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a b s t r a c t 

The selection of an optimal process mean is an important problem in production planning 

and quality control research. Most of the literature in this area has focused on the sin- 

gle objective problem of maximizing the profit for a fixed exogenous price. However, it is 

known that considering multiple objectives (such as gross income from sales, profit, and 

expected product uniformity) while allowing process mean, production and pricing to vary 

can significantly improve the profitability and performance of a firm. This article addresses 

this multi-objective problem while allowing the firm to sell two classes of products at dif- 

ferentiated prices based on their quality characteristics. These products are sold at differ- 

entiated prices depending upon their quality characteristics into primary and secondary 

markets at full and discounted prices respectively. Any nonconforming items are reworked 

at an additional cost. Due to customers heterogeneity, the firm experiences demand leak- 

age between the two market segments. The proposed joint decision control for the firm 

includes the joint determination of full and discounted prices, the process mean selection, 

and the production quantities for each of the two product classes along with expected 

reworked items. A mathematical formulation of the objectives is first provided and then 

the multi-objective problem is transformed into a goal-programming problem. A solution 

procedure is developed using simulation-based optimization to identify Pareto-optimal so- 

lutions. Some important characteristics of the solution procedure are discussed and the 

performance of the approach is corroborated through detailed numerical experiments. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

The process mean determination has received a significant amount of attention from academic researchers and indus-

try practitioners alike in revenue management. It is also commonly referred to as a process targeting problem and mainly

addresses the optimal selection of the mean of a process. This problem has a rich history which dates back to early 1950s.

Among early studies on process targeting is research reported in [1] which determined the optimal process mean for a

canning process. Most studies in process mean selection have found several industrial applications. Alkhedher and Darwish
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[2] found that process targeting is often a difficult decision in production processes such as canning/filling, metal plating,

and grinding; though they were able to find many applications in the glass, fiber, and steel industries. Often the specifica-

tion limits are determined by a manufacturer on quality performance measures, these measures may include a quantitative

assessment on weight, volume, concentration, thickness, length, etc. Depending upon the conformance to these specifica-

tion limits, a production is classified (graded). The products that do not comply with these specification limits are sold at

a discounted price, or reprocessed/scrapped. In order to avoid nonconforming items, manufacturers tend to set the process

mean to a higher level in order to meet the specification limits and to mitigate nonconformity among the manufactured

products [3] . 

There is a rich literature in the area of process mean selection, but we only discuss the main studies related to this

paper. Bisgaard et al. [4] presented an economic analysis for the problem of selecting the most favorable quality distribu-

tion for an industrial process. The analysis takes into account the stochastic nature of the process, discusses the issue of

overfill, and considers lognormal and Poisson distributions. Golhar [5] revisited the problem of optimum process mean in

a canning process where the cans filled above a specification limit are sold at a fixed price while the under-filled cans are

emptied and refilled at a reprocessing cost. Later, in [6] , sampling inspection plans were introduced into the problem in

place of 100% inspections. Optimal process mean with a rectifying inspection was addressed in [7] for the targeting problem

in a filling process with a time dependent process mean. Shao et al. [8] proposed strategies for determining the optimal

process mean of industrial processes when rejected goods can be held and sold to other customers in the same market

at a later time. Bowling et al. [9] explored the targeting problem in the context of a multi-stage serial production process.

Darwish [10] developed an integrated and hierarchical model of optimal process targeting in a single-vendor single-buyer

supply chain. Based on a quality loss function, Chen and Kao [11] computed both the optimal process mean and screening

limits. A reverse programming routine that identifies the relationship between the process mean and the settings within

an experimental factor space was developed by [12] and [13] . Aforementioned literature clearly reveals that researchers

have developed many process targeting models for optimizing firms’ profitability in terms of product uniformity and cost

reduction. This has been done primarily by approaching products’ characteristics in various production processes with mul-

tiple (or single) stages or inputs of production. Recently, several research studies have identified that there is a practice in

many industries to set the process mean higher to meet specification limits. Nonetheless, Roan et al. [3] have pointed out

that this practice results in an additional ”giveaway” cost by over-meeting the specification limits. Hariga and Al-Fawzan [14]

developed a model for a multi-echlon production system with process targeting. They integrated the decisions of process

targeting and production run for deterministic demand, then proposed simple solutions to find optimal control parameters.

Shao et al. [8] optimized the target for a process with multiple markets with variable holding costs. Park et al. [15] addressed

the problem of optimum common process mean and screening limits for a production process with multiple products. In an

extension of the work of [14] , [16] considered stochastic demand in an inventory model along with process mean selection.

A multi-objective optimization approach to the problem of process targeting is a very recent development in the field.

Duffuaa and El-Gaaly [17] used the Taguchi loss function [18] to develop a multi-objective model with 100% inspection

in which they considered three objectives: total (gross) income, profit, and product uniformity. Later they extended their

proposed model in [19] by incorporating sampling plans. Duffuaa and El-Gaaly [20] also studied the effect of inspection

error on the model they developed in [19] . Tamiz et al. [21] reported a survey regarding the use of goal programming for

decision making. Aouni and Kettani [22] discussed the history of goal programming models and their promising future. A

complete survey of the recent developments in goal programming research is out of the scope of this paper, but readers

can find many recent applications of goal programming models to various real-life situations (see [23] , [24] , [25] , [26] , [27] ,

[28] ). As far as other multi-objective optimization techniques are concerned, there are numerous methods reported in [29] .

Meta-heuristics are also commonly to achieve a multi-objective optimization of various problems. Deb [30] has provided a

detailed study on evolutionary algorithms for multi-objective optimization. Jones et al. [31] reported a survey of literature

on various existing meta-heuristics that are utilized for multi-objective optimization. 

There is a growing interest in simultaneous decision making in process mean selection along with other production

related controls. To this end, Jeang [32] proposed a model for an optimal joint determination of process means, process

tolerances, and resetting cycle for production process under process shifting behavior. In a related study, Jeang [33] studied

simultaneous determination of production lot size and process parameters under process deterioration and process break-

down. Recently, Jeang [34] also developed a robust optimization framework for simultaneous process mean, process toler-

ance, and product specification determination. Besides integration of process mean selection with other production system

control parameters, an interesting avenue would be to re-visit jointly a firm’s operations decisions and its marketing deci-

sions. In the present context, the operation decisions would consist of process mean and production decisions. Marketing

decisions would include market segmentation and pricing related decisions. This interfacing of the two business cores is

expected to augment the profitability of a firm with more emphasis on pricing, as price is a paramount factor that signif-

icantly impacts the purchase behavior of customers [35] . Recently, several studies have integrated pricing decisions with

the production (ordering) decisions at a firm’s level. Yield Management, also referred to as Revenue Management (RM), is

commonly described as the science of profitability. Price differentiation is among the most successful tools of RM to im-

prove a firm’s profitability [36,37] . The price differentiation tool mainly tries to sell the same (or slightly different) product

at distinct prices. A firm does not always use this price differentiation on products which are distinct in their attributes,

but it often offers almost the same or slightly different product at differentiated prices by using some distinct distribution

channels, such as online versus in-store sale. This tool mainly takes the benefit of the customers’ heterogeneity in their
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willingness-to-pay (WTP). But there is no established mechanism to estimate the true WTP for a customer, and it is not

uncommon to observe each customer has a distinct WTP. Zhang and Bell [38] discussed the taxonomy of fencing in RM

context, but indeed most fencing schemes cannot make a market segmentation perfect due to customers’ heterogeneity.

Thus, the market segmentation that is incurred due to price differentiation also observes demand leakage, which is also

known in marketing literature as cannibalization . Although the evidence of increased profitability is well established under

perfect market segmentation, in most practical situations demand leakages are inevitable. Zhang et al. [39] presented an

integrated optimization framework for a firm’s decision for fencing investment to mitigate demand leakage and at the same

time to determine the prices and the order quantities for two market segments. In addition, Zhang et al. [39] also assumed

predetermined market share (maximum perceived demand) in each market segment. However, with demand leakage from

the full price to the discounted price the market segment is dependent on the price differential between the two market

segments. Zhang and Bell [38] have presented numerous examples in which a firm may experience a similar situation. For

instance, a very commonly observed example is an online versus in-store sales, where the products might be offered by a

firm at discounted prices for online sales without the option of touch and feel. On the other hand, retail stores sales are set

to a higher price and the customers can interact with the products or the sales staff. Airlines have been practicing fare pric-

ing differentiation for over four decades using different strategies such as fare classes, sale conditions, advanced-purchase

rules, cancellation penalties, No-show fees, etc. Regardless of the market segment strategy, once the market is segmented, a

firm can adopt various strategies to mitigate cannibalization and to maintain the fences that differentiate the market seg-

ments. Zhang et al. [39] recently addressed the necessity of fencing improvement to mitigate the customers’ spill-over from

one market segment to another. Zhang and Bell [38] presented an overview of price fencing in RM’s practice and its taxon-

omy. However, a realistic optimal control of price differentiation and capacity allocation for each market segment would still

need to consider the demand leakage effects. In contrast to studies published in [38] , [39] , and [40] the research reported in

[37] divides a single deterministic market demand into two market segments using a notion (also a variable) differentiation 

price, as a price widget. Philips [37] also considered the demand leakage effects which were referred to as cannibalization for

price-dependent deterministic demand. Raza [41] extended the work in [37] by studying the impact of differentiation price

on a firm’s profitability when the firm experiences price-dependent stochastic demand. The study also re-visited the impact

when the distribution of the price-dependent stochastic demand is unknown [42] . Later, [43] proposed an integrated frame-

work for price differentiation and inventory decisions with demand leakage effect for price-dependent stochastic demand

whose distribution may also be unknown. The fundamental difference between research reported in [37] , [41,43] and that

reported in [40] , and [39] is the use of notion of a differentiation price . By using a differentiation price, the cumulative per-

ceived maximum demand (the market share) is divided into two or more market segments, and indeed the differentiation

price is a decision variable. Thus a firm is able to have an additional control in terms of optimizing its market share since

the market segments are created from a single marketshare. In contrast, Zhang et al. [38] , [39] , and [40] mainly study the

effect of demand leakage between the two pre-existing market segments with fixed market shares for each market segment.

This paper integrates a firm’s decisions by interfacing both the operational decisions, which we refer to as production

and process mean (target) decisions; and the firm’s marketing decisions which we regard here as pricing and market seg-

mentation with the consideration of the customers’ cannibalization. We address this problem using a multi-objective model

for a process targeting manufacturing firm. We consider three well-known objectives from literature [17,19,20] : sales-gross

income to improve the market share of the firm; profit to augment the (net) profitability; and product uniformity in or-

der to improve the quality, and thus the customers’ satisfaction. The multi-objective mathematical model provides a joint

decision framework for market segmentation using a differentiation price, process mean, along with production, pricing

decisions for each market segment. We assumed the demand is price-dependent and deterministic, and the market seg-

mentation incurred is imperfect; thus there is a demand leakage between the market segments. We transform the proposed

multi-objective optimization model into an equivalent goal program model. We propose a simulation-based optimization

procedure for repeatedly solving the goal program formulated in order to obtain a non-dominated (Pareto-optimal) solution.

Finally, we utilize a methodology to calibrate the performance of the proposed simulation-based optimization procedure

integration to goal program formulation in terms of identifying the true Pareto-optimal front. 

The rest of the paper is organized as follows: In Section 2 , we develop a multi-objective model. Section 3 reformulates the

multi-objective model into a goal program model. Section 4 outlines the proposed solution procedure that uses a simulation-

based optimization approach by utilizing Monte-Carlo simulations in order to compute the diverse viable solutions for the

multi-objective nonlinear optimization problem. The suggested simulation-based optimization approach enables us to miti- 

gate its inability to find diverse solutions for multi-objective nonlinear problems using the goal programming formulation.

Later, we use standard approaches from literature (see [30] for details) to identify the non-dominated (Pareto-optimal) so-

lutions. Section 5 reports the computational experiment results on an illustrative example from literature and characterizes

the non-dominated (Pareto-optimal) solutions to the multi-objective problem. Finally, in Section 6 , we summarize our results

and outline suggestions for future research. 

2. Model development 

In this section, we propose a mathematical model of Revenue Management (RM) problem for a monopolist manufac-

turing firm selling two products depending upon a quality characteristic, x , in a single selling period. The product quality

characteristic, x , is acquired using a manufacturing process which is normally distributed with a probability distribution
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function, φ( x ), and a cumulative probability distribution function, �( x ). The assumption of a normally distributed process

has been widely used in process target literature (see [14] , [44] , [17,19,20] for details). The normally distributed process has

a mean μ and a standard deviation, σ . The products manufactured are distinguished by the quality characteristic, x , based

on which the products are classified into three classes. If the quality characteristic, x , is such that x ≥ l 1 , then the product is

classified as a class (grade) 1 product and it is sold in a primary market at price p 1 per unit. Whereas, if the product quality

characteristic follows l 2 ≤ x < l 1 , then the product is considered class (grade) 2, and this product is sold in a secondary

market at a discounted price p 2 per unit. Lastly, the products with quality characteristic, x < l 2 are reworked at a rework

cost, r per unit. As mentioned earlier in this paper, most recent research has studied the problem of process targeting for

predetermined fixed prices, and with a single objective of profit maximization. This paper extends the existing literature

in process (mean) targeting by incorporating pricing and market segmentation decisions with demand leakage effects. In

addition to previously described modeling framework, we postulate some additional assumptions in the following which are

taken into an account to formulate the mathematical model proposed here: 

1. The firm operates in a monopoly and sells its products in a single selling period 

2. The market segmentation is solely achieved using a price differentiation (price widget), and it costs a negligible invest-

ment 

3. Market segmentation is considered imperfect and therefore the demand leakage is experienced only from full price mar-

ket segment to the discounted price segment. This demand leakage is only dependent on the price difference among the

two market segments 

4. The price-dependent demand is uncorrelated in each market segment, and it is observed simultaneously 

5. Products are classified based on a single quality characteristic 

6. The inspection process assesses 100% of the products, and it is assumed to be error-free. 

7. There are no machine breakdowns 

8. There is no drift in the normally distributed process mean and standard deviation 

9. Inspection incurs a firm a negligible cost. 

0. The price-dependent demand is deterministic 

In this paper we look at the interaction between process mean selection in production research and decisions made about

pricing and inventory (production) quantity within a NewsVendor Problem (NVP) framework form of pricing. Assumptions 1-

4 are standard in the NVP framework (see [45,46] , and [43] for details). Assumptions 5-9 are frequently observed in process

mean selection research [14,33] . Assumption 10 mainly facilitates the model tractability, and in this study we have also

assumed an additive linear demand model, the additive linear modeling is very widely used in many related studies on

joint pricing and production problems [39] . Earlier studies have shown deterministic approximation for stochastic demand

works very well [42,43] . 

This study extends work reported in [37] in which a firm’s single market demand is divided into two segments using

a differentiation price. We also assume that the price-dependent demand a firm experiences is deterministic. Table 1 out-

lines a comprehensive list of symbols that are used in the development of our model. It is assumed that the total perceived

maximum deterministic demand (market share) for the firm is, α, which has a demand price sensitivity, β , and follows

a negative linear relationship. Linear demand curves are most commonly used in the literature because of their simplicity

and their ability to catch important managerial implications (see [39,47,48] , etc. for details). Thus, the total price-dependent

deterministic demand to the firm would be, [ α − β p] + , where [ x ] + = max { x, 0 } , x ∈ R , R is a real set . Next, we introduce a

differentiation price, υ ≥ 0 , that is utilized to divide the firm’s market share, α, into two segments. Given that the firm ex-

ercises a differentiation price (the price widget), υ, such that p 1 ≥ υ, and υ ≥ p 2 , the maximum deterministic demand that

the firm can perceive in the full price market segment 1, would be α − β υ . It is obvious that the remaining market share

which is β υ would be allocated for the discounted price market segment 2. Recall that the price-dependent deterministic

demand is modeled using a linear curve, and thus the price-dependent deterministic demand, u 1 (p 1 ) = [ α − β p 1 ] 
+ would

be observed for the full price market segment. Likewise, the price-dependent deterministic demand for the discounted price

market segment 2 would be u 2 (p 2 , υ) = [ β υ − β p 2 ] 
+ . Since both u 1 ( p 1 ) and u 2 (p 2 , υ) are linear demand curves they have

the property of increasing price elasticity [35] . Clearly 0 ≤ υ ≤ α

β
, and therefore p 1 ≥ p 2 . The maximum price in the full price

market segment would be, p 1 = 

α

β
, and due to differentiation pricing constraint, the maximum price in the discounted price

market segment would be, p 2 = υ . Next, it is assumed that the fences (segments) observed due to the proposed differen-

tiation price, υ, are imperfect and thus there is a θ proportion of customers who have WTP of p 1 or more and though

they are perceived to be associated with the product class 1, such customers would cannibalize (move) to the discounted

price market segment that offers product class 2 at the discounted price, p 2 . With no exception to this study, many pricing

models in literature consider that the customers are homogenous. But actually much of the recent research has revealed

that the customers are far more heterogenous in terms of their WTP (see [37,49] for details). Although in this paper we

assume homogeneous demand, we balance this by capturing the customers’ heterogeneity in their WTP, and at the same

time we consider the effects of demand leakage. An obvious benefit is that an assumption of homogenous demand keeps

the modeling tractable and also allows us to capture customers’ heterogeneity to an acceptable extent. It is supposed that

there is a θ proportion of customers’ demand which belongs to the full price market segment and cannibalizes (moves) to
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Table 1 

Notations. 

Parameters: 

σ Process variability, i.e., standard deviation 

l 1 Upper specification limit for class (grade) 1 products 

l 2 Lower specification limit for class (grade) 2 products 

a Fixed production cost per unit item 

b Variable production cost per unit item 

c i = c i (μ) Expected cost per unit for product class (grade) i, ∀ i = { 1 , 2 , 3 } 
φ( x ) Probability distribution of quality characteristic x 

�( x ) Cumulative probability distribution of quality characteristic x 

δ1 = (l 1 − μ) /σ Standard normal transformation of l 1 
δ2 = (l 2 − μ) /σ Standard normal transformation of l 2 
∅ ( δi ) Standard normal probability distribution of δi , ∀ i = { 1 , 2 } 
ϕ( δi ) Standard normal cumulative probability distribution of δi , ∀ i = { 1 , 2 } 
θ Proportion of demand leakage, 0 ≤ θ ≤ 1 

α Maximum perceived cumulative deterministic (riskless) demand 

β Price sensitivity of deterministic demand 

ρ Quality loss coefficient (constant) [18] 

γ Coefficient of demand leakage sensitivity per unit price difference, γ ≥ 0 

u 1 = u 1 (p 1 ) Price dependent deterministic demand in market segment 1 

u 2 = u 2 (p 2 , υ) Price dependent deterministic demand in market segment 2 

y 1 = y 1 (p 1 , θ ) Adjusted price-dependent deterministic demand in market segment 1 with demand leakage 

y 2 = y 2 (p 1 , p 2 , υ, θ ) Adjusted price-dependent deterministic demand for market segment 2 with leakage 

C Total yield capacity 

r Estimated rework cost per nonconforming item 

π1 = π1 (μ, p 1 , p 2 , υ) Total sales (gross income) to the firm 

π2 = π2 (μ, p 1 , p 2 , υ) Total profit to the firm 

π3 = π3 (μ, p 1 , p 2 , υ) Total uniformity to the firm 

E ( ·) Expected value of a parameter 

Decision variables 

p i Price for product class i, ∀ i = { 1 , 2 } 
υ Differentiation price, υ ≥ 0 

μ Target process mean 

z Number of nonconforming products reworked 

 

 

 

 

 

 

 

 

 

 

 

 

the discounted price market segment. As a result, the adjusted demand for each product class would be: 

y 1 = (1 − θ ) u 1 , (1) 

y 2 = θ u 1 + u 2 . (2) 

Unlike in [37] and [43] , our model assumes that the proportion of the demand leakage, θ , is not a constant. In this research,

we have extended this conceptualization by assuming that θ is dependent upon the price difference between the prices of

the two products. We have modeled θ by customizing a logit function in order to best represent this demand leakage [50] .

In this paper, we have suggested the following expression for the proportion of demand leakage: 

θ = 1 − e −γ (p 1 −p 2 ) . (3) 

The proposed model for θ in Eq. (3) precisely fits the required modeling needs which is also demonstrated in Fig. 1 . For

instance, when the coefficient of demand leakage sensitivity per unit price difference is zero, that is, γ = 0 , the proportion

of demand leakage will be zero, θ = 0 , which means a perfect market segmentation with no demand leakage. Similarly,

when the price difference is zero, p 1 − p 2 = 0 , then again we can find that, θ = 0 , which means the two market segments

are indifferent and are not differentiated with the distinct prices, but rather the products are sold at a single price. 

In the following, we develop the mathematical expressions for aforementioned three objectives: 

2.1. Total sales income 

We formulate the total sales, π1 , which is the gross income and it is dependent upon prices, p i , ∀ i = { 1 , 2 } . We recall

that the firm experiences the price-dependent deterministic demand, y i , ∀ i = { 1 , 2 } for each market segment. Each product

unit sold in the market would yield in gross income to the firm, thus the total sales income, π1 , would simply be formulated

in Eq. (4) as follows: 

π1 = 

2 ∑ 

i =1 

p i y i . (4) 

For simplicity in Eq. (4) , we have ignored the expected sales incomes that may be yielded from reworked products. Poten-

tially there could be two reasons to support this. First, the reworked items may not become available to be sold in that
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Fig. 1. θ relationship with price difference, p 1 − p 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

selling period. Second, the sales of these items may actually need more cost investment than their price which mainly vio-

lates the fundamental cost based pricing principle, but this aspect will be addressed in developing the mathematical model

for total expected profit. 

2.2. Total expected profit 

in this section, we develop the mathematical model for total (net) profit, π2 , which is a random variable and depends

on decision variables, μ, p i , ∀ i = { 1 , 2 } , and υ . The objective is to develop the total expected profit, E ( π2 ), but we first

formulate π2 in Eq. (5) in the following: 

π2 = 

⎧ ⎨ 

⎩ 

( p 1 − c(x ) ) y 1 − b y 1 (x − l 1 ) x ≥ l 1 ; 

( p 2 − c(x ) ) y 2 , l 2 ≤ x < l 1 ; 

E(π2 ) − r z − z c(x ) , x < l 2 . 

(5)

The total expected profit, E ( π2 ) would be: 

E(π2 ) = 

∫ ∞ 

l 1 

( ( p 1 − c(x ) ) y 1 − b y 1 (x − l 1 ) ) φ(x ) dx + 

∫ l 1 

l 2 

( p 2 − c(x ) ) y 2 φ(x ) dx 

+ 

∫ l 2 

−∞ 

( E(π2 ) − r z − z c(x ) ) φ(x ) dx. (6)

Where in Eq. (6) , the first term represents the expected profit obtained from selling class 1 products, the second term is the

expected profit from selling products class 2 and the last term is the expected profit (or expected expense incurred) from

the rework products. 

Next, we simplify the expected profit function E ( π2 ) established in Eq. (6) . In Eq. (7) , we use the following notations: 1 −
ϕ (δ1 ) = 

∫ ∞ 

l 1 
φ(x ) d x, ϕ (δ1 ) − ϕ (δ2 ) = 

∫ l 1 
l 2 

φ(x ) d x, ϕ (δ2 ) = 

∫ l 2 −∞ 

φ(x ) d x, c 1 = 

∫ ∞ 

l 1 
c(x ) d x, c 2 = 

∫ l 1 
l 2 

c(x ) d x, c 3 = 

∫ l 2 −∞ 

c(x ) d x, and g = 

∫ ∞ 

l 1 
(x −l 1 ) φ(x ) d x,

and we simplify the profit function in the following: 

E(π2 ) = p 1 y 1 

∫ ∞ 

l 1 

φ(x ) d x − y 1 

∫ ∞ 

l 1 

c(x ) φ(x ) d x − b y 1 

∫ ∞ 

l 1 

(x − l 1 ) φ(x ) d x 

+ p 2 y 2 

∫ l 1 

l 2 

φ(x ) d x − y 2 

∫ l 1 

l 2 

c(x ) φ(x ) d x 

+ ( E(π2 ) − r z ) 

∫ l 2 

−∞ 

φ(x ) d x − z 

∫ l 2 

−∞ 

c(x ) φ(x ) d x. (7)

We consider that the direct unit production cost for the finished product is a linear function of the quality characteristic

x . Many previous studies have followed this framework (e.g., [14] , [8] , and [4] ). Thus, the production cost per unit at quality

characteristic x is c(x ) = a + bx, where a is the fixed production cost and b is the cost of obtaining a specific quality char-

acteristic for one unit of finished product. Therefore, the expected unit production cost of class 1 products is given by c as
1 
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follows: 

c 1 = 

∫ ∞ 

l 1 

c(x ) φ(x ) d x 

= 

∫ ∞ 

l 1 

(a + b x ) φ(x ) dx 

= (a + bμ) ( 1 − ϕ(δ1 ) ) + σ b ∅ (δ1 ) , (8) 

where ∅ (δ1 ) = 

1 √ 

2 π
e −

1 
2 
δ2 

1 . 

Next, in order to determine the giveaway cost, we first determine the expected additional quality characteristic, g , that

is given away when a process mean is set to a mean μ. Thus, following recent related studies on process mean (target)

determination in [17,19] , we can write: 

g = 

∫ ∞ 

l 1 

(x − l 1 ) φ(x ) d x 

= E(x | x ≥ l 1 ) ( 1 − ϕ(δ1 ) ) 

= 

(
μ + σ

∅ (δ1 ) 

1 − ϕ(δ1 ) 

)
( 1 − ϕ(δ1 ) ) 

= μ( 1 − ϕ(δ1 ) ) + σ∅ (δ1 ) . (9) 

Notice here that Eq. (9) gives the expected quality characteristic of giveaway. Since b is the cost per unit [14] , the expected

giveaway cost per unit would be b / g . 

Also the expected production cost for a grade 2 item, c 2 = 

∫ l 1 
l 2 

c(x )φ(x ) d x is determined similarly as follows: 

c 2 = 

∫ l 1 

l 2 

c(x ) φ(x ) dx 

= 

∫ l 1 

l 2 

(a + b x ) φ(x ) dx 

= ( a + bμ) ( ϕ(δ1 ) − ϕ(δ2 ) ) + σb ( ∅ (δ2 ) − ∅ (δ1 ) ) , (10) 

where in Eq. (10) , ϕ(δ1 ) − ϕ(δ2 ) = 

∫ l 1 
l 2 

φ(x ) d x, ∅ (δ1 ) = 

1 √ 
2 π

e 
− 1 

2 
δ2 

1 , ∅ (δ2 ) = 

1 √ 
2 π

e 
− 1 

2 
δ2 

2 , δ1 = 

l 1 −μ
σ and δ2 = 

l 2 −μ
σ . 

Lastly, the expected production of a non-conforming item, c 3 = 

∫ l 2 −∞ 

c(x ) d x is determined in the following: 

c 3 = 

∫ l 2 

−∞ 

(a + b x ) φ(x ) dx 

= (a + bμ) ϕ(δ2 ) − σ b ∅ (δ2 ) . (11) 

We must notice here that the firm has capacity, C . Thus if the process mean is set to μ, the total expected number of

nonconforming items would be, z = C 
∫ l 2 −∞ 

φ(x ) d x = C ϕ (δ2 ) . 

Using the costs’ expressions derived earlier, the simplified expected profit function, E ( π2 ) would be: 

E(π2 ) = p 1 y 1 ( 1 − ϕ(δ1 ) ) − c 1 y 1 − b g y 1 

+ p 2 y 2 ( ϕ(δ1 ) − ϕ(δ2 ) ) − c 2 y 2 

+ ( E(π2 ) − r ϕ(δ2 ) C ) ϕ(δ2 ) − c 3 ϕ(δ2 ) C. (12) 

Finally, after rearranging the terms in the expected profit function, we get: 

E(π2 ) = 

1 

1 − ϕ(δ2 ) 
{ p 1 y 1 ( 1 − ϕ(δ1 ) ) − c 1 y 1 − b g y 1 + p 2 y 2 ( ϕ (δ1 ) − ϕ (δ2 ) ) − c 2 y 2 − (r ϕ(δ2 ) + c 3 ) ϕ(δ2 ) C } . 

(13) 

2.3. Total expected product uniformity 

Earlier [17,19] and [20] evaluated product uniformity using the loss function approach with a larger-the-better criterion

[18] . In this paper, we have also followed the same approach. The notion of total expected product uniformity measures the

losses a firm experiences due to variation between the product quality and the specification limits for the product. Total

expected product uniformity is a measure which can also function as a proxy measure for customer dissatisfaction and is

therefore a potential measure for a customer’s satisfaction index [17,19,20] . Ideally with a larger-the-better criterion, the

total expected product uniformity measure would be zero. Naturally the process (target) mean being a decision variable

could be shifted or adjusted near or at the specification limits. Although the process variance is known and constant, it

does not guarantee product uniformity but rather requires optimization [34] . The product uniformity maximization objective

is equivalent to the minimization of the expected total deviation of the products from their specification limits which is
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measured in this study using the Taguchi quadratic loss function [18] . There can be a number of assignable causes for

this variability, and these variations may result from the natural variability of a production process, raw material variation,

environmental factors, tool/equipment conditions, etc. Use of the larger-the-better criterion enables us to formulate the

product uniformity function, π3 , which is a random variable and depends on μ, p i , ∀ i = { 1 , 2 } , and υ as follows: 

π3 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

(
ρ

x 2 
+ b (x − l 1 ) 

)
y 1 , x ≥ l 1 ; (

ρ

x 2 
+ (p 1 − p 2 ) 

)
y 2 , l 2 ≤ x < l 1 ; (

ρ

x 2 
+ p 1 + r) 

)
z, x < l 2 . 

(14)

Likewise the previous objective function, the total expected uniformity , E ( π3 ), would be: 

E(π3 ) = 

∫ ∞ 

l 1 

(
ρ

x 2 
+ b (x − l 1 ) 

)
y 1 φ(x ) d x 

+ 

∫ l 1 

l 2 

(
ρ

x 2 
+ (p 1 − p 2 ) 

)
y 2 φ(x ) d x 

+ 

∫ l 2 

−∞ 

(
ρ

x 2 
+ (p 1 + r) 

)
z φ(x ) d x. (15)

After simplification, we obtain: 

E(π3 ) = ρ

(
y 1 

∫ ∞ 

l 1 

φ(x ) 

x 2 
+ y 2 

∫ l 1 

l 2 

φ(x ) 

x 2 
+ C ϕ (δ2 ) 

∫ l 2 

−∞ 

φ(x ) 

x 2 

)
+ b g y 1 + (p 1 − p 2 ) y 2 ( ϕ(δ1 ) − ϕ(δ2 ) ) + (p 1 + r) ϕ 

2 (δ2 ) C. (16)

Next, we construct a Multi-Objective Nonlinear Optimization Problem (MONLP) using the aforementioned three objectives

which are subject to nonlinear constraints. For convenience in this presentation, we suppose, f 1 = π1 from Eq. (4) , f 2 =
E(π2 ) from Eq. (13) , and f 3 = E(π3 ) from Eq. (16) . 

Thus, the firm’s optimization problem for the price-dependent deterministic demand in both market segments is formu-

lated as follows: 

MONLP : max { f 1 , f 2 , − f 3 } , (17)

subject to: 

p 1 − υ ≥ 0 , (18)

υ − p 2 ≥ 0 , (19)

(1 − ϕ(δ1 )) C − q 1 ≥ 0 , (20)

(ϕ(δ1 ) − ϕ(δ2 )) C − q 2 ≥ 0 , (21)

(1 − ϕ(δ2 )) C −
2 ∑ 

i =1 

q i ≥ 0 , (22)

μ − l 2 ≥ 0 . (23)

In Eq. (17) three objectives are listed, where f 1 represents the total sales (gross income) which mainly intends to improve

the market share of the firm. In addition to this, f 2 outlines the total expected profit (net income) to the firm. Lastly, f 3 is

the total expected uniformity. All of these objective functions have a multi-variate decision control. These variables include

μ, p 1 , p 2 , and υ . In problem, MNOP, Eqs. (18) and ( 19 ) are the price differentiation constraints. These constraints imply that

the price, p 1 , for the product class 1, must not fall below the price differentiation, υ . We remark here that υ is utilized as

a price widget that is used to divide the single market into two segments. Also the price, p 2 , for the product class 2, must

not exceed the price differentiation, υ . The constraints in Eqs. (20) –( 22 ) state the capacity limitations. Eq. (20) implies that

the production quantity, q 1 , sold cannot exceed the expected number of class 1 items, that is (1 − ϕ(δ1 )) C. Likewise, the

constraint in Eq. (21) states a similar limitation for class 2 products which is that the production quantity q 2 cannot exceed

the allocated capacity, (ϕ(δ1 ) − ϕ(δ2 )) C. Similarly, the constraint in Eq. (22) limits the total production of the manufacturing

firm to its capacity C . As discussed before, the products with quality characteristic x < l 2 are regarded as nonconforming

products, therefore it is obvious that the firm must maintain a process mean, μ ≥ l 2 , in order to ensure the conformity of

the products and the market demands. Indeed, in most practical situations the process mean must lie such that l 2 ≤ μ ≤ μ,

where μ is the maximum permissible process mean [17,19] . 
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3. A goal programming based approach 

Goal programming (GP) has a rich history in managing multi-objective optimization problems [29] . When we use a GP

approach for multi-objective optimization; we first attain predefined target values (also referred to as ideal goals) for each

of the single objectives by optimizing it irrespective of the other objectives. Using these targets, we can normalize each of

the objectives and later preference-based weights are assigned to each of these normalized goals. Thus the multi-objective

problem is transformed into a single objective by using a linear combination of these weighted normalized goals. Solving

GP for a combination of weights and goals results a single solution to the multi-objective problem. However, this solution

is not guaranteed to be a Pareto-optimal solution. But naturally, since multi-objective optimization problems have several

conflicting objectives, it is very important for a solution methodology to be able to find several equally viable Pareto-optimal

solutions for a multi-objective problem. To address this shortcoming of the GP method, simulation-based optimization pro-

cedures are integrated with the GP. Gosavi [51] provided a discussion on simulation-based optimization approaches, and

[52] have used a simulation-based optimization approach which utilizes Monte-Carlo simulations for solving the GP repeat- 

edly with randomly generated weights for ideal goals, as well as for randomly generated goals. Each run gives a solution,

once a set of solutions are obtained in a simulation experiment, one can identify non-dominated (Pareto-optimal) solutions

among these solutions using the techniques presented in [30] . Once the Pareto-optimal solutions are computed decision

makers can select among these Pareto-optimal solutions based on some other higher-level information and preferences. The

motivation of incorporating simulation-based optimization with the GP is to overcome the limitation of standard GP, and

develop an efficient multi-objective optimization solution procedure able to perform the following three main tasks [30] : 

1. The computed non-dominated (Pareto-optimal) solutions should be close enough to the true Pareto front. Ideally, the

non-dominated solutions should be a subset of the Pareto-optimal set. 

2. The non-dominated solutions obtained should have a uniform spread over of the Pareto front in order to provide the

decision-maker a true insight of trade-offs among available non-dominant solutions. 

3. The non-dominated solutions should be able to capture the whole spectrum of the Pareto front. This requires investigat-

ing non-dominated solutions at the extreme ends of the objective functions space. 

Besides the GP approach, evolutionary algorithms (see [30] for details) are widely used to obtain efficient solutions to

multi-objective optimization problems. Although in the literature we find many successful implementations of evolution- 

ary algorithms and other meta-heuristics such as Tabu Search, Simulated Annealing, Harmony Search (see [53] , [54] , [31] ,

[55] for details), none of these methods guarantee a true Pareto-optimal frontier. These methods are highly dependent on

their respective algorithmic parameters (for instance in the case of Genetic algorithm, population size, cross-over, stopping

criterion, etc.) to find a near true Pareto-optimal frontier. Fine tuning these algorithmic parameters is therefore essential.

In contrast to these evolutionary algorithms and meta-heuristics, using a goal programming based approach for multi-

objective optimization does not need any parametric fine tuning. But, like evolutionary algorithms, goal programming based

approaches do not guarantee finding a true Pareto-optimal frontier for most of the multi-objective optimization problems. 

To solve the multi-objective model, MONLP, we utilized a GP approach. Similar to [52] , we use Monte-Carlo simula-

tions to repeatedly solve the GP as discussed previously. This simulation-based optimization approach allows us to handle

a major drawback found in standard goal programming methods; namely that the method only offers a single solution

which is highly dependent on the decision makers choice of the goals and the weights of the deviation from the predefined

goals. In the following, we develop a GP model using the three objectives listed in Eq. (17) . The proposed GP formulation

uses a commonly employed preference-based approach in which pre-defined weights are utilized to describe a decision

maker’s preferences for normalized goals. This reduces the multi-objective problem into a single objective problem which

is a weighted average of normalized goals. All of these solution methodologies find a single Pareto-optimal (possibly a non-

dominant) solution to the problem. However, in most real life applications, there is a need to obtain more than just a single

Pareto-optimal solution to the problem. Based on their preferences, the decision makers would be able to select a Pareto-

optimal solution to the problem. In the following, we transform MONLP into a GP model. Both the goals and the objective

functions are normalized in order to avoid the scalability and dimensionality problem. We achieve normalization for each

of the three objectives as follows: 

f normalized 
k = 

f k − f min 
k 

f max 
k 

− f min 
k 

, ∀ k = { 1 , 2 , 3 } , (24) 

goal normalized 
k = 

goal k − f max 
k 

f max 
k 

− f min 
k 

, ∀ k = { 1 , 2 , 3 } . (25) 
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We recall here that the GP model has an additional constraint expressed in Eq. (27) . This constraint mainly minimizes

the deviation of each of the three objectives, f k , ∀ k = { 1 , 2 , 3 } . Thus, 

GP : min w 1 d 
−
1 + w 2 d 

−
2 + w 3 d 

+ 
3 , (26)

subject to: 

f normalized 
k + d −

k 
− d + 

k 
= goal normalized 

k , ∀ k = { 1 , 2 , 3 } , (27)

p 1 − υ ≥ 0 , (28)

υ − p 2 ≥ 0 , (29)

(1 − ϕ(δ1 )) C − y 1 ≥ 0 , (30)

(ϕ(δ1 ) − ϕ(δ2 )) C − y 2 ≥ 0 , (31)

(1 − ϕ(δ2 )) C −
2 ∑ 

i =1 

y i ≥ 0 , (32)

μ − l 2 ≥ 0 . (33)

4. Solution procedure 

In this section, we propose a simulation-based optimization procedure to solve the GP [51] . The procedure resembles an

hybrid algorithm suggested in [52] to solve a multi-objective mixed integer nonlinear program for a maintenance schedul-

ing problem. The following procedure is utilized to solve the GP model and to obtain the non-dominated (Pareto-optimal)

solutions to MONLP. 

• Step 1 : Compute the single objective optimal solution. The minimum, f min 
k 

, ∀ k = { 1 , 2 , 3 } , and the maximum, f max 
k 

, ∀ k =
{ 1 , 2 , 3 } . f min 

k 
, ∀ k = { 1 , 2 , 3 } and f max 

k 
, ∀ k = { 1 , 2 , 3 } are determine by constrained optimization of f k , ∀ k = { 1 , 2 , 3 } sub-

ject to the constraints in Eqs. (28 )–( 33 ). 
• Step 2 Using f min 

k 
, ∀ k = { 1 , 2 , 3 } , and f max 

k 
, ∀ k = { 1 , 2 , 3 } , determine three types of goal, these goals are ideal, uniformly,

and normally distributed goals 

1. For ideal goal, goal k = f max 
k 

∀ k = { 1 , 2 } , and goal 3 = f min 
3 

2. For random uniform goal, goal uniform 

k 
∼ U[ f min 

k 
, f max 

k 
] ∀ k = { 1 , 2 , 3 } 

3. For random normal goal, goal normal 
k 

∼ N[ f min 
k 

, f max 
k 

] ∀ k = { 1 , 2 , 3 } . 
• Step 3 Normalize the goals; for ideal goals, goal normalized 

k 
= 1 ∀ k = { 1 , 2 } , and goal normalized 

3 
= 0 ∀ k = { 1 , 2 } . For random

uniform and normal goals use Eq. (25). 

• Step 4 Generate the random weights, w 

′ 
k 

= rand(0 , 1) , ∀ k = { 1 , 2 , 3 } . The random weights are normalized, w k = 

w ′ 
k ∑ 3 

k =1 
w ′ 

k 

. 

• Step 5 Solve GP model for each of the three (ideal, random uniform, random normal) goals. 
• Step 6 Repeat Step 2 to Step 5 for maximum number of simulation runs (i.e., 300 simulations for each goal in this

study). 
• Step 7 Determine the Pareto-optimal solutions for three types of goals using procedure suggested in [30] . 

5. Computational results 

We report the results of the computational experiments with the proposed solution procedure described in Section 4 .

The objective of this computational study is to identify the true Pareto-optimal frontier for this problem. The procedure

enables us to find diverse non-dominated (Pareto-optimal) solutions and characterize a firm’s decision pattern for the pro-

posed integrated control framework on market segmentation using a differentiation price, pricing, production quantities,

and process mean decisions in a multi-objective optimization context. As this study is merging the production systems from

operations research and the pricing from the economics and marketing, we have selected problem related parameters for

the following example from recently published research articles in the fields of pricing and process targeting. In Table 2 , we

present the data selected for the parameters for the GP model as an illustrative example from literature in process targeting

and the price research from RM. The parameters that are related to process targeting literature are taken from [17,19,20] .

Whereas the pricing related parameters are taken from relevant recently published studies in RM from [37] , and [43] . Re-

garding the dimensions (units) of the parameters mentioned in Table 2 , we only describe units for a parameter in that table,

if it is also reported in the literature. Often studies in the economics of pricing within a NVP framework do not imply any
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Table 2 

Parameters selection for numerical experimentation. 

Parameters Value(s) Source 

C 300 Best guess of the authors 

l 1 20 μm Best guess of the authors perceived from process targeting literature [17,19] 

l 2 15 μm 

a $ 2 Best guess of the authors perceived from process targeting literature [14] 

b $ 0.5 

α 500 Best guess of the authors perceived from pricing literature [37,39] 

β 7 

r $ 
1 

2 
× c 1 Best guess of the authors 

σ 5 μm 

μ 35 μm Best guess of the authors 

γ 0.01 

ρ r × l 2 1 See [17,19,20] 

Table 3 

Pareto-optimal solutions for ideal goals. 

w 1 w 2 w 3 Sales goal Profit goal Uniformity goal Sales Profit Uniformity μ∗ p ∗
1 

p ∗
2 

υ∗ y ∗
1 

y ∗
2 

0.102 0.508 0.390 10727 3856.6 0 10533.902 3183.425 4.54E + 13 21.868 43.804 34.664 43.804 176.480 80.872 

0.479 0.295 0.226 10727 3856.6 0 9979.953 3533.906 3.79E + 12 23.951 44.033 38.006 44.033 180.556 53.402 

0.228 0.599 0.172 10727 3856.6 0 10415.638 3284.254 2.55E + 13 22.384 43.806 35.441 43.806 177.845 74.067 

0.257 0.301 0.442 10727 3856.6 0 10200.804 3424.768 9.70E + 12 23.203 43.875 36.750 43.875 179.608 63.141 

0.050 0.425 0.525 10727 3856.6 0 10601.384 3114.181 6.45E + 13 21.541 43.815 34.195 43.815 175.563 85.071 

0.446 0.388 0.167 10727 3856.6 0 10103.100 3476.517 6.38E + 12 23.542 43.935 37.315 43.935 180.130 58.668 

0.298 0.248 0.454 10727 3856.6 0 10087.120 3484.423 5.96E + 12 23.596 43.946 37.405 43.946 180.201 57.962 

0.217 0.400 0.384 10727 3856.6 0 10330.552 3345.186 1.72E + 13 22.723 43.823 35.973 43.823 178.647 69.542 

0.003 0.229 0.768 10727 3856.6 0 10708.515 2974.701 1.28E + 14 20.878 44.287 33.709 44.287 170.916 93.125 

0.122 0.308 0.570 10727 3856.6 0 10407.434 3290.494 2.45E + 13 22.418 43.807 35.493 43.807 177.929 73.619 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensions for profit functions as well as the corresponding optimal pricing decisions (see [36,37] for details). Because of

this, units for the parameters related to pricing are not reported. Similarly in the literature, the three objectives: sales, profit,

and uniformity are often measured without any specific units. However, if we can quantify sales and profit objectives using,

for example, a monetary unit it can be measured in $. The uniformity objective is calibrated in quality loss units (see [18] )

which will be zero when ideal uniformity is achieved. 

Next, the proposed solution procedure discussed earlier in Section 4 is implemented in MATLAB Release 2013a. A built-

in goal programming based function, “fgoalattain” was customized and simulation runs were conducted on an Intel Core

i7-3520M processor 2.9 GHz and 8 GB RAM, with Windows 7, 64-bit operating system. In order to compute the single

objective goals, f min 
k 

, ∀ k = { 1 , 2 , 3 } , and also f max 
k 

, ∀ k = { 1 , 2 , 3 } , we have also utilized a built-in MATLAB Release 2013a

function ”Global Search” with its default settings to solve the nonlinear constrained single objective optimization problem for

each of the three objectives. While carrying out the single objective optimization for the problem in MATLAB, we obtained,

f max 
1 

= 10727 , f max 
2 

= 3856 . 6 , and f max 
3 

= 8 . 0743 × 10 15 . Also, f min 
1 ≈ 0 , f min 

2 = −3654 . 8 , and f min 
3 ≈ 0 . Next, the simulation-

based optimization procedure is repeated for over 300 runs for each of the three goals. As mentioned in the procedure in

Section 4 , for each replication we have also randomly generated weights, w k , ∀ k = { 1 , 2 , 3 } [52] . The purpose of random

generation of goals and weights for the GP is to diversify the (non-dominated) solutions, and therefore help to improve

the ability of GP formulation to obtain a true Pareto-optimal frontier. We also note here that in [52] , a total of 150 (50 for

each goal type) replications were performed. In this study, we have conducted over a total of 900 simulation runs with 300

replications for each goal type which could potentially improve the performance of the proposed solution procedure. 

5.1. Distribution and trade-off analysis of pareto-optimal solutions 

Among 300 simulation runs, we have found over 292 Pareto-optimal solutions, but in Table 3 , we only present 10 non-

dominant solutions arbitrarily as a sample from these Pareto-optimal solutions along with details on the corresponding

optimal control parameters. But, Fig. 2 presents the 3D-plot of 292 non-dominated (Pareto-optimal) solutions for the three

objectives. We can find here that perhaps the true Pareto-optimal front is closely obtained and therefore the solutions are

quite diverse. We may observe here that a firm may choose to increase its market share by offering primarily one product

only. This will improve its performance in terms of quality uniformity and could yield a reasonable profit using differentiated

prices as a tool. Alternatively the firm could opt for diversity and improve its profitability while slightly compromising its

market share from a particular product and some loss in the product uniformity objective. In Fig. 3 the trade-off curves

of the objective functions and distributions of the obtained solutions are also graphed using a plot-matrix chart. It can
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Fig. 2. Pareto-optimal plot ideal goal. 

2000 2500 3000 3500 4000
0

0.5

1

1.5

2
x 10

14

Profit

U
ni

fo
rm

ity

4000 6000 8000 10000 12000
0

0.5

1

1.5

2
x 10

14

Sales

U
ni

fo
rm

ity

4000 5000 6000 7000 8000 9000 10000 11000
2000

2500

3000

3500

4000

Sales

P
ro

fit

Fig. 3. Trade-off plot ideal goal. 

 

 

 

 

 

 

 

 

 

 

be observed that the non-dominated solutions are uniformly distributed over wide ranges of the objective functions, and

the space is able to capture the existing trade-off among the three objectives: sale, profit, and uniformity. The first task

in solving a multi-objective optimization problem is to identify non-dominated solutions as close as possible to the true

Pareto-optimal front [30,52] . Other necessary features to be realized are that the obtained non-dominated solutions must

be uniformly and widely distributed in the Pareto-optimal region reflecting the existing trade-off among different objective

functions. This task is achieved by generating uniformly and normally distributed goals. The weights for the deviations of

these goals are also generated randomly using uniform distribution. 

Uniformly distributed goals are randomly generated such that, goal k ∈ U[ f min 
k 

, f max 
k 

] , ∀ k = { 1 , 2 , 3 } . In the numerical sim-

ulation, we found 118 Pareto-optimal solutions out of 300 simulation runs for the uniformly generated goals. Similar to

ideal goals, we have only reported 10 arbitrary non-dominated solutions along with their details in Table 4 . Like with ideal

goals, the 3-D plot of all the Pareto-optimal solutions obtained for uniformly generated goals are presented in Fig. 4 . Due
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Table 4 

Pareto-optimal solutions for uniform goals. 

w 1 w 2 w 3 Sales goal Profit goal Uniformity goal Sales Profit Uniformity μ∗ p ∗
1 

p ∗
2 

υ∗ y ∗
1 

y ∗
2 

0.683 0.191 0.127 2256.247 1255.785 4.12E + 15 10725.945 2910.935 1.88E + 14 20.479 45.629 34.425 45.629 161.453 97.575 

0.396 0.430 0.174 4628.889 −599.206 6.79E + 15 10030.671 3511.223 4.69E + 12 23.785 43.989 37.724 43.989 180.412 55.523 

0.135 0.572 0.293 9998.413 2790.007 3.28E + 15 10209.894 3419.630 1.01E + 13 23.170 43.871 36.697 43.871 179.551 63.571 

0.359 0.369 0.272 3181.175 −1448.897 6.32E + 15 10049.758 3502.351 5.09E + 12 23.721 43.974 37.616 43.974 180.346 56.338 

0.547 0.397 0.056 4238.688 −171.303 6.12E + 15 10631.338 3079.762 7.60E + 13 21.386 43.823 33.979 43.823 175.125 87.020 

0.215 0.391 0.394 8416.604 1195.010 7.01E + 15 10178.113 3437.342 8.79E + 12 23.283 43.888 36.883 43.888 179.744 62.077 

0.560 0.204 0.235 4942.748 1810.601 7.07E + 15 10487.214 3225.898 3.59E + 13 22.079 43.801 34.977 43.801 177.055 78.107 

0.112 0.340 0.548 9353.066 1105.521 7.39E + 15 10387.679 3305.181 2.24E + 13 22.498 43.810 35.618 43.810 178.125 72.549 

0.313 0.366 0.321 6129.451 −1365.989 3.17E + 15 10221.529 3261.866 6.33E + 12 23.548 39.662 33.261 39.662 208.578 58.593 

0.041 0.771 0.188 10466.184 310.874 7.23E + 15 10670.971 3029.865 9.51E + 13 21.168 43.835 33.686 43.835 174.510 89.689 
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Fig. 4. Pareto-optimal plot uniform goal. 

Table 5 

Pareto-optimal solutions normal goals. 

w 1 w 2 w 3 Sales goal Profit goal Uniformity goal Sales Profit Uniformity μ∗ p ∗
1 

p ∗
2 

υ∗ y ∗
1 

y ∗
2 

0.070 0.631 0.300 10042.339 3764.293 2.43E + 15 10 0 04.356 3523.150 4.20E + 12 23.871 44.011 37.870 44.011 180.492 54.415 

0.270 0.446 0.284 7466.292 −160.966 4.61E + 15 10429.071 3273.851 2.72E + 13 22.328 43.804 35.355 43.804 177.705 74.808 

0.458 0.356 0.186 3525.070 −649.612 5.16E + 15 10548.141 3169.654 4.88E + 13 21.801 43.806 34.567 43.806 176.295 81.737 

0.210 0.560 0.230 7729.800 −1127.221 5.33E + 15 10176.361 3438.299 8.72E + 12 23.289 43.889 36.893 43.889 179.754 61.996 

0.445 0.448 0.107 7532.289 739.369 4.34E + 15 10706.778 2978.035 1.25E + 14 20.902 44.209 33.668 44.209 171.475 92.849 

0.561 0.073 0.367 6526.214 1772.597 2.18E + 15 10632.721 3047.761 6.43E + 13 21.544 42.150 32.655 42.150 186.390 85.025 

0.673 0.232 0.095 6919.529 2170.252 8.57E + 14 10640.718 3068.433 8.01E + 13 21.335 43.826 33.911 43.826 174.981 87.642 

0.279 0.416 0.305 6462.356 −640.474 5.50E + 15 10295.996 3367.787 1.47E + 13 22.854 43.834 36.183 43.834 178.935 67.781 

0.590 0.056 0.354 2498.350 282.721 3.79E + 15 10684.912 3008.908 9.76E + 13 21.143 43.420 33.269 43.420 177.130 89.990 

0.339 0.632 0.030 9626.053 1653.359 3.20E + 15 10675.553 3023.730 9.77E + 13 21.142 43.839 33.653 43.839 174.421 90.009 

 

 

 

 

 

 

 

 

 

 

to the diversity in the uniformly generated random goals, we have also observed a variation in the non-dominated solu-

tions obtained for this goal type. Trade-off plot for this goal type is presented in Fig. 5 . Although the solutions are diverse,

the trade-off trends in the non-dominated solutions for this goal type are comparable with the ideal goal type which was

discussed earlier in this section. 

Here we continue the numerical simulations and also generate normally distributed goals such that goal k ∈
N[ f min 

k 
, f max 

k 
] , ∀ k = { 1 , 2 , 3 } with a mean, 

f min 
k 

+ f max 
k 

2 
, and a standard deviation, 

f max 
k 

− f min 
k √ 

12 
. This selection makes uniformly and

normally distributed goals stochastically generated with the same parameters of mean and standard deviation. It is impor-

tant to note that the normal distribution utilized here is truncated since goal k ∈ N[ f min 
k 

, f max 
k 

] , ∀ k = { 1 , 2 , 3 } which makes

it consistent with the uniform distribution (see [42] , [56] , and [57] for more details). The 3-D plot of the Pareto-optimal

solutions and the trade-off matrix plot are presented in Figs. 6 and 7 respectively. We found 123 Pareto-optimal solutions

out of 300 simulation runs for the normally generated goals. Similar to the earlier two simulation studies, in Table 5 , we
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Fig. 6. Pareto −optimal plot normal goal. 

 

 

 

 

 

 

 

 

only report 10 arbitrarily selected non-dominated solutions out of 123 solutions obtained. We conclude from the plots in

Figs. 6 and 7 that normally generated goals also enable us to find more diversified non-dominated solutions to the multi-

objective problem. 

In summary, we can conclude from these plots that the Pareto-optimal frontier is identifiable. The firm seeks to improve

product uniformity by offering more grade 1 products, but alternatively a firm may also decide to offer both product grades

and obtain additional profitability. Indeed due to this product diversity, the firm would also incur some improvements in

the product uniformity which would improve customers’ satisfaction. This finding is more easily observed in the trade-off

matrix plots. Higher sales (gross income) are related to higher profits, and the firm potentially obtains higher profits from

the class 1 products, and therefore we can observe that optimal uniformity and the profit are inversely related. In this

situation, the firm seeks to set the process mean to produce as many class 1 items as possible, as a results this decision

also minimizes the optimal cost of uniformity simultaneously. 
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5.2. Analysis and characterization of Pareto-optimal solutions 

In order to characterize the Pareto-optimal solutions and the managerial insights for a firm’s decision making, we re-visit

Tables 3 –5 . These tables show the details of the solution of some of the sample of the Pareto-optimal points obtained using

the proposed solution procedure. It is quite evident that a firm sets an optimal process target mean more than, l 1 , μ
∗ >

l 1 , in order to ensure products of grade 1 produced at larger amount than the products of grade 2. This setting also en-

ables a firm to mitigate the expected number of nonconforming items manufactured in the production process in a single

production period. In most Pareto-optimal solutions, we found that p ∗1 = υ∗, which means that a firm segments the mar-

ket using an optimal differentiation price, υ∗ such that it is equivalent to p ∗
1 
. This finding was also reported in an earlier

study in [37] and [43] . This particular pattern of the Pareto-optimal solution can be utilized in a future study to reduce

the dimensionality of the problem. It may also enable the development of some heuristic based solution methodologies for

large scale optimization with complex problems that involve several process means and product classes to be optimized.

In the following, we have conducted a sensitivity analysis to calibrate the performance of the proposed solution method.

In many multi-objective optimization studies a very well-known sensitivity analysis is utilized to achieve multi-objective

optimization. Much of the earlier published research reported a sensitivity analysis for the performance calibration of the

multi-objective solution procedure and often did not emphasize using the sensitivity analysis on the problem related param-

eters (see [30] , [58] , and [52] for details). In this paper, we have also reported the performance analysis with the proposed

solution procedure. 

5.3. Performance analysis of the proposed solution algorithm 

In this section, we quantitatively evaluate and compare the performance of three goal types generated using two dis-

tinct randomization schemes. Van-Veldhuizen [59] proposed a hyper volume metric that calculates an approximation of the

hypercube volume formed by the non-dominated solutions in the objective function space. Thus, this metric can measure

some necessary tasks in solving multi-objective optimization problems such as closeness to the true Pareto-optimal front

and the spread of non-dominated solutions as f nadir = ( f 1 , nadir , f 2 , nadir , f 3 , nadir ) in order to form the diagonal corners of the

hypercube. A volume, v i can be computed for each non-dominated solution and a selected reference point, for instance here,

f nadir to construct the diagonal corners of the hypercube. Then, the approximate volume of the hypercube can be found as

the union of all these non-dominated solution points, Q , which is presented in Eq. (34) (see [52] , and [59] , [60] for more

details). 

HV = volume 

( | Q| ⋃ 

i =1 

v i 

) 

. (34) 
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Table 6 

Evaluation of the closeness and diversity of the non- 

dominated solutions. 

Distribution pattern HV normalized 

Ideal goal 0.2248 

Uniformly distributed random goals 0.4357 

Normally distributed random goals 0.2816 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to compute the hyper volume (HV), a reference point such as the nadir solution is needed. Here among the non-

dominated solutions, we have taken the f nadir among these Pareto-optimal solution as the least favorable solution for each

objective in 900 simulation runs. We found that f nadir = ( f 1 , nadir , f 2 , nadir , f 3 , nadir ) = (1225 . 8 , 730 . 51 , 2 . 0672 × 10 14 ) as the ref-

erence point. As we mentioned earlier each of the three objectives have different magnitude and therefore we normalize

f nadir . This normalization yields, f normalized 
nadir 

= ( f normalized 
1 , nadir 

, f normalized 
2 , nadir 

, f normalized 
3 , nadir 

) = (0 , 0 , 1) . Next, we proceed to compute the

normalized hyper volume, HV normalized whose maximum value is less than or equal to 1. HV normalized is dimensionless. The

larger the normalized hyper volume, the greater the ability of the multi-objective optimization algorithm to find more di-

verse non-dominated solutions. In order to avoid overlapping, we first sort the non-dominated solutions such that, f 1, 1 is

the first (lowest observed) value of the first objective function (the sales). Similarly, f 2, 1 is the first value (again the lowest

observed) of the second objective (the profit), and likewise, f 3, 1 is first (maximum observed) value of the third objective (the

total expected uniformity). Now, we compute the normalized hyper volume, HV normalized following the relationship outlined

in Eq. (35) . 

HV normalized = 

(
f normalized 
1 , 1 − f normalized 

1 , nadir 

)
×

(
f normalized 
2 , 1 − f normalized 

2 , nadir 

)
×

(
f normalized 
3 , 1 − f normalized 

3 , nadir 

)
+ 

| Q| ∑ 

i =2 

(
f normalized 
1 ,i − f normalized 

1 , nadir 

)
×

(
f normalized 
2 ,i − f normalized 

2 , nadir 

)
×

(
f normalized 
3 ,i − f normalized 

3 , nadir 

)
. (35)

Table 6 reports the normalized hyper volume formed by the normalized non-dominated (Pareto-optimal) solutions using

randomly generated goals following uniform and normal distributions. The normalized hyper volume is also obtained for

ideal goals. By observing the hyper volume values we can infer that such values for randomized goals are better than

for ideal goals. We recall that in a simulation run of 300 with each of the normally and uniformly distributed goals, ex-

perimentation with normal goals yielded a greater number of non-dominant (Pareto-optimal) solutions compared to the

corresponding uniformly distributed goals. We can therefore conclude that the randomly generated goals significantly im-

prove the capability of the proposed algorithm to generate non-dominant (Pareto-optimal) solutions very close to the true

Pareto-optimal front. But, this particular observation is specific to this experimental setup and problem structure. 

6. Conclusions, limitations and future research suggestions 

This research proposes a multi-objective model for a process targeting firm. We consider three objectives: the total ex-

pected sales, total expected profit, and the total expected uniformity. The model suggests a joint optimal decision approach

for a firm to determine market segmentation using a differentiation price, pricing, production quantity allocation in each

market segment, and process (target) mean. Thus, this study presents an optimal way to interface the firm’s operational

decisions by controlling its production and process mean, along with its market decisions by determining its market seg-

mentation and pricing decisions. We assume that the firm experiences leakage of price-dependent stochastic demand from

the full price market segment to the discounted segment. A multi-objective mathematical model is developed for the prob-

lem which is identified as multi-objective nonlinear constrained optimization problem. We transform the mathematical

model into a goal program. To avoid the limitations of a goal program as it produces only a single solution, we proposed a

simulation-based optimization approach. Using this approach based on Monte-Carlo simulations, we replicate the goal pro-

gram model under various goals settings. The goal of these simulations is to obtain a set of non-dominated (Pareto-optimal)

solutions for a decision maker to choose from based on her informational criteria. The non-dominated solutions obtained

are then analyzed to identify their closeness to the true Pareto-optimal frontier. This research also studies the performance

of the proposed simulation-based optimization to the proposed goal program model. 

We used an additive model for price-dependent stochastic demand with a linear deterministic demand curve which is the

most widely used in the literature [39] . However, depending upon the modeling framework for stochastic price-dependent

demands observed in the market segments by a firm as well as the type of deterministic demand curve, the proposed multi-

objective optimization approach may vary. A detailed comparative analysis of the different modeling approaches is not the

focus of this paper. 

This work can be extended to consider several interesting problems. The present analysis has considered the firm in

monopoly only, but an interesting avenue would be to consider a game theoretic approach to the problem at a firm’s level
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in a duopoly or in an oligopoly. Also, this research only outlines a risk neutral analysis of the problem, future researchers

may want to investigate the problem in the context of a risk averse firm. 
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