Batteries

3.2.1.Smart Meters Aggregation

We consider Fog nodes, or aggregators, to provide better and cheaper service since

aggregators are one hop away from smart meters. The transportation cost of all raw data

from smart meters to the utility provider is muchmore than the cost of transmission from

the smart meter to aggregator to utility. The cost is reduced, and less data is transferred

since measurements are aggregated at the fog nodes, and the data transmitted from the

smart meters is coarse-grained. Additionally, regional power loads from several smart

meters can be calculated on Fog nodes and then aggregated to the utility provider, saving

energy consumption. Excluding setup parameters, our model requires uni-directional
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communications from smartmeters to aggregators and aggregators to the utility provider.

Both the aggregator and the utility provider are untrusted in this architecture and may

not discover private information about users. Smart meters are assumed to be tamper-

resistant, store their encryption keys and apply differential privacy on readings in a small

windowof time before sending it to aggregators. The size of thiswindows can be between

previously set parameters wmin, wmax this is discussed in a later section 3.3. We use fog

aggregators for our model, where a collection of SMs connect to several aggregators

that collect and aggregate their data to the utility provider. Each SM node perturbs its

measurement with noise used from the virtual battery. The noisy measurement is then

encrypted and sent to nearby fog aggregators. The aggregator decrypts and aggregates

the values, encrypts the results, and sends them to the utility provider; further description

of our encryption methodology is described in Section 3.4. Finally, the service provider

decrypts the results. Periodically, SMs encrypt and send the virtual battery’s value to

the utility provider, where the value is compared and added for billing. For example,

for a smart meter that updates its power load every minute, we add noise N(ti) to each

reading at ti where ti − ti−1 = 1 minute. At a monthly period m including t0 to m the

V B(m) value would include all added noise from N(t0) to N(m) and the perturbed

load L(m) =
m∑
i=1

(X(ti) + N(ti)). Only the value of V B(m) is sent from the SM and

by the end of m the billing should only account for actual load which would be equal

to the noise subtracted from the perturbed load or ActualLoad(m) = L(m)− V B(m).

The period for sending the virtual battery’s value is typically long enough to prevent

the utility provider from subtracting noise from this value. Each smart meter SMn has

a value V Bn with a starting value V Bn(0). Initially, at the start of the smart meter
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updates for the first period m1, the value V Bn(0) is equal to zero. For the next period

m2 , V B(0) is already sent from the smart meter to the utility provider where V B(0)

for the periodm2 is equal to V B(m1) at the end of periodm1.

Figure 3.2 shows the aggregation architecture and Table 3.1 explains the used

symbols.The following steps show the complete aggregation process of a period m

where Enc and Dec are encryption and decryption methods discussed in Section 3.4:

1. Virtual batteries V Bn for each smart meter SMn with values V Bn(0) are en-

crypted using methods discussed in Section 3.4 and sent to the utility provider by

the smart meters. At the first update by smart meters, or when smart meters are

first powered on, V Bn(0) is equal to zero.

2. Smart meter SMn with a stored virtual battery value V Bn communicates with the

utility provider and sends the initial virtual battery value V Bn(0). SMn will

perturb its measurement at time period t1 : Xn(t1) with noiseNn(t1). The added

noise is taken from V Bn(0) by setting the new value V Bn(t1) from equation 3.1.

SMn then sends Ln(t1) the encrypted reading plus noise to the aggregator:

Ln(t1) = Enc[Xn(t1) +Nn(t1)]. (3.6)

for a period m, say a month, V Bn(m) is calculated by adding all the noise to the

virtual battery and the value is then encrypted and sent to the Utility Provider for

confirming the V B value of the SM:

V Bn(m) = Enc[V Bn(0)−
m∑
i=1

N(ti)]. (3.7)
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3. For an aggregator time window of w, an aggregator An receives a number of

perturbed and encrypted values of consumption Lsm1 from equation 3.6 and

receives (
∑
i∈w

Lsm1(ti)) during w from smart meter SM1. Each value of Lsm1

in this time period is decrypted and the aggregation is done on the new coarse

grained w. Aggregator adds its own noise to this load for a parallel differential

privacy Na(ti ′). With the aggregated value starting at ti and finishing at the end

of w with ti ′ we calculate and encrypt the consumption of sm1 by:

An(ti ′) = Enc[(
i ′∑
i

Dec(Lsm1(ti))) +Na(ti ′)]. (3.8)

For example the first time window of 30 minutes has values of ti = 0 to ti ′ = 30

we have An(ti ′) = Enc[(
30∑
i=0

Dec(Lsm1(ti))) +Na(ti ′ = 30)].

4. The utility provider receives the aggregated values from n number of aggregators.

Finally the perturbed power load values are decrypted and summarized by the

utility provider for the passed time period:

U(t1) =
n∑

i=1

Dec[An(t1)]. (3.9)

5. For a single smart meter n with the consumption plus noise value of An(m)

utility provider subtracts the consumption of the virtual battery to calculate total

consumption TC of periodm:

TCn(m) = Dec[An(m)]− (Dec[V Bn(0)]−Dec[V Bn(m)]). (3.10)
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3.2.2.Regional Aggregation

While the previous section discusses private aggregation of end nodes or smart

meters, the utility provider needs to have a concept of the overall consumption in a

fine-grained manner. Such data is required to optimize power generation by the utility

provider. In our model, the algorithm in section 3.3 offers a dynamic window size.

If we rely on the aggregator to provide regional power following our algorithm, the

max window size may present a long delay. The maximum window size is reached if

the smart meter consumption is consistently low, and therefore, the window size is not

limited by the maximum error. This section will present a regional aggregation where

the aggregator summarizes all smart meters connected to its region and sends them to

the utility provider. Regional aggregation is done in a fine-grained manner, limited by

the wmax of the smart meters, which in our model is relatively a small window size

for the aggregator. The summarization does not include smart meters ids and is not

correlated with cost or the virtual battery values. Aggregators only send the overall load

profile of the region for the connected smart meters; similar work is done in [3].

1. For a window specified for regional aggregation wreg = Max[wSM ] , an aggre-

gator A receives a number of perturbed and encrypted values of consumption for

n number of smart meters Lsmn from equation 3.6 and receives (
∑

i∈wreg

Lsmx(ti))

during wreg from each smart meter; where x is the all connected smart meters.

Each value of Lsmx in this time period is decrypted and the aggregation is done

on all smx and the noise added for perturbation is applied on the sum of all smart

meters consumption during wreg. With the aggregated value starting at ti and
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finishing at the end of wreg with ti ′ we calculate regional consumption of A by:

A(ti ′) = Enc[(
x∑

n=1

i ′∑
i

Dec(LSMn(ti))) +Na(ti ′)]. (3.11)

2. The utility provider receives the aggregated values from n number of aggregators.

Each aggregated value can be analysed for power distribution and prediction. The

summarized value for all regional aggregation is decrypted and summarized by

the utility provider:

U(t) =
n∑

i=1

Dec[Ai(t)]. (3.12)

3.3.Differential Privacy

Gaussian Mechanism

The decomposition of the Gaussianmechanism uses noise generated from all parties.

Each party generates a small amount of noise, and consumer privacy can be guaranteed

if the sum has a standard deviation of σ. From theorem A.1 in [19], we have:

Let f : N|x| → Rd be an arbitrary d-dimensional function, and define its `2 sensitivity

to be42f = maxadjacentx,y ||f(x)− f(y)||2. The Gaussian Mechanism with parameter

δ adds noise scaled to N(0, σ2) to each of the d components of the output.

Theorem A.1. Let ε ∈ (0, 1) be arbitrary. For c2 > 2ln(1.25/δ) the Gaussian

Mechanism with parameter σ ≥ c42f/ε is (ε, δ)-differentially private.

Following the parameters of distributed differential privacy, we have:

x̂(t) =
n∑

i=1

(x̂i(t)) =
n∑

i=1

(xi(t) + ri(t)). (3.13)
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Where n is the number of users, xi represents the measurement of user i at time t and r

is the added noise, and σ satisfies the theorem A.1.

Distributed Differential Privacy

Distributed differential privacy is a form of differential privacy where an aggregated

noise is collected from multiple sources. Differential privacy is already discussed in

many models and frameworks in the literature. Our contribution is the fact that added

noise can be subtracted from our virtual battery for billing accuracy. Following Theorem

A.1 from section 3.3 in our model, the added noise r is reduced from the virtual battery

value guaranteeing accurate billing. Additionally, for a higher level of privacy, where

the user does not want to allow for his data analysis by the utility provider, we may use

an even higher noise level without affecting utility billing on the utility provider side.

A separate SM application can provide statistical data analysis to the consumer as the

SM has access to noise from V B(t) values without sending such values to utility or

aggregators. In our demonstration of the model, we used a single virtual battery with a

single method. It is, however, possible to use the virtual battery load for noise generation

in multiple methods of perturbation.

Sensitivity From theoremA.1. in section 3.3we have the sensitivityS of our algorithm

M is:

S(M) = 42f = maxadjacentx,y ||f(x)− f(y)||2. (3.14)

Several literature methods use a pointwise sensitivity; we argue that this does not

guarantee differential privacy as the sensitivity should be on the entire data-set level.

Sensitivity is usually unpredictable in the smart grid due to the unpredictability of future
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power load consumption. A sensible way is needed to determine the sensitivity in a

private manner[4]. We use several parameters to ensure bounds on the future sensitivity.

We allow smart meters to select a dynamic window size bounded from wmin to wmax

that guarantees differential privacy and peak power limit Ppeak with consideration to

maximum error errmax. An explanation of the use of these parameters is in section 3.3

and Table 3.2. Following up on the window size bounds wmin, wmax, we can already

calculate sensitivity. We know that the lowest consumption windows are zeros perturbed

by the most minor differentially private noise N applied on the smallest window wmin.

On the contrary, the maximum consumption is the peak power Ppeak applied on the

maximum window size wmax. Therefore, the sensitivity in our model can be calculated

by:

S(M) = 42f = Ppeak/wmax. (3.15)

Table 3.2: Table of Symbols for The Differential Privacy Model

Differential Privacy Model Symbol Table

Symbol Meaning

wmin minimum window size

wmax maximum window size

Ppeak peak power allowed in wmax with err < errmax

errmax maximum allowed error
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Standard Deviation From Theorem A.1. we can calculate the standard deviation σ

of the Gaussian mechanism for a single dimension where ε ∈ (0, 1) and δ ∈ (0, 1):

σ2 = 2ln(1.25/δ).(4f)2/ε2 = 2ln(1.25/δ).S(M)2/ε2. (3.16)

Privacy Budget The composition theorem states that the privacy budget parame-

ters ε and δ adds up. Therefore, applying (ε, δ)-differential privacy on each window

(w1, w2, ...wk) in a space k number of windows. We apply the following differentially

private parameters (ε1, ε2...εk, δ1, δ2, ..., δk). Therefore the overall privacy budget are:

ε =
k∑

i=1

εi and δ =
k∑

i=1

δi meaning for the first window we loose from the privacy budget

ε1 = ε/k and δ1 = δ/k. This is why it is important to increase the window size when

possible.

Dynamic Window Differential Privacy

Due to the deterioration of the privacy budget over time, many bounding algorithms

exist in the literature [31][30]. To our knowledge, no algorithm exists that considers our

chosen parameters. Here we give further explanation to the used parameters shown in

Table 3.2.

1. wmin: Utility provider selects the minimum window size, which is the number of

points in the time series of the fine-grained smart meter or aggregator readings.

It should not be fine-grained as that could waste the privacy budget, and it should

be more significant for the aggregator. In our model, the perturbation algorithm

will increase the number of the included values starting at the wmin until the error

parameter errmax or wmax is reached.
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2. wmax: Is the maximum number of points included in the time series. This value

is required and set by the utility provider to limit the windows of periodical

updates of data statistics. For example, at night with zero power consumption,

our algorithm may increase w and not be bounded by the error for an extended

amount of time. Here the more significant the value of wmax, the less privacy

budget is lost; therefore, this value should consider privacy vs. utility provider

updates requirements.

3. Ppeak: Is the peak power load, which is calculated by applying noise on increasing

similar power values up to maximum allowed power in wmax until errmax value

is reached. The Ppeak value is used to achieve better performance in the algorithm

since if adding the total consumption overw exceedsPpeak value, we already know

that w will break errmax without adding noise. Here, it may also be possible for a

single reading to exceed Ppeak we threshold all such readings and add the trimmed

values to the virtual battery value.

4. errmax Is the maximum error allowed for perturbation by the utility provider. The

value of err for each w is calculated by the mean absolute error:

MAE =

n∑
i=1
|X ′

i−Xi|

n

w event ε-differential privacy was introduced in [34] and applied in [31] for ε-differential

privacy to protect event sequence occurring in a window of w time. We expand on w-

event differential privacy for time series data in the smart grid with minimum privacy

budget loss.

Dynamic Window Differential Privacy Algorithm w-event differential privacy

presents a solution for the infinite data stream; here, privacy is applied at sliding win-
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dows of size w in the smart grid. However, the fixed window size means sacrificing the

privacy budget unnecessarily due to the time series data dynamically changing nature in

the smart grid. For example, the power load may change dramatically when using heavy

appliances such as heaters; on the other hand, night power consumption is usually low.

Therefore, we use a dynamically changing window size with specific bounds that with

differential privacy guarantees.

In w-event differential privacy, the perturbation of data in a single w leads to a

consumption of a fixed privacy budget taken from the overall privacy budget. Increasing

the window size will lead to a lower privacy budget loss; though, this may lead to a

high perturbation and more significant error value. We present a dynamic window

differential privacy algorithm that uses a dynamic window size w but limits the window

size by Ppeak, errmax and wmax. Our algorithm ensures that the error resulting from the

perturbation err does not exceed a certain amount as it is bounded by Ppeak, errmax. At

the same time, we bound w by wmax for constant reporting to the aggregator and utility
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provider. The algorithm 1 explains the process of our model.
Algorithm 1: Dynamic Window Differential Privacy Algorithm
Input: wmin, wmax, errmax

current window w = wmin

Calculate Ppeak

while err ≤ errmax do

while w ≤ wmax do

while P (t) ≤ Ppeak do

Calculate P (ti) =
i∑

i=0

X(ti);

end

w++;

end

Calculate error: err = P (ti)/L(ti);

Apply perturbation on w: L(ti) = P (ti) +
i∑

i=0

N(ti);

end

Calculate new privacy budget parameters: ε = ε− εi, δ = δ − δi;

Output perturbed value for wi−1 : L(ti−1);

Both smart meters and aggregators use the same algorithm; however, the parameters’

values will be different for the aggregator. wmin and wmax values will be larger for

the aggregator as we expect the aggregators to collect more coarse-grained data. Smart

meters perturb their data only to protect it from the aggregator aswe consider aggregators

to be a possible adversary. It is reasonable to assign larger values of ε the privacy

budget for the smart meters since it is less likely for the aggregator to be an adversary.

Additionally, the data will be perturbed again by the aggregator before forwarding it
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to the utility provider. Another benefit of increasing window size is to lower network

communication costs since we summarize the windows’ power load to a single value.

Figure 3.3 shows the flow of our algorithm.

Figure 3.3: Dynamic Window Differential privacy Algorithm

3.4.Cryptographic Methods

Encryption

Diffie Hellman Key Exchange As SMs are IoT devices with typically low processing

power, we try to use lightweight encryption primitives. For each smart meter, a pair of

symmetric keys are required. One is to communicate to the utility provider to exchange

the virtual battery value and communicate to the aggregator to send load consumption.

Aggregators must also exchange symmetric keys with all connected SMs in addition

to utility keys. At the same time, the utility provider must hold the symmetric keys

for all aggregators and SMs. A Diffie–Hellman key exchange [35] is used for any

key exchange between any two parties. Any symmetric key encryption method may

work with the distributed keys. We use AES in our model [36]. Usually, public-

key encryption is used for authentication. However, it usually requires a trusted third

39



party authority for key distribution and is more processing intensive for devices such

as SMs than symmetric encryption. For our authentication, we use a simple two-way

challenge-response authentication as shown in Figure 3.4.

Figure 3.4: Two way challenge-response authentication

The secret is a concatenation of the exchangedDiffieHellman keywith another secret

string. The secret string is a fixed id set by the vendor or utility provider before the

smart meter distribution. In the case of Fog aggregator keys exchange, we assume that

the utility provider already shares an aggregator’s secret string. The two-way challenge-

response is used only once for establishing the authenticity of the symmetric key and

is not used for data authentication. The purpose of using two-way challenge-response

is to protect from man-in-the-middle (MITM) attacks. In MITM attacks, an adversary

can mimic each of the parties’ behavior to possess separate keys that may be used with
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each party, allowing an adversary to break the data integrity and authenticity. Keys

are stored at each architecture component, on smart meters, aggregators and the utility

provider. After the key’s initial establishment, there is no need for further communication

regarding a key exchange. Such a method is lighter and more cost-effective than other

methods such as public key exchange that may require a trusted third party.

Keyed-Hash Message Authentication Code (HMAC) HMAC is a variation of the

Message Authentication Code (MAC) that uses secret keys and hash functions and pro-

vides data integrity and authenticity. HMAC is an improved version ofMAC sinceMAC

is known to suffer from length-extension attack where an attacker can append data to the

message without knowing the key. The implementation methodology and definitions are

presented in [37] and [38]. A shared secret is used in HMAC implementation that does

not require a third party’s involvement in key distribution, as is the case with public-key

cryptography. Following up on the previous section, we assume that the key is already

exchanged between parties:

1. The key is used to acquire two separate keys referred to as the inner and outer

keys.

2. Two hash rounds are applied; the first round produces a hash from the inner key

with the already encrypted message.

3. The resulting hash is hashed again, with the outer key producing the final HMAC

code.

Usually, HMAC applies iterative hashing functions such as SHA-256 or SHA-512

over multiple fixed-sized blocks; for example, SHA-256 works on blocks of 512-bit.
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Since we can not guarantee our communication block size, we truncate our data blocks

to the proper size.

The encrypted message is then sent alongside the HMAC code to the other party. The

other party will then hash the message again, and the computed hashes should match the

received hash authenticating the message. The definition of HMAC from [37] and [39]

HMAC(K,m) = H((K ′ ⊕ opad) ‖ H((K ′ ⊕ ipad) ‖ m))

When K is larger than block size then K ′ = H(K) otherwise K ′ = K. K ′ is a block-

sized key obtained from the secret key K either by padding with zeroes up to the block

size or by hashing down to≤ block size and later padding with zeros. Table 3.3 contains

an explanation of the used symbols.

Table 3.3: Table of Symbols for the HMAC model

HMAC Symbol Table

Symbol Meaning

H a cryptographic hash function

K the secret key

K ′ block-sized key

‖ concatenation

⊕ XOR

opad the block-sized outer padding

ipad the block-sized inner padding

42



CHAPTER 4: VALIDATION

4.1.Security Analysis

4.1.1.Confidentiality

Authentication: authentication is the process of verifying a party’s identity and

associating it with incomingmessages; in ourmodel, a party is a smart meter, aggregator,

or utility provider. Since we transmit our data over HMAC we guarantee data integrity

and authenticity as HMAC guarantees both properties. Therefore, unauthorized hostile

nodes can not inject or change the sent data in any way as any changes in sent packets

will be detected. We rely on HMAC authentication, where the integrity of the data relies

on distributed keys; therefore, any malicious changes or man-in-the-middle attacks can

be detected.

Encryption: We choose to use AES for our encryption as it is a lightweight symmetric

cryptography method. AES was first announced in [36]. AES is a well known standard

encryption method that is immune to brute force attacks.

4.1.2.Integrity

Integrity represents data accuracy and completeness guarantees by preventing data

from being altered by an adversary. HMAC preserves integrity in our model as the

encrypted message is sent with the HMAC hash. The information recipient can verify

themessage’s integrity by calculating its HMAC hash and comparing it with the received

hash. As the HMAC hash calculation is done with the secret key, the adversary can’t

break our model’s integrity.
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4.1.3.Availability

So far, we have assumed that all smart meter and aggregator nodes are always online.

However, some nodes may go offline due to network or hardware failure affecting

regional differential privacy calculation. For example, a Fog node may not receive

readings from a specific smart meter, or a utility provider may not receive an update

from an aggregator. Updates must ideally happen before reaching the maximumwindow

wmax. However, we will not always have ideal updates due to the previously mentioned

failures.

Smart meters that do not receive an acknowledgment from the Fog node would log

the timestamp and set the flag for the reading to update later (ul). Once the Fog node is

available, the smart meter will send all stored values with the ul flag to the aggregator. In

the same scenario, Fog aggregators would log the data and the time stamp, set the absent

smart meters readings as the minimum perturbation level considering the maximum

error value, and set the flag for missing smart meters as ul to update this value later.

Once the smart meter is back online, the aggregator will receive all the ul flagged values,

reapply the noise on the data at the flagged time stamp, and sends them to the utility

provider. The utility provider will then reconstruct the data and update it, replacing the

flags from ul to valid v. We argue that using this method will still guarantee differential

privacy as the absent value is still perturbed, and the utility provider is aware of not valid

values while still able to apply data statistics. Furthermore, the cost will be updated

once the smart meter is back online. This scenario also applies if both aggregator and

utility provider are offline.
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A similar scenario will occur once a Fog node goes offline. Smart meters without

a response from aggregators after the maximum window is reached will update their

timestamp, flags, and store the data until the aggregator returns online. After the

aggregator goes online, smart meters will send all their data and update their flags to

valid v; the aggregator updates all the missing values, apply perturbation, and sends

them to the utility provider.

Another scenario may occur if the utility provider is offline; aggregators will set their

flags, timestamp, and store the data until the utility provider returns online. Once the

utility provider is online, all flags for the aggregator’s sent data will be set to valid v.

An important point to consider is: what if the smart meter’s or the aggregator’s ul

flagged data going over multiple periods exceeding storage capacity. In this case, we

will exceed the maximumwindow and store only the sum of all previous windows as one

with the timestamp instead of the fine-grained data, and the flag is set to none valid (nv)

for statistical analysis. Here, we did not breach privacy; however, the statistics may not

be valid for the maximum window size. Such a scenario is only in extreme emergencies

where an aggregator or utility provider is offline for an extended period. However, the

utility provider or aggregator can still summarize all windows of valid smart meters

or aggregators readings to the single large window of none valid reading, thus giving

coarse-grained statistics that are still valid.

In a scenario where the smart meter is not disconnected from the network but is

completely turned off due to framework issues or power issues, it is impossible to

register the smart meter readings. Unfortunately, as we guaranteed privacy by protecting
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individual data, predicting the exact power consumption during such an event accurately

is impossible. However, a rough estimation of user consumption over a long period

can be reached, for example, a month. Thus, coarse-grained data analysis for extensive

periods can still be accurate to a certain extent. But, it is not possible to reach an exact

accurate billing for when a smart meter is entirely down.

Our model’s previous scenarios allow all failures to be addressed while still main-

taining a one-way data stream from the smart meter to the aggregator to the utility

provider.

4.1.4.Adversary Models

Eavesdropper/MITM

An eavesdropper is an attacker that intercepts information by sniffing packets on

the network. Typically, an eavesdropper is considered a passive adversary that does

not interrupt service or inject any new information. On the other hand, a man-in-the-

middle (MITM) is an adversary that may modify communications between connected

parties. MITM attackers try to impersonate one or both of communicating party mem-

bers by making independent connections between them, controlling the conversation.

Both eavesdropper and MITM must be capable of listening to relevant messages being

transmitted between two parties to inject new messages. Therefore, in our model, we

consider the eavesdropper’s capabilities to be covered by the MITM capabilities.

Assumptions We assume that this model’s adversary has access to the network be-

tween smart meter-aggregator or aggregator-utility provider and possesses strong pro-

cessing power. Additionally, the adversary can inject packets over the network.

46



Goals A goal of the adversary is to collect smart meter data. Learning such informa-

tion has an economic impact in addition to breaching privacy. An example of this is

learning factory production patterns or inferring appliance usage patterns; competitor

or malicious data collection companies can exploit such data. Another goal is to inject

false information to poison the data about consumption. Injecting incorrect information

can significantly impact the grid since transmitting false information may impact the

grid power distribution. For example, sending false low power consumption may cause

the utility provider to produce less power for a region, causing power blackouts.

Capabilities Assuming the adversary can access the data stream over the network, the

network’s transmission contains the encrypted messages and the HMAC code. For the

adversary to access the encrypted message, he must have access to the Diffie-Hellman

key. While a MITM attack is possible on the standard Diffie-Hellman key exchange

model, we included the secret string concatenated with a two-way challenge-response

method for authenticating the key owner. Therefore, the adversary can’t decrypt the

messages and is unable to infer user data. Another attack is where the adversary tries to

inject messages over the network trying to impersonate an aggregator, smart meter, or

utility provider. Such an attack is impossible since HMACprovides data authenticity and

integrity; an attacker cannot break HMAC’s authenticity and integrity without owning

the keys.

Aggregator and Utility Provider

Wecombine aggregators and utility providers as one adversary since their capabilities

are similar, and both might be one entity. An aggregator or utility provider can be
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an adversary trying to infer a smart meter’s fine-grained power consumption. This

data might be shared with third parties such as insurance companies, entertainment

companies, and government agencies [12] for profit. Usually, security policies posed by

government institutions prevent this unauthorized sharing of data. However, assuming a

disgruntled employee or social engineering cyberattacks, it may be possible to leak the

smart meter’s aggregated data.

Assumptions An adversary in this model has access and privileges to the smart meter

aggregated data. In this case, the aggregator poses a more serious threat as aggregators

collect more fine-grained smart meter data.

Goals The main goal of an adversary is to leak end-users or smart meters accurate

load profiles.

Capabilities Assuming an aggregator tries to infer user temporal power load accu-

rately, the promise of differential privacy [19] prevents the adversary from inferring

individual data readings as the received data is already perturbed with differential pri-

vacy. Smart meters summarize the power load for theminimumwindowwmin; therefore,

the aggregated data is coarse-grained bound by wmin and differentially private. Another

valuable property of differential privacy is that it is unaffected by post-processing, pre-

venting the adversary from inferring accurate information from the perturbed data. Here

we assume that a security policy appropriately sets the Dynamic Window Algorithm

parameters; auditing and policy procedures are required to ensure that the parameters

are not set in a way that may break differential privacy.
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4.2.Performance Analysis

This section evaluates our model’s performance accuracy and compares it with

the traditional Gaussian Mechanism. We apply our model to an actual smart home

data set. Our dynamic window model is applied to the individual household electric

power consumption data set [40]. The data set contains electric power consumption

measurements in a household with a one-minute sampling rate for almost four years.

We apply our perturbation with the dynamic window differential privacy algorithm on

smart meter then aggregator nodes. For every window w, we aggregate the values

from the smart meter and apply noise, losing an amount of privacy budget εw. Next,

the aggregator receives the perturbed data and applies another perturbation level; the

noise added to achieve data perturbation is added to the virtual battery of each smart

meter. Error is calculated over the time series real-time values for each time window

w. The values for wmin, wmax, errmax and Ppeak are set for the smart meter and

aggregator. Naturally, the values of parameters wmin, wmax are selected to be larger

for the smart meter than those used for the aggregator. Choosing a larger window

size for smart meters hides the smart meter’s data from the aggregator and consumes

less privacy budget for the smart meter windows as the smart meter processes more

fine-grained data. On the other hand, errmax, Ppeak values are chosen to be larger for

the aggregator as aggregators aggregate larger values for smaller window sizes. The

accuracy is visualized and presented by the mean relative error (MRE) for a time period
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T in percentage is defined below:

MRE =
100

T

T∑
i=1

(

T∑
i=1

L(ti)−
T∑
i=1

X(ti)

T∑
i=1

X(ti)

). (4.1)

Figure 4.1 shows the aggregation of time series for a single smart meter. The original

data is shown in blue, the dotted green line shows traditional Gaussian Mechanism, and

the dotted orange line represents our model’s result. The perturbation is applied by

consuming values of ε per window size w with fixed w used in traditional Gaussian

Mechanism and dynamic w size in our model. We can see from the results that we

were able to control the error value and achieve a specific error value while consuming

less privacy budget since we are using a dynamic window size. The accuracy in our

model is evident by the larger range of the traditional Gaussian Mechanism signal or the

number of outliers. Note that the values are trimmed at the highest values by Ppeak and

at lowest value by minimum noise in our model. These values are trimmed and sent to

the virtual battery and do not affect differential privacy due to the differential privacy

post-processing property. Similarly, Figure 4.2 shows the aggregation of time series for

the aggregator. In both results, the values of differential privacy parameters per w are

set as ε = 1 and δ = 1/n2 where n is the number of readings in the data set.

Table 4.1 shows a comparison between theMRE difference between using our model

and the traditional Gaussian Mechanism. Note that the error rate in our model is much

lower than the traditional Gaussian Mechanism while we kept the differential privacy

guarantees. The error is low since we choose the perturbation window size optimally

with the errmax and trim the power between Ppeak and noise applied on zero values.

The window size also improved upon the loss of privacy budget as the added noise is
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Figure 4.1: Smart Meter Aggregation Our Model VS Traditional

Figure 4.2: Aggregator Aggregation in Our Model VS Traditional

applied on a larger window size when possible. We argue that this is better for data

analysis and that the only drawback is using more coarse-grained data dynamically. It is

important to note here that we could specify errmax to achieve better accuracy; however,

depending on the application and the required level of accepted error in the data, it is

possible to increase the amount of errmax as desired. An initial value of errmax can be

set on the smart meter running as a closed enclave with the ability only to increase this

value given to the utility provider.

Figure 4.3 shows smart meter perturbation error MRE over various values of dif-

ferential privacy budget ε. Our test outcomes support differential privacy’s theoretical
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Table 4.1: MRE Comparison Between Our Model and Traditional Method

Layer Our Model Gaussian Mechanism

Smart Meter 0.0899 0.1861

Aggregator 0.0312 0.0805

Figure 4.3: Variable ε values Effect on MRE in Our Model VS Traditional

principles; Lower values of privacy budget ε results in more noise and larger error

values. Furthermore, we can see that the error value does not exceed 3.1% for ε = 3

while MRE is 79% in Gaussian Mechanism with the same ε value.

Figure 4.4 represents the effect of increasing the window size w on the MRE applied

over a monthly period. We can see that increasing the window size reduces the value

of MRE. However, there are some inconsistencies in the graph; for example, at w =

210, this is due to the randomness introduced when applying noise from a Gaussian

distribution. We can see that after a certain amount of window size:w = 190 increasing

the window size does not decrease the MRE value by much; This is because the MRE

is limited by the value of errmax. errmax value is used on the window size w taken

from the overall consumption; therefore, the overall MRE will reduce to a certain level.

However, even after reaching this value of w, the increase of w still benefits our model
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Figure 4.4: Variable Windows Size Effect on MRE in Our Model

in reducing the consumed privacy budget ε.

Figure 4.5: Variable Windows Size Effect on Consumed Privacy Budget ε

In the used data set, we have readings of the power load for every minute a fixed

window size will be, for example, 10 minutes. The applied ε on a fixed window for the

monthly period will be the addition of all ε applied on each window by using the total

composition property of differential privacy. Therefore, it is trivial that using a larger
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window size will consume less privacy budget overall. As we discussed previously,

larger ε yields less privacy; therefore, it is beneficial to reduce the privacy budget loss.

Our model used differential privacy with additive noise from the Gaussian Distribution

on a dynamic window size w. In our model, the window size w is set to wmin and

increased until we reach Ppeak, errmax or wmax whichever comes first. Figure 4.5

represents the loss in the privacy budget ε when applied to the overall monthly period.

In this figure, the value ofw = wmax−wmin. It is important to note that the actual value

of w will vary between wmin and wmax as mentioned before. Nonetheless, increasing

wmax, and subsequently w, will consume less privacy budget ε for the overall data.

54



CHAPTER 5: CONCLUSION AND FUTURE WORK

This thesis introduced a virtual battery model for achieving user data privacy in the

smart grid. Our model allows for a form of differential privacy while preserving data

statistics. It is possible to combine our model with several perturbation methodologies

that are already found in the literature or developed in future works. Subtracting noise

added to user load for perturbation from the virtual battery ensures billing accuracy

regardless of obfuscation level. It is possible to use the proposed model with non-

electrical systems, such as gas or water utility distribution, as our battery storage is

virtual. We avoided using heavy cryptographic primitives that require a trusted third

party or heavy cryptographic processing. Instead, we used a simple Diffie-Hellman

key exchange and AES for lightweight symmetric encryption of transferred data. All

forms of communication are encrypted with the exchanged symmetric keys using AES.

For authentication, we use HMAC, which is another lightweight cryptographic method.

Fog aggregation is used where middle fog nodes aggregate SM data for a more coarse-

grain aggregation. Our perturbation is done using differential privacy with the Gaussian

mechanism over infinite time series data. We present model setup parameters that can

control the level of privacy and maintain a certain level of error using a dynamic window

algorithm. The dynamic window algorithm uses a window size of the smart meter

power readings to preserve the privacy budget. Comparing our model with traditional

differentially private models showed several enhancements, namely controlling the error

level with values much less than the normal Gaussian Mechanism, the consumption of

less privacy budget, and the accuracy of billing. We found that introducing specific

parameters can give us the ability to control the error level. Additionally, we found

that increasing the size of the window of the selected data for perturbation reduced the
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MRE and reduced the amount of consumed privacy budget. However, choosing a fixed

window size might affect the error rate; therefore, we introduced a dynamic window

size limited by a maximum value to guarantee updates to the utility.

5.1.Future Work

While we presented a Framework that guarantees privacy, it is essential to consider

a large amount of data collected on an actual smart metering date. Moreover, some

variables may change with the addition of renewable resources. Future work will

be to estimate the privacy budget loss over a long period. A possible direction to

solving privacy loss is to use temporally discounted differential privacy for evolving

data sets presented in [41]. Additionally, an evaluation against actual smart metering

data and simulating attacks on such data needs further investigation. On the other hand,

several data analysis methods should be tested on the perturbed data to estimate the

loss of analytic benefits after applying differential privacy. Another direction would be

to consider the effect of gathering data from multiple users on privacy, for example,

collecting data from an entire neighborhood. Moreover, a possible enhancement is to

study the impact of adding data from resources other than power consumption. Such

information can be exploited for breaching privacy, for example, weather data might

affect consumption as users tend to turn on the heating or cooling appliances. Finally,

the constantly evolving science of machine learning might introduce new challenges to

keeping an individual’s privacy while maintaining viable data for analysis.
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