

Undergraduate Students, Health and Biomedical Sciences

Types and Severity of Medication Errors Associated with the Use of **Automated Systems within the Medication Use Process: A Systematic Review**

Mariam Mustafa, Najlaa Al Qahtani, Kazeem B. Yusuff College of Pharmacy, QU Health, Qatar University, Doha, Qatar

Background

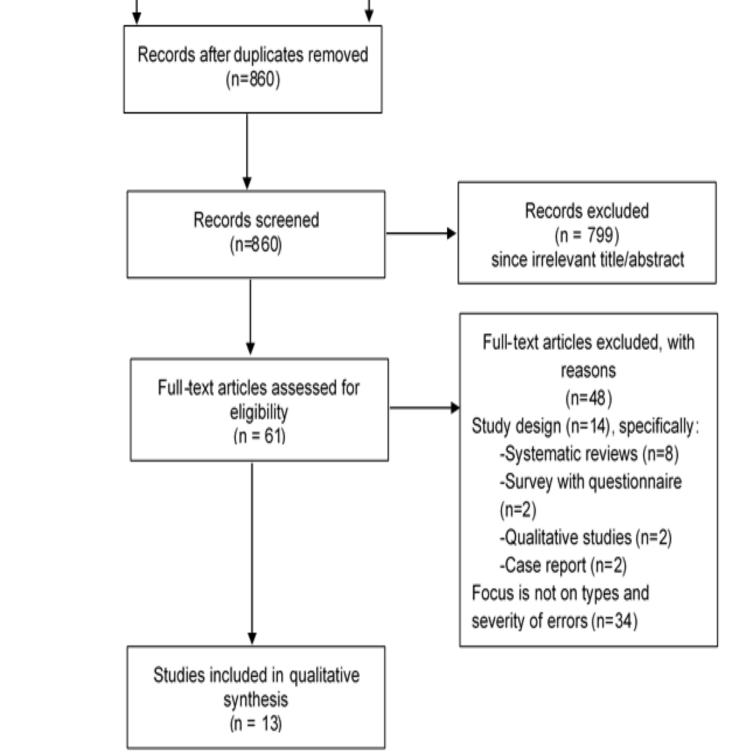
Medication use process is complex with multiple stages which increases the risk of medication errorspreventable event that may cause inappropriate

(n=1022) PubMed (n=595) EMBASE (n=291) Cochrane Library (n=136)	Additional records identified through other sources (n=0)
--	---

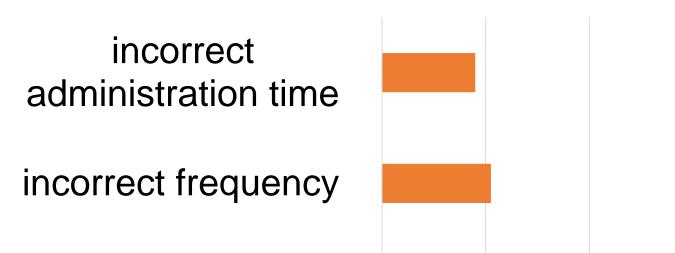
Study type

□ Prospective cohort (n=6, 46%), retrospective cohort (n=2, 15%), controlled lab study (n=1, 8%), study (n=1, 8%), experimental longitudinal observational quantitative study (n=1, 8%), descriptive

- medication use or harm
- Leads to detrimental clinical and financial consequences
- Automated systems implementation reduces errors up to 37%.
- The use of these systems still requires human intervention and has been associated with new types of errors.
- □ However, there is lack of published data on the type of errors and their severity.


Objective

□ To determine the types and severity of medication errors that are associated with the use of automated systems in the medication use process.


Methods

Design

- Systematic Review using PRISMA protocol
- Protocol has been registered on PROSPERO as CRD42020212900

Figure 2. PRISMA Flow Diagram

and analytical (n=1, 8%)

Study Setting

 \Box Hospitals (n=11), tertiary care facility (n=1), nursing home (n=1)

Automated System

□ CPOE (n=9, 69%), ESP (n=1, 8%), BCMA (n=1, 8%), distribution robot (n=1, 8%), CPOE and ADC (n=1, 8%)

Medication Use Stage

 \Box Prescribing (n=8, 62%), administration (n=9, 69%), dispensing (n=2, 15%), not mentioned (n=1, 8%)

Error Type

Incorrect medication (n=5, 1-18%), incorrect administration time (n=4, 3-18%), omitted information (n=8, 4-61%), wrong dose (n=8, 4-30%), incorrect frequency (n=5, 0.6-21%) (see figure 3)

Error Severity

 \Box NCC MERP index (n=6, 46%), other scales (n=3, 23%), no severity assessment (n=4, 31%)

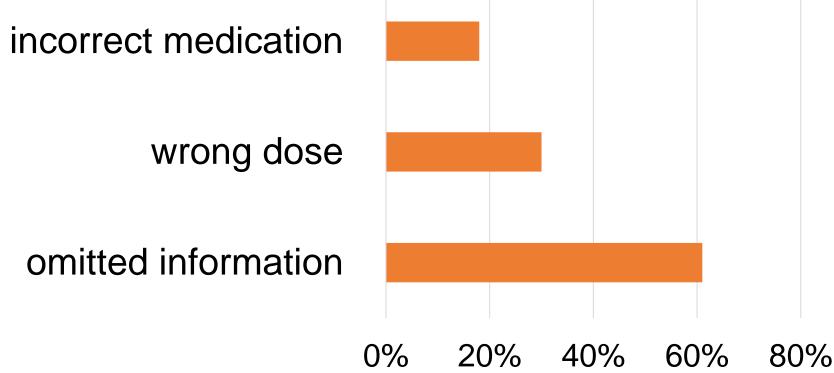
Error Classification

□ For studies that used NCC MERP index: category B

Databases

PubMed, EMBASE, Cochrane Library **Inclusion Criteria**

- Observational studies including cross-sectional, casecontrol, nested case-control, cohort and case series,
- studies including quasi-experimental, Experimental randomized, non-randomized, controlled and uncontrolled
- English Language studies from 2000 to 2019
- □ Focused on types and severity of medication errors associated with automation
- Primary, ambulatory long-term, acute, and institutionalized care settings


Exclusion Criteria

- □ Case reports, reviews, abstracts, personal opinions, commentaries, and conference reports
- Animal studies

Quality Assessment

Hoy et al. Tool

Error severity and classification

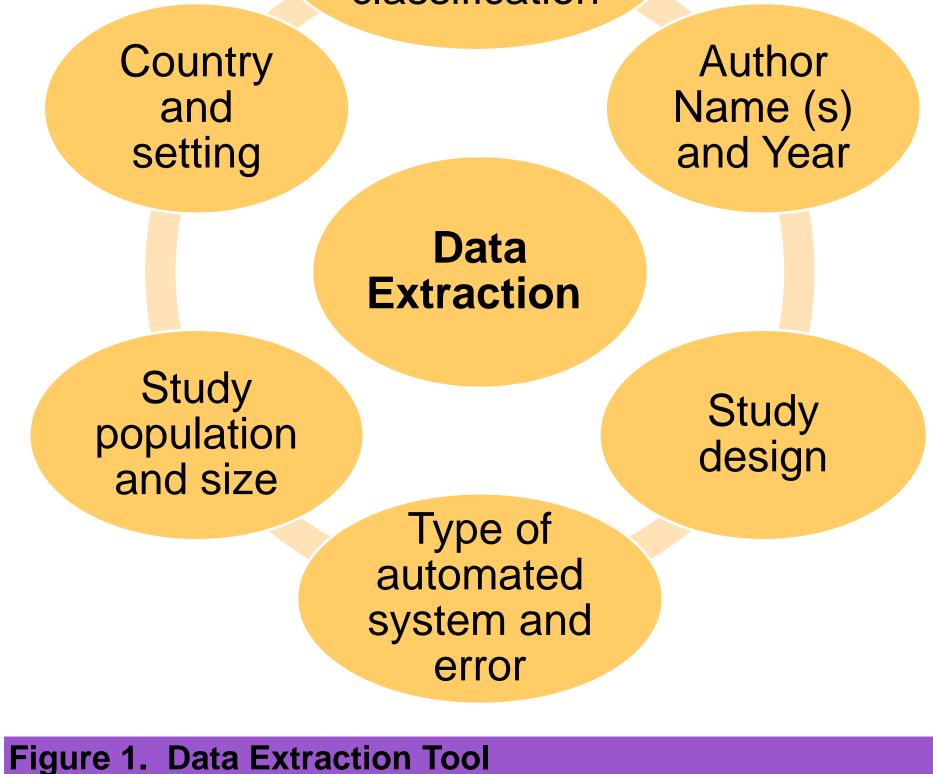
Figure 3. Frequency of Medication Errors Associated with Automation

 Table 1. Quality Assessment of Included studies

Number of studies (n)	Overall Risk Score (0-3; 4-6; 7-9)	Overall Risk of Bias (low; moderate; high)
Eight	0-3	Low
Five	4-6	Moderate

(n=4), followed by A (n=2) or C (n=4)

Quality Assessment


□ low bias risk (62%), moderate bias risk (38%) (see table 1)

Limitations

- Only English Language studies included
- Short study period
- Critical gaps in the sampling procedure of included studies- sample size calculation, low response rate
- Risk of response and sampling bias
- Internal and external validity uncertain

Conclusions

- □ The findings suggest that the use of automation is associated with the occurrence of errors mostly in the prescribing and administration stage.
- Most frequently reported error type was omission error of dose, duration, or frequency because of complexity of automated systems and lack of

Results

Screening and Inclusion

- Initially 1022 records, 860 after de-duplication □ 61 full text articles assessed for eligibility □ 13 full text articles were included (see figure 2) Country
- \Box Spain (n=4), United States (n=3), France (n=2), Netherlands (n=2), Australia (n=1), Brazil (n=1)

Study population and Size

 \Box Sample size not specified (n= 5), study population not specified (n=11), population identified (n=2)

adequate training

- May be reduced by using forcing functions
- Second most reported error was incorrect dose error that occurred during drug withdrawal or dosing calculation because of increased communication load and alert fatigue
- □ May be lowered by designing a more user-friendly interface during development
- □ No definite conclusion could be made about the severity and classification of errors
- □ Future Focus: on automation related errors in Asia and classifying the severity of errors using NCC MERP index
- □ Future study design: use of appropriate sample size and inclusion of patient characteristics