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Abstract—In this study, we propose a novel vector quantization algorithm for Approximate Nearest Neighbor (ANN) search, based on a

joint competitive learning strategy and hence called as competitive quantization (CompQ). CompQ is a hierarchical algorithm, which

iteratively minimizes the quantization error by jointly optimizing the codebooks in each layer, using a gradient decent approach. An

extensive set of experimental results and comparative evaluations show that CompQ outperforms the-state-of-the-art while retaining a

comparable computational complexity.

Index Terms—Approximate nearest neighbor search, binary codes, large-scale retrieval, vector quantization

Ç

THE vast increase in size and dimension of today’s data-
sets bring about new problems, as traditional methods

fail to satisfy the present-day requirements. Like many
others, the problem of fast and efficient distance calcula-
tions between pairs of samples leads researchers to approxi-
mate solutions. Binary embedding of descriptor vectors for
faster distance calculations has become a highly popular
research topic in recent years, drawing a significant atten-
tion [1]. The common approach is to encode the vectors as
binary strings and compress very large datasets in much
smaller sizes, decreasing the storage cost. Furthermore, the
approximation of the distance between two vectors by using
pre-calculated distance values gives a significant boost in
terms of the search speed.

Binary embedding methods can be divided into two
major branches as hashing and vector quantization. Hash-
ing based approaches aim to approximate the distance
between vectors using the Hamming distance [2], [3], [4],
[5], [6]. These approaches are proved to be fast, as the Ham-
ming distance calculation between two binary strings is
basically an XOR operation, but since the Hamming dis-
tance is an integer between 0 and the length of the binary
string, several vector pairs end up with the exact same dis-
tance approximation, which is a disadvantage in terms of
retrieval rankings. Approaches such as [7], [8], [9] apply
weighted Hamming distances, in order to add more variety
to the results of the distance approximation by using look-
up tables, which improves the performance; however, this
slows down the search since distance approximations can-
not be calculated simply by an XOR operation.

The introduction of weighted distances and look-up
tables for hashing opened the doors for new binary embed-
ding approaches, which constitutes the second major
branch: the Vector Quantization (VQ). VQ is a very well-
studied area in many fields such as electronics, telecommu-
nication and signal processing. The application of VQ in
binary embedding methods for approximate distance calcu-
lations, or as more formally stated in the literature, Approxi-
mate Nearest Neighbor (ANN) search starts with the
Product Quantization (PQ) proposed in [10]. In this study,
J�egou et al. propose a division among the dimensions of the
vector. They perform quantization separately at each sub-
space, and obtain the final quantized vector as the Cartesian
products of the sub-quantized vectors. This opens a new era
in quantization for ANN as with this method, the number
of quantization centers can scale up to very large numbers.
Several improvements have been applied on top of PQ such
as [11], [12], [13], [14], [15], obtaining significant increase in
performance.

Besides PQ and its variants, for the purpose of scaling up
the number of quantization codevectors exponentially,
another approach is to quantize a given vector as the addi-
tion of several codevectors. Chen et al. in [16] propose this
approach to ANN search problems. The authors introduce
several layers of quantization, as each layer quantizes the
residuals of the previous layer. Improvements on this
method have been proposed in [17], [18]. In [19], Babenko
et al. propose a method again based on quantization by
addition of several codevectors, yet they remove the hierar-
chy between layers of residual quantization, providing a
high level of freedom for the quantization codevectors.
However, this freedom requires an encoding step, which is
computationally very expensive, but still it outperforms the
state-of-the-art methods. Other methods such as [20], [21],
[22] add further constraints on the selection of codevectors,
in order to obtain a more efficient encoding step.

In summary, many recent methods propose quantization
through the addition of several codevectors, but they have to
choose between using either highly constrained codevector
proposals as in [16], which results in inferior performance; or
leaving more freedom for codevectors while looking for a

� E.C. Ozan and M. Gabbouj are with the Department of Signal Processing,
Tampere University of Technology, Tampere 33720, Finland.
E-mail: {ezgi.ozan, moncef.gabbouj}@tut.fi.

� S. Kiranyaz is with the Electrical Engineering Department, College of Engi-
neering,Qatar University, Doha 2713, Qatar. E-mail: mkiranyaz@qu.edu.qa.

Manuscript received 22 Feb. 2016; revised 29 June 2016; accepted 5 July 2016.
Date of publication 10 Aug. 2016; date of current version 3 Oct. 2016.
Recommended for acceptance by R. Cheng.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2597834

2884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

1041-4347� 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:


heuristic search, which results in computationally expensive
encoding. To address this drawback in an efficient way we
propose a novel VQ approach, which outperforms the state-
of-the-art quantizationmethods,with a comparable computa-
tional complexity. The novel contributions in this paper can
be summarized as follows:

� Proposing a novel addition based quantization
method, which preserves the layer hierarchy as in
[16], consisting of a novel method which jointly
trains all the codebooks, and minimizes the quanti-
zation error together in all layers.

� Proposing a better encoding approach by redefining
‘the winner codevector’, which provides lower quanti-
zation error.

The rest of the paper is organized as follows. In Section 1,
the problem formulation is given together with a more
detailed explanation of the related work. In Section 2, the
proposed method is presented in detail. Section 3 presents
the experimental results and comparisons with the state-of-
the-art. In Section 0, the method and the obtained results
are discussed thoroughly, and finally Section 5 concludes
the paper.

1 PROBLEM FORMULATION AND RELATED WORK

Vector quantization can be seen as an optimization problem,
where the optimization criterion is to minimize the mean
squared quantization error. The quantization error of a
quantizer Q can be described as follows: Given a set of N
vectors XX ¼ fxx1; . . . ; xxNg, the mean squared quantization
errorMSEQ is defined as in (1).

MSEQ ¼ 1

N

XN
i

jjxxi �Q xxið Þjj22: (1)

The quantizer Q quantizes the given feature vector xxi to
its corresponding codevector as,

Q xxið Þ ¼ CCbbi; (2)

where bbi 2 f0; 1gK is the binary selection vector, with
jjbbijj 1 ¼ 1. The main difference between traditional VQ and
VQ for ANN is that, the number of codevectors for ANN is
much greater than traditional vector quantization, because
VQ for ANN targets large-scale datasets. As mentioned ear-
lier, in order to increase the number of codevectors expo-
nentially, VQ methods for ANN usually use several
codebooks for quantization [1]. The use of M codebooks

increase the number of codevectors from K to KM . Code-
vectors from different codebooks are combined either by
concatenation (Cartesian products) as in [10], [12], [13], [14],
or by addition as in [16], [19], [20], [21], [22].

Vector quantization by Cartesian product of codevectors
can be formulated as,

bxxi ¼
CC 1ð Þbb 1ð Þ

i

:
:

CC Mð Þbb Mð Þ
i

2
664

3
775 CC mð Þbb mð Þ

i 2 RD=M (3)

where vector, x̂x, is the quantization output of vector xx.

CC mð Þ ¼ fccðmÞ
1 . . . ccðmÞ

Kg 2 RD=M�K is the corresponding
codebook of the mth subspace, m 2 f1 . . .Mg, where M is
the number of codebooks (one codebook per subspace) and

K is the number of codevectors per codebook. BBðmÞ ¼
fbbðmÞ

1 . . . bb
ðmÞ
N g 2 RK�N is the set of K-dimensional, binary

codevector selection vectors for the mth codebook, where

bb
ðmÞ
i 2 f0; 1gK with bb

ðmÞ
i 1 ¼ 1.

Similarly, vector quantization by addition of codevectors
can be formulated as given in (4). The main difference from
(3) is that here all codebooks come from the original feature
space, i.e., CCm ¼ ccm1 . . . ccmKf g 2 RD�K . Note that in this
paper, codebooks obtained from the same feature space are
represented using a subscript (CCm), while codebooks
belonging to different subspaces are represented using a

superscript in parenthesis (CCðmÞ). The corresponding binary
selection vectors are also represented accordingly.

bxxi ¼
XM
m¼1

CCmbbmi CCmbbmi 2 RD: (4)

Different codevectors obtained from different codebooks
are combined in order to obtain x̂x, the final approximation
of vector x, providing the minimum quantization error.
This optimization problem can be formulated for the Carte-
sian product based VQ as given in (5), and for the addition
based VQ as given in (6).

MSE
Cartesianð Þ
Q ¼ min

CC mð Þf g; BB mð Þf g
1

N

XN
i ¼ 1

xixi �
CC 1ð Þbb 1ð Þ

i

:
:

CC Mð Þbb Mð Þ
i

2
664

3
775

��������

��������

2

2

(5)

MSE
Additionð Þ
Q ¼ min

CCmf g; BBmf g
1

N

XN
i ¼ 1

xxi �
XM
m ¼ 1

CCmbbmi

�����
�����
2

2

: (6)

Closed form solutions for the above problems do not
exist, hence the recent methods approach this minimization
using approximate techniques with different constraints
and different heuristics. Constraints limit the search space
and heuristics enable a more feasible and divergent search.
In the next section, the state-of-the-art methods will be
examined in terms of such constraints and the heuristics
they define.

1.1 Product Quantization

Product Quantization [10] proposed by Jegou et al. is a Car-
tesian product based VQ method. It uses subspaces of the
feature space to create different layers of quantization. On
each subspace, a different codebook is trained separately. In
other words, PQ divides the original feature space into M

subspaces, and each codevector cc
ðmÞ
k 2 RD=M obtained on

this subspace is a subvector. This approach splits the opti-
mization problem into M independent problems. However,
the assumption of subspaces being statistically independent
does not usually hold in practice, and many variants of PQ
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have been proposed [11], [12], [13], [14] in order to over-
come this drawback. The optimization problem of PQ can

be formulated as given in (7), where xx
ðmÞ
i is the subvector of

xxi corresponding to themth subspace.

MSE
ðPQ1Þ
Q ¼ min

CCð1Þf g; BBð1Þf g
1

N

XN
i¼1

xx
ð1Þ
i � CCð1Þbbð1Þi

��� ���2
2

�
�

MSE
ðPQM Þ
Q ¼ min

CCðMÞf g; BBðMÞf g
1

N

XN
i¼1

xx
ðMÞ
i � CCðMÞbbðMÞ

i

��� ���2
2

(7)

1.2 K-Subspace Quantization

In Cartesian product based approaches, the creation of sub-
spaces is problematic because of the unrealistic assumption
that subspaces are statistically independent. The proposed
solution to this problem is a PCA transformation [11], [12],
[13], [14], which brings another problem of unbalanced dis-
tribution of information among dimensions. In [15], Ozan
et al. also target this problem and propose to introduce
more than one affine subspace, train a Transform Coding
[11] variant in each and choose the best among them to
quantize the samples. Introduction of multiple affine sub-
spaces improves the assumption of independent subspaces
after PCA. Besides, they propose to update codebooks in an
iterative way, in order to minimize the quantization error
further and obtain the state-of-the-art performance. The
optimization problem for KSSQ can be formulated as given
in (8). XXm � XX is a subset of samples such that [M

m¼1 XXm ¼
XX and XXm \ XXj ¼ ; where m 6¼ j. Lm is the number of
dimensions for themth subspace.

MSE
KSSQð Þ
Q ¼ min

CC
lmð Þ
m

� �
; BB

lmð Þ
m

� �
; Xmf g; Lmf g

1

N

XM
m ¼ 1

X
xi2Xm

�����xxi

�

CC 1ð Þ
m bb 1ð Þ

mi

:

:

CC Lmð Þ
m bb Lmð Þ

mi

2
66664

3
77775

����������

2

2

(8)

1.3 Residual Vector Quantization

Residual Vector Quantization (RVQ) [16] proposed by Chen
et al. is an addition based VQmethod, which dictates a hier-
archy among the codebooks. As the name suggests, each
succeeding codebook is trained on the residuals of the pre-
vious layer. The optimization problem is separated into M
sub-problems, which are solved consecutively. The optimi-
zation problem of RVQ can be formulated as,

MSE
RVQ1ð Þ
Q ¼ min

CC1f g; BB1f g
1

N

XN
i ¼ 1

xxi �
X1
m ¼ 1

CCmbbmi

 !�����
�����
2

2

:

:

MSE
RVQMð Þ
Q ¼ min

CCMf g; BBMf g
1

N

XN
i¼1

xxi �
XM
m¼1

CCmbbmi

 !�����
�����
2

2

: (9)

This hierarchy simplifies the encoding process, as each
codevector depends on the selection of the previous code-
vectors. However, the contribution of each layer to the mini-
mization of the quantization error is not the same, as the last
layers contribute much less than the first ones. This algo-
rithm has been extended by several other methods [17], [18].

1.4 Optimized Cartesian K-Means

Optimized Cartesian K-Means (OCKM) [20] proposed by
Wang et al. is an improvement over the Cartesian K-
Means (CKM) [13], which forms the quantization vector
as a Cartesian product of subvectors obtained from sub-
spaces of the original feature space. Similar to CKM,
OCKM proposes a multiplication with a rotation matrix
RR before dividing the initial vector space into subspaces.
OCKM is a transition between the Cartesian product
based vector quantization algorithms and the addition
based vector quantization algorithms. Wang et al. pro-
pose to apply the same rotation and subspace division in
CKM, but instead of picking one codevector per sub-
space, the authors suggest training two codebooks per
subspace, hence picking two codevectors and adding
them up. The optimization performed by OCKM can be
formulated as

MSE
OCKMð Þ
Q ¼ min

CC
mð Þ
c

� �
; BB

mð Þ
c

� �
; RRf g

1

N

XN
i ¼ 1

xxi �RR

P2
c ¼ 1 CC

1ð Þ
c bb 1ð Þ

ci

:

:P2
c ¼ 1 CC

M=2ð Þ
c bb M=2ð Þ

ci

2
66664

3
77775

����������

����������

2

2

(10)

OCKM generates the codebooks in different subspaces,
yet within each subspace, there is no constraint on the code-
books and the codevectors they contain. In order to avoid
the complexity of this unconstrained situation, they opt for
more subspaces rather than codebooks i.e., they keep the
number of codebooks per subspace limited to 2.

1.5 Additive Quantization

Additive Quantization (AQ) [19] is an unconstrained
approach to addition based VQ. Babenko et al. propose to
generate the quantized vectors using the addition of several
different codevectors, each from a different codebook,
trained without any constraints on the original feature
space. The lack of constraints provides a boost in the quanti-
zation performance, yet the training and more importantly
encoding procedure is extremely costly, as they propose to
use “heuristic beam search” in the encoding process. Since
there are no specific constraints, the optimization problem
can be represented as in (6).

The complexity of the proposed beam search in [19] is
proportional to the cubic order of the number of codebooks,
the authors propose a PQ variant of the additive quantiza-
tion, Additive Product Quantization (APQ) [19], which
divides the feature space into two subspaces and performs
AQ in each subspace independently, then concatenates both
vectors to obtain the final quantized vector. This splits the
optimization problem into two independent problems simi-
lar to PQ. The optimization problem for APQ can be formu-
lated as given in (11)
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MSE
APQ1ð Þ
Q ¼ min

CC
1ð Þ
m

� �
; BB

1ð Þ
m

� � 1

N

XN
i¼1

xx 1ð Þ
i �
XM=2

m¼1

CC 1ð Þ
m bb 1ð Þ

mi

�����
�����
2

2

MSE
APQ2ð Þ
Q ¼ min

CC
2ð Þ
m

� �
; BB

2ð Þ
m

� � 1

N

XN
i¼1

xx 2ð Þ
i �
XM=2

m¼1

CC 2ð Þ
m bb 2ð Þ

mi

�����
�����
2

2

:

(11)

1.6 Composite Quantization

Composite Quantization (CQ) [21] proposed by Zhang et al.
is yet another addition based vector quantization method
with constraints. CQ differs from the previous methods by
the purpose of the selected constraints. Compared to the
Cartesian product based methods, one serious drawback of
the addition based VQ techniques is the computational cost
of asymmetric distance calculation. Usually, Cartesian
product based methods can calculate the approximate dis-
tance between an encoded database element and a given
query vector in M look-ups and additions, i.e., one look-up
and addition for each codebook [10], [12], [13]. However,
the computational cost for addition based methods has usu-

ally the complexity of OðM2Þ [16], [17], [19]. Zhang et al.
propose bringing additional constraints in the codebook
generation process so that the sum of the dot products of all
codevectors from two different codebooks is equal to a con-

stant value, i.e.,
PM

m¼1

PM
l¼1; l6¼m CCmbbmi

� �T
CClbbli ¼ �. They

include this constraint into the optimization via a penalty
factor. The formulation of the optimization problem can be
given as in (12), where m is the penalty parameter

MSE
ðCQÞ
Q

¼ min
fCCmg;fBBmg;f�g

1

N

XN
i¼1

�����xxi �
XM
m¼1

CCmbbmi

�����
2

2

þ m
XN
i¼1

XM
m¼1

XM
l¼1; l 6¼m

�
ðCCmbbmi

ÞTCClbbli � �
�2
: (12)

1.7 (Optimized) Tree Quantization

Babenko et al. extended their previous work AQ, by adding
more constraints on the codebooks and a rotation as in OPQ
for the feature space, resulting with (Optimized) Tree Quan-
tization (OTQ) [22]. In OTQ, a tree structure is introduced
where each vertex of the tree is a codebook. Each dimension
of the feature space is assigned to an edge in the tree, so
each dimension is coded by two codebooks. It is assumed
that any dimension that is not in the edge of a codebook is
equal to zero. This brings orthogonality between the code-
vectors of any two codebooks that are not adjacent in the
tree. The introduced tree structure significantly decreased
the encoding complexity, while obtaining a comparable
quantization performance with AQ. The optimization prob-
lem for OTQ can be formulated by (13). Here ½d� represents
the dth dimension of the feature space and a ðm;nÞ ¼ 1 if
dimension d is assigned to edge ðm;nÞ.

MSE
OTQð Þ
Q ¼ min

CCmf g; BBmf g; a m;nð Þf g

XN
i¼1

XD
d¼1

XM
m¼1

XM
n¼m

a m; nð Þ

� CCmbbmi
d½ � þ CCnbbni d½ � � xxi d½ �		 		2:

(13)

A noteworthy observation from the aforementioned
prior studies in this domain is that the methods with less
constraints offer a better quantization performance, whereas
the complexity of the encoding and distance calculation
increases. The methods with stronger constraints are faster
yet perform worse. In this study, we aim to achieve a supe-
rior performance without increasing the computational
complexity. In order to accomplish this we start from a
well-constrained quantization with a hierarchical formation
and then we shall relax these constraints for a better quanti-
zation performance whilst having a comparable computa-
tional complexity.

2 THE PROPOSED METHOD: COMPETITIVE

QUANTIZATION

As we discussed in the previous section, constraint selection
is crucial as it significantly effects the quantization perfor-
mance, computational complexity and search speed. In this
paper, we focus on the hierarchical structure imposed by
RVQ. The biggest advantage of RVQ’s hierarchical
approach is that, the codebooks have a given order, so
encoding is simply selecting the nearest codevector in the
current layer, calculating the residual and proceeding to the
next layer. However, each codebook is trained separately,
independent from the others, resulting in a suboptimal solu-
tion. In other words, the codebook training in the upper
layers does not take the quantization error produced by the
lower layers into account. In this study, we propose a joint
optimization scheme updating all layers at the same time.

2.1 Competitive Codebook Learning

For addition based hierarchically connected quantization
methods, for a given vector xx, a residual vector rrm at the
mth level can be represented as given in (14).

rrm ¼ xx�
Xm�1

l¼1

CClbbl : (14)

“Competitive Learning” with a winner-takes-all strategy is
one way to obtain the codebooks for such a connectionist
quantization scheme [23]. In this scheme, each layer responds
to its corresponding input by determining a winner codevec-
tor. The winner codevectors are updated andmoved towards
the input to minimize the error. As (14) shows, all the code-
vectors from all the levels are responsible from the obtained
quantization error, meaning that all the codevectors should
be updated together accordingly, tominimize this error.

In this paper, the codebooks are jointly optimized using
the stochastic gradient decent, following the aforemen-
tioned competitive learning approach. With the stochastic
gradient decent method, the codevectors are updated using
the formula in (15).

_ccm tþ 1ð Þ ¼ _ccm tð Þ � gm tð Þr _cm xx�
XM
l¼1

_ccl

�����
�����
2

2

0
@

1
A (15)

Here, the parameter gmðtÞ is the learning rate at iteration
t, which is decreased with every iteration. _ccm stands for the
winner codevector for the sample vector x at the mth layer,
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i.e., _ccm ¼ CCmbbm or equivalently;

_ccm ¼ argmin
cmk

xx�
Xm�1

l¼1

_ccl

 !
� ccmk

�����
�����
2

2

: (16)

According to (16) the gradient of the error for the sample
vector x can be calculated as,

r _cm xx�
XM
l¼1

_ccl

�����
�����
2

2

0
@

1
A ¼ 2

XM
l¼1

_ccl � xx

 !
: (17)

So, for each winner codevector at each level, the update
rule, which is going to move the corresponding codevector
towards the input can be formulated as,

_ccm tþ 1ð Þ ¼ _ccm tð Þ þ 2gm tð Þ x�
XM
l¼1

_cl

 !
: (18)

As the equation in (18) shows, at each iteration and for
each sample, the winner codevectors in each layer should be
updated by multiplying the learning rate with the error vec-
tor in order to minimize the total quantization error, as the
result of the stochastic gradient descent approach. Note that,
unlike RVQ, the codevectors from all layers are updated
jointly. This prevents overfitting in upper levels and
increases the contribution of lower levels to theminimization
of the quantization error. The training algorithm including
the iterative codevector updates is presented in Table 1.

2.2 Initialization of Codebooks

CompQ starts with a broad initialization of the codebooks.
We use Transform Coding [11] in order to generate the ini-
tial codebooks for each layer. Transform Coding (TC) is also
a VQ method for ANN. Using PCA, TC transforms the fea-
ture space into a new one, in which the dimensions are
orthogonal. Centroids are then determined in the transform
domain for each dimension. Combining these centroids
yields the codevectors. The number of centroids for each
dimension is proportional to the variance of the correspond-
ing dimension, providing a balanced distribution of

codevectors in the feature space. Initially, coarsely com-
puted codebooks are selected in order to prevent early over-
fitting. We follow the hierarchy as formulated in (9). We
train the TC for a layer, and obtain the initial codevectors,
then calculate the residual vectors and proceed to the next
layer.

2.3 Sample Encoding and Winner Codevector

Encoding of a new sample consists of finding out the winner
codevector for each layer. The winner codevector _ccm can be
defined as,

_ccm ¼ argmin
cmk

xx�
Xm�1

l¼1

_ccl

 !
� ccmk

�����
�����
2

2

: (19)

Recall that in hierarchical structure based approaches such
as RVQ and its variants, for each layer, the nearest codevector
on the corresponding layer is chosen as the winner codevec-
tor. However, this may not be the best choice as it may lead to
higher quantization errors. A toy example for the aforemen-
tioned problem is presented in Fig. 1. In this figure, the given
sample (X) is encoded with (A3), since it is closer to the (A) in
the upper layer than (B). However, (B1) would have been a
better choice, as it is the nearest code to the given sample.

CompQ follows an alternative approach for the determi-
nation of the winner codevector. For each layer, instead of
one codevector, the best H candidates are picked and then
the residual for each candidate is calculated. Then among
HK residuals, again the best H are stored for the next layer.
When the final layer is reached the winner codevectors for
each layer have been obtained. Going back to Fig. 1, if (A)
and (B) were considered as candidate codevectors for the
first layer, then in the second layer (B1) would eventually be
selected, as it gives the minimum quantization error. Note
that, this is a special case of the beam search algorithm used
in the encoding step of AQ [19]. A very similar approach is
also proposed in OCKM [20]. In this paper, the hierarchical
structure is imposed on the beam search and it limits the
search space, hence reduces the computational complexity

TABLE 1
CompQ Training Algorithm

Fig. 1. Illustration of inferior encoding using hierarchical layers. The sam-
ple (X) is encoded with (A3) instead of the nearest code (B1).
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drastically. Since AQ is not inclusive of any structure, the
beam search in AQ searches for the bestH among ðM �m þ
1ÞHK codevectors for the mth layer. Thanks to the hierarchy
in our case there are alwaysHK vectors to compare.

The distance calculation between a codevector and a
residual is formulated in (20). After some mathematical
manipulations, this equation can be rewritten to enable the
use of look-up tables, and accelerate the encoding, as given
in (21) and (22).

d rrmi; ccm;k

� � ¼ xxi �
Xm�1

l¼1

_ccl � ccm;k

 !�����
�����
2

2

0
@

1
A (20)

d rrmi
; ccm;k

� � ¼ xxi �
Xm�1

l¼1

_ccl

�����
�����
2

2

0
@ �2hxxi �

Xm�1

l¼1

_ccl; ccm;ki þ ccm;k

�� ��2
2

!

(21)

d rrmi
; ccm;k

� � ¼ xxi �
Xm�1

l¼1

_ccl

�����
�����
2

2

�2 xxi; ccm;k


 �0
@

þ 2
Xm�1

l¼1

_ccl; ccm;k þ ccm;k

�� ��2
2

!
:

(22)

Note that in (22), the first term is already calculated in the
previous layer for all H candidates. The third and fourth
term can be obtained from a look-up table. Only the second
term should be calculated for each encoding operation.

2.4 Asymmetric Distance Calculation

The Asymmetric Distance [9], [24] is calculated between an
encoded database element and a given query vector. For sim-
plicitywe omit the square root and represent the formulation
of the square of the asymmetric distance, as given below:

d xx; �xxð Þ2 ¼ x� �xxk k22 ¼ xx�
XM
m¼1

_ccm

�����
�����
2

2

(23)

d xx; �xxð Þ2 ¼ xxk k22 �2hxx;
XM
m¼1

_ccmi þ
XM
m¼1

_ccm

�����
�����
2

2

(24)

d xx; �xxð Þ2 ¼ xx2
2 � 2

XM
m¼1

hxx; _ccmi þ
XM
m¼1

XM
l¼1

_ccm; _cclh i: (25)

As shown in (25), two look-up tables must be prepared
for distance calculation beforehand. The first look-up table
consists of dot-products of the query vector xx with all code-
vectors. The second look-up table stores the dot-products
calculated between pairs of codevectors. Since the first term
of (25) is the same for all database elements, it can be

neglected. The distance can be then calculated by M þ M2

look-ups and additions as in [16], [17], [18], [19].

3 EXPERIMENTAL RESULTS

3.1 Exhaustive Search

Our approach is first tested on two publicly available data-
sets of 1 Million samples, SIFT1M and GIST1M [10] for
exhaustive search. SIFT1M consists of 128-dimensional SIFT
vectors and GIST1M consists of 960-dimensional GIST
vectors.

We train our method using the given training sets and
perform exhaustive search on both datasets for all given
queries. We use K ¼ 256, H ¼ 32, M ¼ 8 for 64-bits and
M ¼ 4 for 32-bits coding. The performance of CompQ is
compared against the recent state-of-the-art methods such
as, Residual Vector Quantization [16], Cartesian K-Means/Opti-
mized Product Quantization (CKM/OPQ) [12], [13], Additive
Quantization (AQ/APQ) [19], Composite Quantization [21],
Extended Residual Vector Quantization (ERVQ) [17], Optimized
Cartesian K-Means (OCK) [20] and Optimized Tree Quantiza-
tion [22]. We do not compare against Transform Coding [11],
Product Quantization [10], Projected Residual Vector Quantiza-
tion [18] and Distance Encoded Product Quantization [25] since
their results were already outperformed by the other com-
pared methods. The results of the competing methods are
taken from the original publications. For AQ/APQ, AQ is
used for 32-bits coding and APQ for 64-bits as suggested by
the authors. NA corresponds to missing results in the origi-
nal publications.

The recall@Rmeasure is used for the experiments, which
is the recall value for the first R samples in retrieval. The
nearest sample in the test set is taken as the ground truth
for each query. We present the results for recall@1,
recall@10 and recall@100 for 32-bit coding in Tables 2 and 3
and for 64-bit coding in Tables 4 and 5, respectively.

As observed from the results, the proposed method,
CompQ, outperforms all recent state-of-the-art methods for
all scores, on both datasets for 64-bits encoding. For 32-bits
encoding, CompQ still has the best performance for
recall@10 for SIFT1M and also for recall@10 and recall@100

TABLE 2
Test Results for SIFT1M, 32-bit Codes

recall@1 recall@10 recall@100

RVQ NA NA NA
CKM/OPQ 0.068 0.273 0.658
AQ 0.106 0.415 0.825
CQ NA NA NA
OCK NA 0.348 0.742
ERVQ NA NA NA
OTQ 0.093 0.368 0.793
KSSQ 0.145 0.434 0.802
CompQ 0.135 0.435 0.818

TABLE 3
Test Results for GIST1M, 32-bit Codes

recall@1 recall@10 recall@100

RVQ NA NA NA
CKM/OPQ 0.054 0.142 0.396
AQ 0.069 0.189 0.467
CQ NA NA NA
OCK NA 0.172 0.467
ERVQ NA NA NA
OTQ NA NA NA
KSSQ 0.078 0.191 0.437
CompQ 0.072 0.200 0.504
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for GIST1M. KSSQ gives slightly better results than CompQ
for recall@1 in both datasets for 32-bits encoding.

3.2 Non-Exhaustive Search

As mentioned above in Section 2.4, the asymmetric distance
calculation requires M þ M2 look-ups and additions as in
many addition based methods such as [16], [17], [18], [19].
This means the exhaustive search using those methods takes
longer time compared to the Cartesian product based meth-
ods, which generally requires M look-ups and additions.
Methods such as CQ andOTQ propose additional constraints
on codebooks to decrease this cost. In ourmethod,we propose
non-exhaustive search as a solution to this problem.

Non-exhaustive versions of methods such as PQ, OPQ
have been implemented and tested using an additional
coarse quantization layer as in [10], [12], [14], [26], [27].
However, in our method, a non-exhaustive search scheme
can be implemented using the hierarchical structure. Since
at each layer, residuals of the previous layers are quantized,
upper layers can be used as coarse quantization layers and
an inverted file list can be created, i.e., no additional coarse
quantizer required.

Here we should state that, other non-exhaustive search
algorithms such as [14], [26], [27], [28], [29] can also be
applied on top of the proposed method, where the proposed
method can be used as a subquantizer or for re-ranking pur-
poses. Here we only discuss the non-exhaustive implemen-
tation of the proposed method, as this is an inherent
property of it. We do not aim to propose a new indexing
algorithm, as it would be beyond the scope of this paper.

A non-exhaustive version of RVQ (IVFRVQ) has been
also proposed in [16], which uses the first L layers as

inverted file indexes. The query vector is compared to KL

codevectors and the nearest W codevectors are selected
(W < KÞ. In our method, we propose a minor modification
to decrease this initial comparison overhead. The query vec-
tor is compared to the codevectors of the initial layer and
the bestW of them are selected, and residuals for the second
layer are calculated. Then among KW residuals, the nearest

W 2 are selected as target inverted file indexes, while in [16],
the query is compared to all codevectors in the first two

layers, resulting in K2 comparisons. The comparison of the
proposed non-exhaustive search algorithm with different
W values is given in Table 6.

As it can be seen, non-exhaustive search significantly
decreases the number of comparisons, with a negligible
drop in the performance. For example, for W ¼ 32, almost
exhaustive search performance is achieved for 25 times
faster search. The overall search time is proportional to the
number of comparisons, as long as the overhead of indexing
is negligible compared to the overall search time. As the
number of comparisons decreases, the search time also
decreases. Hence the overhead is no longer negligible and
the obtained speed-up is less compared to the decrease in
the number of comparisons.

We also compare our method with the state-of-the-art
non-exhaustive search methods in the literature. This time,
the performance of our method is tested on SIFT1B dataset
[10], which consists of 1 Billion samples. We compare
against the state-of-the-art indexing based non-exhaustive
search method Locally Optimized Product Quantization
(LOPQ) [14], Inverted File System with Asymmetric Distance
Calculation (IVFADC) [10] and IVFADC adaptation of OPQ
(I-OPQ) [12], [14]. The compared methods use 64-bits for
the codes and 13-bits for the coarse quantizer (K ¼ 8;192),
visiting the nearest 64 cells (W ¼ 64). In order to use
approximately the same amount of bits, we use 10 layers
(M ¼ 10) and the first two layers are used for indexing.
The compared methods visit 64 cells among 8,192, which is
approximately the same as visiting 22 cells for two layers of

256, hence we select W ¼ 22 (64=8;192 ffi 222=2562). The
results are presented in Table 7. Here note that, the total

TABLE 4
Test Results for SIFT1M, 64-bit Codes

recall@1 recall@10 recall@100

RVQ 0.257 0.659 0.952
CKM/OPQ 0.243 0.638 0.940
APQ 0.298 0.741 0.972
CQ 0.288 0.716 0.967
OCK 0.274 0.680 0.945
ERVQ 0.276 0.694 0.962
OTQ 0.317 0.748 0.972
KSSQ 0.325 0.754 0.976
CompQ 0.352 0.795 0.987

TABLE 5
Test Results for GIST1M, 64-bit Codes

recall@1 recall@10 recall@100

RVQ 0.113 0.325 0.676
CKM/OPQ 0.118 0.334 0.715
AQ/APQ NA NA NA
CQ 0.135 0.377 0.729
OCK 0.130 0.358 0.720
ERVQ 0.115 0.341 0.711
OTQ NA NA NA
KSSQ 0.136 0.396 0.741
CompQ 0.155 0.419 0.801

TABLE 6
Non-Exhaustive Search, SIFT1M, L ¼ 2, 64-bit Codes

Avg. No.
Comparisons

Avg.
Speed-Up

recall

@1 @10 @100

W ¼ 8 4,115 x 146 0.305 0.622 0.707
W ¼ 16 12,788 x 65 0.343 0.742 0.886
W ¼ 32 37,951 x 25 0.351 0.786 0.964
W ¼ 64 108,064 x 9 0.352 0.795 0.986
Exhaustive 1,000,000 x 1 0.352 0.795 0.988

TABLE 7
recall@r Results for SIFT1B

#bits recall@1 recall@10 recall@100

IVFADC 77 0.088 0.372 0.733
I-OPQ 77 0.114 0.399 0.777
LOPQ 77 0.199 0.586 0.909
CompQ 80 0.222 0.626 0.914
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length of the binary code is not different in non-exhaustive
search tests, unlike the most common cases in the literature,
where the coarse quantizer indexes are calculated as an
extra cost, i.e., [10], [12], [14], [16], [26], [27].

As it can be seen, our algorithm outperforms the state-of-
the-art methods for all three scores, using 3 more bits per
sample. This corresponds to an increase in storage around
3.9 percent only.

4 DISCUSSIONS

As explained in detail in Section 2, CompQ presents a quanti-
zation scheme based on the addition of several codevectors.
A joint optimization scheme is proposed on top of a hierar-
chical structure. This structure is similar to the hierarchy of
RVQ and its variants, butCompQ outperforms thesemethods
thanks to the jointly computed codebooks. Other state-of-
the-art methods such as OCKM and AQ also propose a joint
optimization for codebook generation, but the lack of code-
book hierarchy leads to more complex search spaces for
encoding. OTQ and CQ instead, limit the search space with
stronger constraints, decreasing the search complexity but
resulting in inferior codebooks. CompQ is a viable compro-
mise, where the search complexity is reduced by adopting a
hierarchical structure while the codebook generation is
improvedwith the proposed joint optimization scheme.

4.1 Joint Optimization

Investigating the behavior of the quantization errors in each
layer is a goodway to visualize the advantage of joint optimi-
zation against training all codebooks separately. As it can be

seen in Fig. 2, the first layers reduce the quantization error the
most, while the contributions of the last layers are more lim-
ited. It is worth mentioning that, obtaining a perfectly equal
distribution of quantization error cannot be expected. Because
at each layer, the residuals from the previous layers are quan-
tized, hence the norms are decreased. However, a better dis-
tribution of the workload between the layers is shown to be
possiblewith the proposed joint optimization scheme.

Fig. 3 shows the decrease in the quantization error for 250
iterations. As it can be seen, there is a steep drop right after
the first iteration, then the error keeps decreasing slowly
and converges around 13,700. That also shows that the pro-
posed initialization prevents overfitting and allows further
iterations to improve the quantization performance.

4.2 Impact of the Proposed Novelties on the
Performance

In Table 8, the impact of the proposed novelties on the per-
formance are individually presented. The joint optimization
scheme for codebook generation is compared to codebook
generation scheme of RVQ. Also the winner codevector
improvement is tested with RVQ and the performance is
compared with CompQ. Both novelties are shown to provide
significant improvement.

4.3 Parameter Selection

CompQ consists of several parameters, such as the number of
quantization levels M; the number of codevectors per layer
K; the learning rate g, and the number of candidates for the
winner codevector,H. ForM andK we follow the same set-
tings as in the literature, i.e., M ¼ 8 for 64-bits code and
M ¼ 4 for 32-bits code. Similarly, we setK ¼ 256.

Selecting a suitable number for the candidates of winner
codevectors is a tradeoff between the encoding complexity
and the quantization performance. The quantization perfor-
mance increases with H and so as the complexity. Hence
we select H ¼ 32 since it gives the comparable encoding
complexity with the competeing methods as shown in
Table 10. We present the performance of our method for dif-
ferent values of H in Table 8. with codebooks trained
with RVQ.

Note that when H ¼ 1, the encoding scheme is the
same as in RVQ. Table 8 also shows the increase in the per-
formance when our encoding scheme is used. For the learn-
ing rates, since the upper layers correspond to greater
quantization errors, the weight of the corresponding update
should be also greater. In order to do that, we select the
corresponding learning rate of each layer using the equation
in (26).

Fig. 2. Quantization error on SIFT1M as a function of the quantization
levels for 64-bit encoding.

Fig. 3. Quantization error on SIFT1M as a function of training iterations
for 64-bit encoding.

TABLE 8
Impact of the Proposed Novelties on the Performance

SIFT1M, 64-bit Codes

MSEQ recall@1 recall@10 recall@100

RVQ 20302.1 0.257 0.659 0.952
CompQ H ¼ 1 17765.9 0.286 0.709 0.966
RVQ H ¼ 8 18735.3 0.298 0.726 0.973
CompQ H ¼ 8 14418.1 0.339 0.783 0.983
CompQ H ¼ 16 13964.2 0.347 0.786 0.986
CompQ H ¼ 32 13671.2 0.352 0.795 0.988
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gm ¼ 1

log2 mþ 1
g0: (26)

Then we define a total value gTotal ¼
P

gm and normal-
ize gm so that gTotal is equal to the predefined value. The
quantization performance for different values of gTotal is
presented in Fig. 4.

As it can be seen, there is no significant change in the
quantization error for the tested values of gTotal and hence
we pick gTotal ¼ 0:5 which corresponds to a slightly
improved quantization error according to our simulations.

4.4 Initialization Methods

The importance of initialization for the proposed codebook
training method is tested using different initialization
schemes. Randomly initialized codebooks, RVQ initialized

codebooks and the proposed codebook initialization, which
is based on TC, are compared and the results are presented
in Table 9.

As it can be seen, random initialization provides inferior
results as some codevectors are not updated during the train-
ing procedure. RVQ initialization is also outperformed by the
proposed TC initialization, as the former overfits the training
data at each layer while the latter provides a more balanced
distribution of codevectors throughout the feature space.

4.5 Computational Complexity Analysis

The computational cost of encoding for CompQ can be calcu-
lated as in (22). The first term in (22) is the distance of the
given query to the codevectors of the previous layer, so at
this layer no extra calculations are required. The third and
fourth terms are obtained using a look-up table. This
requires mKH look-ups and additions for the mth layer.
The second term is the dot product of the given query with

Fig. 4. Quantization error on SIFT1M as a function of the learning rate
parameter gTotal for 64-bit encoding, H ¼ 1.

TABLE 9
Comparison of Initialization Methods, SIFT1M,

64-bit Codes, H ¼ 1

MSEQ recall@1 recall@10 recall@100

CompQ Rand Init 21,568 0.227 0.614 0.931
CompQ RVQ Init 17,823 0.278 0.704 0.963
CompQ TC Init 17,765 0.286 0.709 0.966

TABLE 10
Comparison of Computational and Storage Costs

Method Cost of Encoding Cost of Encoding for Different Datasets and Code Lengths

SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64

RVQ/ERVQ OðMKDÞ 131,072 262,144 983,040 1,966,080
CKM/OPQ OðD2 þKDÞ 49,152 49,152 1,167,360 1,167,360
OCK OðTKDÞ 327,680 327,680 2,457,600 2,457,600
AQ OðM2K2ðM þ log ðMKÞÞ þKDÞ 14,712,832 79,724,544 14,925,824 79,937,536
APQ OðD2 þ M

4 ð42K2ð4þ log ð4KÞÞ þKDÞ Þ 14,729,216 14,761,984 15,847,424 16,093,184

CQ Oð3MKDÞ 393,216 786,432 2,949,120 5,898,240
OTQ OðD2 þKDþMK2Þ 311,296 573,440 1,429,504 1,691,648
KSSQ OðKDþ 2KDLþ 8KMÞ 115,200 197,632 338,176 645,632
CompQ OðMDK þ ðM�1ÞðM�2Þ

2 KH þMKH logHÞ 319,488 761,856 1,171,456 2,465,792

Method Storage Cost Storage Costs for Different Datasets and Code Lengths (MB)
SIFT1M-32 SIFT1M-64 GIST1M-32 GIST1M-64

RVQ/ERVQ OðMKDÞ 1.00 2.00 7.5 15
CKM/OPQ OðD2 þKDÞ 0.38 0.38 8.91 8.91
OCK OðD2 þ 2KDÞ 0.63 0.63 10.78 10.78
AQ OðMKDÞ 1.00 2.00 7.50 15.00
APQ OðD2 þMKDÞ 1.13 2.13 14.53 22.03
CQ OðMKDÞ 1.00 2.00 7.50 15.00
OTQ OðD2 þMKDÞ 1.13 2.13 14.53 22.03
KSSQ OðKDLÞ 5.00 10.00 4.69 9.38
CompQ OðMKDÞ 1.00 2.00 7.50 15.00

K: number of sub-codewords 256 256 256 256
D: number of dimensions 128 128 960 960
M : number of sub-codebooks 4 8 4 8
T : search depth for OCK 10 10 10 10
H: number of winner candidates 32 32 32 32
K: number of selected subspaces for KSSQ encoding 16 16 8 8
L: number of reduced dimensions (on average) for KSSQ 20 40 20 40
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each codevector of the current layer, which costs OðDKÞ.
Finally, among the distances calculated between all code-
vectors and the previous residual candidates, the best H are
selected. This operation costs OðKH logHÞ. These calcula-
tions are repeated for allM layers, and the code correspond-
ing to the best quantization error is returned. The final cost
can be expressed as,

O MDK þ M � 1ð Þ M � 2ð Þ
2

KH þMKH logH

� 
: (27)

As it can be seen in Table 10, the computational cost of
our method is comparable to the other methods, but signifi-
cantly lower than AQ/APQ. A detailed analysis of the stor-
age requirements is also presented in Table 10. CompQ
requires to store K vectors of dimension D for each of the
M layers, resulting in a storage cost of OðMDKÞ, which cor-
responds to 2 MB for the SIFT dataset for 64-bits encoding.
It can be observed from the table that the storage require-
ment of our method is also comparable with the other
methods.

4.6 Relations with the Enhanced Residual Vector
Quantization Method

ERVQ [17] is an extension over RVQ [16], which aims to
improve the quantization quality by an iterative enhancement
process over RVQ’s training scheme. ERVQ starts with an
RVQ initialization, and after that while keeping M � 1 code-
books fixed, it recalculates the codebook of the Mth layer.
Several iterations are performed until convergence is reached.
Compared to ERVQ, the proposed method has three signifi-
cant differences. The first one is the proposed initialization
scheme, which is based on TC [11] instead of RVQ. Table 9
shows the improvement in the performance provided by the
TC based initialization method. The second difference is the
training scheme. While ERVQ can only update one codebook
per iteration, in the proposed method, all M codebooks are
updated according to the quantization error, as explained in
Section 2.1, using the formula given in (18). The contribution
of the proposed training method on RVQ is shown in Table 8.
As it can be seen, the proposedmethod already performs bet-
ter than ERVQ with these two improvements. The third and
the last difference between the proposed method and ERVQ
is the encoding scheme. The contribution of the proposed
encoding scheme is also shown in in Table 8. Combining these
three new features, the proposed method outperforms ERVQ
with an important margin (a relative improvement of 27.5
percent for SIFT1M and 34.8 percent for GIST1M), clearly
demonstrating the significance of the proposed contributions.

5 CONCLUSION

In this paper, a novel vector quantization method based on
the addition of codevectors is presented. A novel training
algorithm, which minimizes the quantization error using a
joint optimization among different codebook layers is pro-
posed. The proposed method, CompQ, also improves the
traditional encoding scheme of RVQ by redefining the win-
ner codevector. By means of such novel improvements,
CompQ achieves the state-of-the-art performance with com-
parable computational and storage costs. In the future, we

aim to test the performance of CompQ for different distance
metrics and for k-Nearest Neighbor classification problems.
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