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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic
as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and
alleviate its impact on society, economy, and public health, the development of vaccines and antiviral
agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-
CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which
have obtained the United States Food and Drug Administration (FDA) approval for emergency use.
Despite this successful development and licensure, concerns regarding the safety and efficacy of these
vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging
SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for
Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations,
and highlight the major safety concerns and potential risks associated with each vaccine type.
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1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), first reported in late 2019 in Wuhan, the capital of
Hubei province in Central China, has become a global pandemic with devastating effects
worldwide [1]. Since then, and until 29 June 2021, this newly emerging disease caused
by the enveloped SARS-CoV-2 virus, which belongs to the Coronaviridae family and the
lineage B of the betacoronavirus (β-CoV) genera, has brought over 181 million confirmed
cases and claimed the lives of about 4 million people worldwide [1]. SARS-CoV-2 has a
positive-sense, single-stranded genome that encodes a large non-structural polyprotein
(ORF1a/b) proteolytically cleaved to generate proteins, four of which are structural proteins
including spike (S), envelope (E), membrane (M), and nucleocapsid (N) (Figure 1a) [2,3].
Among these proteins, the S surface glycoprotein plays a critical role in receptor recognition
and attachment to host cells [4]. The S protein also induces T-cell responses and is the main
target of highly potent neutralizing antibodies (nAbs) against the virus, presenting it as
the major antigenic pick out for vaccine design [5]. The structure of SARS-CoV-2 is similar
to other β-CoVs, including the severe acute respiratory syndrome coronavirus (SARS-
CoV) and the Middle Eastern respiratory syndrome-related coronavirus (MERS-CoV), the
causative agents of SARS and MERS, two previously reported viral pneumonia disease
outbreaks, respectively [6]. Compared to SARS-CoV and MERS-CoV; however, SARS-CoV-
2 has higher infectivity and transmissibility due to its high-affinity binding to the host cell
receptors and high viral shedding levels during the early stage of infection, contributing
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to the vastly infectious nature of asymptomatic and mildly symptomatic patients [7–9].
As initial measures to control the disease spread, the COVID-19 pandemic was primarily
withstood through social distancing, hygiene measures, and repurposed drugs [10]. Some
countries’ implemented measures were relatively emollient and particularly designated to
control the disease by achieving herd immunity following natural infection [11,12].

Vaccines 2021, 9, x FOR PEER REVIEW 2 of 39 
 

 

MERS-CoV; however,  SARS-CoV-2 has higher infectivity and transmissibility due to its 
high-affinity binding to the host cell receptors and high viral shedding levels during the 
early stage of infection, contributing to the vastly infectious nature of asymptomatic and 
mildly symptomatic patients [7–9]. As initial measures to control the disease spread, the 
COVID-19 pandemic was primarily withstood through social distancing, hygiene 
measures, and repurposed drugs [10]. Some countries’ implemented measures were rela-
tively emollient and particularly designated to control the disease by achieving herd im-
munity following natural infection [11,12]. 

 
Figure 1. SARS-CoV-2 structure and contemporary COVID-19 vaccine platforms. (a) Schematic diagram of SARS-CoV-2 
structure including the single-stranded RNA (ssRNA) genome and the four structural proteins: spike protein (S), envelope 
protein (E), membrane protein (M), and nucleocaspid protein (N). Diverse vaccine platforms including (b) inactivated 
vaccine (c) live attenuated vaccine (d) viral vector vaccine (e) DNA vaccine (f) RNA vaccine (g) recombinant subunit 
vaccine (h) virus-like particles vaccine. mRNA: messenger RNA, RBD: receptor-binding domain. The diagram was created 
with BioRender.com. 
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velopment of an effective and safe vaccine as an imperative solution to control the pan-
demic and prevent future outbreaks [13,15]. As such, and since the release of the SARS-
CoV-2 genome sequence in January 2020, all efforts have been directed towards COVID-
19 vaccines development [16,17]. The hope and hype placed on vaccines to prevail over 
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structure including the single-stranded RNA (ssRNA) genome and the four structural proteins: spike protein (S), envelope
protein (E), membrane protein (M), and nucleocaspid protein (N). Diverse vaccine platforms including (b) inactivated
vaccine (c) live attenuated vaccine (d) viral vector vaccine (e) DNA vaccine (f) RNA vaccine (g) recombinant subunit vaccine
(h) virus-like particles vaccine. mRNA: messenger RNA, RBD: receptor-binding domain. The diagram was created with
BioRender.com.

Therefore, despite the taken measures and as a consequence of not implementing
immediate lockdown, the COVID-19 death toll increased [13,14]. This necessitated the
development of an effective and safe vaccine as an imperative solution to control the
pandemic and prevent future outbreaks [13,15]. As such, and since the release of the
SARS-CoV-2 genome sequence in January 2020, all efforts have been directed towards
COVID-19 vaccines development [16,17]. The hope and hype placed on vaccines to prevail
over the disease stand up from the success of previously developed vaccines to control
other infectious diseases [13]. The route for vaccine development; however, was not al-
ways paved, and several historical attempts of vaccines production were doomed with
defeats [18]. Until today, and despite all the knowledge and technology at one’s disposal,
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scientists are still unable to conclude the safest and most effective vaccine platform [18].
Back in time, particularly following the outbreak of SARS-CoV in 2002, vaccines against the
emerging virus were also developed, a few of which reached phase I clinical trials; yet, did
not achieve the final stages and obtain the United States Food and Drug Administration
(FDA) approval as the virus was eradicated from the human population in 2004 [16,19–21].
Similarly, several vaccines against MERS-CoV were under development, none of which
have obtained FDA approved thus far [21]. Within the same notion, and in relay for safe
and effective COVID-19 vaccine production, censorious steps are currently followed in
all phases of COVID-19 vaccine development, including manufacturing, dispersal, and
vaccination [22]. For the time being, many of the newly developed COVID-19 vaccines are
undergoing clinical evaluation and have reached phase III of clinical trials. A few of which
have been approved for emergency use [13] (Figure 2a, Table 1), with the research and
discovery phase being skipped [21,23]. Several approaches, including traditional platforms
(inactivated and live attenuated virus vaccines), and newly established ones (replicating
and non-replicating viral vector vaccines, nucleic acid (DNA and RNA) vaccines, recombi-
nant subunit vaccines, and peptide-based/virus-like particles vaccines), have been adopted
for COVID-19 vaccine development (Figure 1b–h) [16,24,25]. As of 29 June 2021, and
according to the World Health Organization (WHO), out of the 293 total COVID-19 vaccine
candidates, 105 are currently in the clinical phase of development and 184 are still in the
pre-clinical phase (Figure 2a) [26].Presently, and besides the FDA consideration of the
possibility of booster vaccine shots, several standpoints are now advocating the notion
that “hybrid immunity” and “the mix and match of different vaccines strategy” could
provide an even stronger immune boost, presenting such approaches, if supported by data,
as plausible pandemic game-changers. In this review, we detail the different COVID-19
vaccine platforms and highlight their strengths, limitations, and major risks and safety
concerns associated with each type, particularly those relevant to the fast-track pace taken
for their production. We also summarize all candidate COVID-19 vaccines currently in
the clinical phase of development and categorize them according to the platform used for
their development.
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authorization. The figure and tablewere created with BioRender.com.

2. Contemporary COVID-19 Vaccine Platforms and Allied Safety and Efficacy
Concerns
2.1. Inactivated Vaccine

Purified inactivated viruses have been widely used for over a century in vaccine
development against various emerging infectious diseases, including influenza, polio,
rabies, and hepatitis A [27–31]. Today, inactivated vaccines are typically produced by
propagating the virus in cell culture systems, followed by purification, concentration, and
chemical and/or physical inactivation to demolish infectivity while retaining immuno-
genicity (Figure 1b) [32,33]. This type of vaccine is notably featured by its highly efficient
proliferation and genetic stability [34]; yet, limited by the viral yield in a cell culture setting,
the requirement of a biosafety level 3 facility, and the short duration of the elicited immune
response, possibly making the vaccines less effective in preventing viral entry [33,35]. Up
to date, 16 inactivated SARS-CoV-2 vaccines have been developed and are currently in
clinical trial phases (Figure 2b) [26]. One of which, for example, is the Sinovac’s CoronaVac
vaccine candidate which has demonstrated sufficient safety and efficacy in phase III of
clinical trials in Brazil, Turkey, and Indonesia and is currently in phase IV of clinical trials
(Table 1) [26,34,36–39]. Another is the BBIBP-CorV vaccine candidate, which showed ade-
quate humoral immune responses in adults aged 18 years and above and currently stands
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in phase IV of clinical trials (Table 1) [39–41]. Both vaccines have been listed by the WHO
for COVID-19 Emergency Use (EUL) and are presently being adopted by several countries
worldwide. Despite these promising data, concerns of using inactivated virus vaccines
platforms against COVID-19 still reside, some of which relate to the difficulty of confirming
a complete virus inactivation status, a risk that could translate into a scenario similar to
the 1955 Cutter incident where children receiving the polio vaccine were infected with the
inactivated poliovirus [33,42]. Into the bargain, although several developed inactivated
SARS-CoV vaccines have been reported to induce nAbs, vaccinated animals still display
significant disease upon challenge, which could explain why no vaccines are currently
licensed for SARS-CoV [43]. Further, previous studies on animal models have shown that
immunizations with inactivated SARS-CoV and MERS-CoV vaccines are associated with
hypersensitive-type lung pathology post-challenges with the infectious virus [32,44–46].
Similarly, respiratory syncytial virus (RSV) formalin-inactivated vaccine has been reported
to cause enhanced pulmonary disease after live RSV infection [47,48]. In addition, it was
suggested that treating the vaccine with formalin could have altered the epitopes, inducing
functional antibodies, causing the immune system to produce antibodies against non-
protective epitopes [33,49]. It is worth noting here that none of these concerns and/or
complications of using inactivated virus vaccines have been thus far reported from the use
of recently developed COVID-19 inactivated vaccines.

2.2. Live Attenuated Vaccine

Live attenuated vaccines, which embody a weakened version of the live virus with
reduced virulence, are considered one of the oldest and most effective immunization ap-
proaches to elicit life-long immune responses (Figure 1c) [32,50]. A remarkable advantage
of such a vaccine type is its relatively low production and delivery costs, given that the at-
tenuated virus can replicate and propagate within the host. As such, a relatively small dose
of the virus can be enough to induce immunity [51]. Moreover, live attenuated vaccines
can be given intranasally, allowing the attenuated virus to replicate in the mucosal tissue of
the upper respiratory tract, a major portal for coronaviruses entry into the host [52]. For the
time being, only six SARS-CoV-2 live attenuated virus vaccines have been developed, four
of which are in the pre-clinical phase, and two are in phase I of clinical trials (Figure 2b,
Table 1) [26]. Both COVI-VAC and MV-014-212 vaccines are attenuated via codon pair de-
optimization, a strategy that involves synthetic recoding of the viral genome by amending
the positions of synonymous codons, thereby raising the number of suboptimal codon
pairs and cytosine phosphoguanine (CpG) dinucleotides in the recoded genome [25,53–55].
In parallel to live attenuated SARS-CoV-2 vaccine studies, ongoing studies on other live
attenuated virus vaccines such as the RSV vaccine have shown success in using the codon
pair deoptimization strategy in vaccine production evidenced by the robust humoral and
cellular immune responses triggered in non-human primates [56].

Despite the aforementioned advantages and the pulled off accomplishments of using
live attenuated virus vaccine in combating different infectious diseases, the overt risk of
using such a type of vaccine still resides in the use of a live replicating virus, which can
revert under any condition to its pathologic phenotype, causing disease after vaccination,
especially in immunocompromised individuals [57,58]. Although this anticipated scenario
is considered relatively rare, the degree of unpredictability regarding the virus stability
and the arising safety considerations after that should never be ruled out [59]. Further, live
attenuated vaccines could result in viral shedding into the environment, posing a potential
risk to the unvaccinated community [60]. It also goes without saying that these highlighted
disadvantages are acquainted with time consumption and technical difficulties associated
with the virus modification approaches if such a vaccine platform is to be implemented [16].

2.3. Viral Vector Vaccine

Viral vector vaccines, in both replicating and non-replicating forms, utilize modified
viruses such as adenoviruses or poxviruses as the vector to deliver the genetic material
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coding for a viral antigen of interest into the host cell (Figure 1d) [57,61]. In self-replicating
(replication-competent) viral vector-based vaccines, and through the host cell machinery
used by the virus vector, new viral particles are produced in infected cells, which then infect
other new cells, resulting in additional vaccine antigen production [62]. On the contrary,
non-replicating (replication-incompetent or deficient) viral vector-based vaccines cannot
produce new viral particles, and the host cell machinery is used to produce the vaccine
antigens, after which the viral vector gets cleared [61,62]. Both viral vector vaccine forms
do not cause infection from neither the loaded virus nor the viral vector as the delivered
genetic material does not become integrated into the host genome [61,63]. Typically, the
advantage of this type of vaccine lies in promoting the expression of viral antigens within
infected host cells for efficient major histocompatibility complex (MHC) class I and class II
presentation [61]. Moreover, viral vectors are characterized by their high gene transduction
efficiency, high specificity of genes delivered to target cells, and the immune response they
elicit with increased cellular response [64]. Further, although viral vector vaccines are gener-
ally considered less robust than traditional vaccine types, the fact that they persist as genetic
material in the host, directly infect antigen-presenting cells, and possess a strong inherent
adjuvant activity triggering innate and adaptive immune responses and generating high
titers of nAbs, could suffice a single vaccine dose for adequate immunization as in the case
of the vesicular-stomatitis virus -(VSV)-based Ervebo vaccine against Ebola virus [62,63,65].
In COVID-19 vector-based vaccine production, replicating and non-replicating vectors
have been utilized to deliver genes encoding for either the SARS-CoV-2 S glycoprotein
or the receptor-binding domain (RBD) [16,26]. Thus far, vaccinia and adenovirus are the
predominantly used virus vectors for vectored vaccines development [64]. The adenovirus,
for example, has been previously utilized in developing SARS-CoV vaccines expressing the
S and N proteins [32,43,66]. Currently, it is also being used for developing COVID-19 vector-
based vaccines. Up to date, 4 replicating and 17 non-replicating COVID-19 vector-based
vaccines have been developed, of which 2 have reached phase III clinical trials, and 3 are
currently in phase IV (Table 1, Figure 2b) [26]. All five vaccines are adenovirus-based non-
replicating vaccines containing the gene encoding for SARS-CoV-2 S glycoprotein [67–70].
Among these vaccines, Janssen’s (Ad26.COV2.S) vaccine has recently received the FDA
EUA for use in in 18 years old and elder individuals after showing good efficacy data in
phase III of clinical trials [71]. Although the Ad26.COV2.S vaccine showed around 65–66%
efficacy in moderate to severe/critical and around 76–83% in severe/critical COVID-19
patients, its efficacy dropped to 52 and 64% against the Beta (B.1.351) variant in moderate
to severe/critical disease conditions, respectively [69] (Table 1). Low efficacy data were also
reported for AstraZeneca vaccine against the Beta variant, with an efficiency of 10.4% only
reported in South Africa and 48% in Canada [72,73], contrarily to the 70.4% retained efficacy
against the Alpha (B.1.1.7) variant as reported in a study conducted in the UK [74]. The
other three viral vector vaccines at stages II/III–IV of clinical development are CanSino’s
adenovirus type-5 (Ad5) vectored vaccine, Gamaleya Research Institute’s Gam-COVID-Vac
vaccine, and ReiThera’s GRAd-COV2 (Table 1). Although clinical trials have revealed that
these vaccines are tolerable and immunogenic, age and the presence of high pre-existing
anti-adenovirus immunity were shown to partly diminish vaccination-induced specific
antibody and T-cell responses [68]. To overcome pre-existing immunity to the adenovirus
in vaccinated individuals, a plausible approach could be using a heterologous recombinant
vector as in the Gam-COVID-Vac (Sputnik V) vaccine, the only heterologous COVID-19
vaccine that uses both adenovirus 26 (Ad26) and adenovirus 5 (Ad5) as vectors to express
the SARS-CoV-2 S protein [70,75]. Of note, the general principle of prime-boost with two
distinct vectors was not exclusively used in recent COVID-19 vaccine platforms but has
been largely implemented experimentally and was also previously used in developing the
GamEvac-Combi Ebola virus vaccine [76].
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2.4. Nucleic Acid (DNA and RNA)-Based Vaccine

In nucleic acid-based vaccines, only the genetic material (DNA or RNA), but not
the recombinant/live virus, is taken up by host cells and translated into the protein to
elicit an immune response (Figure 1e,f) [77]. Although various messenger RNA (mRNA)
vaccines, including those against influenza, Zika, and rabies viruses, have been thus far
developed, this vaccine development platform is still considered relatively new [78]. The
pronounced advantage of some types of nucleic acid vaccines generally lies in the large-
scale production pace and cost [16]. DNA vaccines, for example, are based on the use
of highly stable plasmid DNA that can be easily propagated at a large scale in bacteria,
as the plasmid DNA typically encloses mammalian expression promoters and the gene
encoding the protein of interest [16]. On the other hand, presenting mRNA vaccines as
promising alternatives for conventional vaccines mainly lies in the ability to produce the
vaccine completely in vivo, along with their high potency, cost-effectiveness, rapid devel-
opment, and safe delivery [16,78,79]. Currently, lipid nanoparticles (LNPs) are among the
most commonly used in vivo RNA delivery vectors, protecting the mRNA from enzymatic
degradation and facilitating endocytosis and endosomal escape [80]. Contrarily to the
highlighted recognition of mRNA vaccines, the physiochemical properties of the mRNA
that may impact its cellular and organ dispersal, the questioned safety and efficacy of
mRNA vaccine use in humans, them being unlikely to induce strong mucosal immunity
due to their intramuscular administration, and the uncertainty from what could arise with
large-scale production, storage, and stability are among the alarming concerns tailored
to mRNA vaccines production [16,57,80]. Likewise, potential disadvantages also relate to
DNA vaccines, particularly those relevant to their low immunogenicity and to the need
of DNA molecules to traverse the nuclear membrane to be transcribed, necessitating com-
plicated delivery systems such as electroporators for better efficiency [16,57]. In addition,
introducing mutation and dysregulated gene expression by the plausible stable integration
of transfected DNA into the somatic or germline host cells genome is another arising
concern [81] though unconventional as per relevant follow-up studies [82–85]. Up to date,
28 nucleic acids (10 DNA and 18 mRNA)-based COVID-19 vaccines have been developed
and are currently in the clinical stages, and 24 mRNA vaccines are in the pre-clinical stage
(Figure 2b, Table 1) [26]. Two mRNA-based vaccines, developed by Pfizer/BioNTech and
Moderna, are currently in phase IV clinical trials and have received the FDA EUA for
protection against COVID-19 [26,86,87]. Preliminary results showed astoundingly 94–95%
efficacy for both vaccines [88,89]. Though promising, a major concern relevant to mRNA
vaccines resides in their rapid pace of development and the uncertainty of potential long-
term adverse effects associated with them, particularly because these are the first approved
mRNA vaccines with no other FDA-approved mRNA vaccines to date [90]. Another con-
cern is the efficacy of these vaccines against the newly emerging SARS-CoV-2 variants with
mutations in the S protein, the main target in COVID-19 vaccines development [91]. As of
yet, Pfizer/BioNTech COVID-19 vaccine was reported to protect against four variants of
concern (VOCs), including Alpha, Beta, Gamma, and Delta (Table 1) [91–94]. Interestingly,
a recent study by Zakhartchouk et al. reported that combining DNA vaccine and whole
killed virus vaccines augments immune responses to SARS-CoV [95], a propitious tactic
worth considering in ongoing COVID-19 vaccine development approaches [95].

2.5. Protein Subunit and Virus-Like Particles Vaccine

As compared to the whole-pathogen vaccine platform, a protein subunit vaccine is
composed of in vitro harvested and highly purified viral protein antigens carefully chosen
for their ability to elicit an immune response (Figure 1g) [96]. Being incapable of causing
disease, the protein subunit vaccine platform is considered safer than the whole-virus (live
attenuated and inactivated) platforms [97]. Not displaying the full antigenic complexity of
the virus and enclosing small antigens deficient of pathogen-associated molecular patterns
(PAMPs); however, it may promote skewed immune responses, bringing the immuno-
genicity potential and protective efficacy of protein subunit vaccines into question [57,97].
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Subunit vaccine design and production could be also costly and might necessitate specific
adjuvants to boost the immune response [98], in addition to the potential occurrence of anti-
gen denaturation, which could lead to non-specific binding [99]. Examples of developed
subunit vaccines include the recombinant RBD subunit vaccine, which was reported to elicit
partial protective immunity in rhesus macaques against MERS-CoV challenge [100], and S
protein-based subunit vaccines against SARS-CoV infection with potency to induce nAbs
and protect against SARS-CoV intranasal infection in mice [32,101]. Up to date, 33 COVID-
19 protein subunit vaccines based on the S protein or the RBD have been developed and
are in the clinical stages. Of which, 10 vaccines, including Novavax’s (NVX-CoV2373) are
in phase III [26,102]. Recent reports showed that a two-dose regimen of the NVX-CoV2373
vaccine exhibited 89.7% efficacy against SARS-CoV-2 infection, with high efficacy against
the Alpha, Beta, and other VOCs [102,103] (Table 1). Virus-like particles (VLPs) vaccine is
another type of protein-based vaccine composed of proteins from the viral capsid only with
no viral genetic material (Figure 1h) [57,104]. In addition to being safe, VLPs elicit potent
immune responses due to their repetitive structures [104]. VLP vaccines against many
viruses, including Hepatitis B virus, Human papillomaviruses, and Influenza A virus, do
exist [104–107]. Likewise, VLP vaccines against MERS-CoV and SARS-CoV infection have
been also developed, with eosinophilic pulmonary immunopathology detected after viral
challenge in some cases [21,46,108]. For the COVID-19 status quo particularly, five VLPs
vaccines in different phases of clinical trials are thus far available (Figure 2b, Table 1) [26].
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Table 1. SARS-CoV-2 Vaccine Candidates in Clinical Development Stages.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct
and/or

Targeted
SARS-CoV-2

Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Inactivated
virus

1 CoronaVac 2 doses (3 µg) Day 0 + 14 IM Sinovac
Research and
Development
Co., Ltd.

Whole
inactivated
SARS-CoV-2
with
aluminum
hydroxide
adjuvant

Phase IV (Not
yet recruiting)

Efficacy from clinical trials:
Brazil: 50.7% against
symptomatic disease ≥14 d
after 2 doses.
Turkey: 83.5% against
symptomatic disease ≥14 d
after 2 doses.
Indonesia: 65.3% against
symptomatic disease ≥14 d
after 2 doses.
Efficacy/effectiveness
against variants:
Chile (predominant
circulation of P.1 and B.1.1.7.):
67% against symptomatic
disease ≥28 d after 2 doses.
Brazil (predominant
circulation of P.2 and P.1
lineages): 50.7% and 36.8%
against symptomatic disease
≥14 d after 2 doses,
respectively.

WHO EUL
Approved in
37 countries 1

[26,36–38,109–
112]

Inactivated
virus

2 BBIBP-
CorV

2 doses (4 µg) Day 0 + 21 IM Sinopharm +
China
National
Biotec Group
Co + Beijing
Institute of
Biological
Products

Whole
inactivated
SARS-CoV-2

Phase IV
(Recruiting)

Efficacy from clinical trials
in UAE, Bahrain, Egypt, and
Jordan: 78.1% against
symptomatic disease ≥14 d
after 2 doses, and 79%
against hospitalization.

WHO EUL
Approved in
56 countries 2

[26,34,39,41,
110,113]

Inactivated
virus

3 Inactivated
SARS-
CoV-2
vaccine
(Vero cell)

2–3 doses (5
µg)

Day 0 + 21 +
42 or 111 or
171

IM Sinopharm +
China
National
Biotec Group
Co + Wuhan
Institute of
Biological
Products

Whole
inactivated
SARS-CoV-2
with
aluminum
hydroxide
adjuvant

Phase III
(Completed)

Efficacy from clinical trials
in UAE, Bahrain, Egypt, and
Jordan: 72.8% against
symptomatic disease ≥14 d
after 2 doses, and 79%
against hospitalization.

WHO EUL
(Approval
pending)
China

[26,40,110,114,
115]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Inactivated
virus

4 Inactivated
SARS-
CoV-2
vaccine
(Vero cell)

2 doses (50,
100, or 150 EU)

Day 0 + 14 IM Institute of
Medical
Biology +
Chinese
Academy of
Medical
Sciences

Whole inactivated
SARS-CoV-2 with
Al(OH)3 adjuvant

Phase III
(Enrolling by
invitation)

NR Not yet
approved in
any country

[26,116,117]

Inactivated
virus

5 QazCovid-
in

2 doses Day 0 + 21 IM Research
Institute for
Biological
Safety
Problems, Rep
of Kazakhstan

Whole inactivated
SARS-CoV-2

Phase III
(Active, not
recruiting)

Efficacy from clinical trials
in the Republic of
Kazakhstan: 96%

Republic of
Kazakhstan

[26,118,119]

Inactivated
virus

6 BBV152
(COV-
AXIN)

2 doses (3 or 6
µg)

Day 0 + 14 IM Bharat Biotech
International
Limited

Whole inactivated
SARS-CoV-2 with
Algel-IMDG
adjuvant

Phase III
(Active, not
recruiting)

Efficacy from clinical trials:
77.8% against symptomatic
disease, 93.4% against severe
disease, 63.6% against
asymptomatic disease.
Efficacy/effectiveness
against variants: 65.2%
against disease caused by
Delta (B.617.2) variant.

WHO EUL
(Approval
pending)
Approved in 9
countries 3

[26,110,120–
123]

Inactivated
virus

7 Inactivated
SARS-
CoV-2
vaccine
(Vero cell)

2 doses Day 0 + 28 IM Shenzhen
Kangtai
Biological
Products Co.,
Ltd.

Whole inactivated
SARS-CoV-2

Phase III (Not
yet recruiting)

NR China [26,124]

Inactivated
virus

8 VLA2001 2 doses Day 0 + 21 IM Valneva,
National
Institute for
Health
Research,
United
Kingdom

Whole inactivated
SARS-CoV-2 with
high S-protein
density, in
combination with
two adjuvants,
alum and CpG
1018

Phase III (Not
yet recruiting)

NR Not yet
approved in
any country

[26,125]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted SARS-CoV-2

Protein

Current Stage of
Clinical Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Inactivated
virus

9 ERUCOV-
VAC
(TURKO-
VAC)

2 doses (3 µg) Day 0 + 28 IM Erciyes
University +
Health Institutes
of Turkey

Whole inactivated
SARS-CoV-2

Phase III
(Recruiting)

NR Not yet
approved in
any country

[26,126]

Inactivated
virus

10 COVID-19
inacti-
vated
vaccine

2 doses (5 µg) Day 0 + 28 IM Shifa Pharmed
Industrial Co

Whole inactivated
SARS-CoV-2

Phase II–III
(Recruitment
complete)

NR Iran [26,127]

Inactivated
virus

11 FAKHRAVAC
(MIVAC)

2 doses (10 µg) Day 0 + 14 IM Organization of
Defensive
Innovation and
Research

Whole inactivated
SARS-CoV-2

Phase II
(Recruiting)

NR Not yet
approved in
any country

[26,128]

Inactivated
virus

12 Inactivated
(NDV-
based)
chimeric
vaccine

2 doses Day 0 + 28 IM The Government
Pharmaceutical
Organization
(GPO) + PATH +
Dynavax

Whole inactivated
NDV chimera stably
expressing
membrane-anchored
SARS-CoV-2 S protein
+/− CpG 1018
adjuvant

Phase I–II (NR) NR Not yet
approved in
any country

[26,129]

Inactivated
virus

13 KD-414 2 doses Day 0 + 28 IM KM Biologics
Co., Ltd.

Whole inactivated
SARS-CoV-2

Phase I–II (Not
Recruiting)

NR Not yet
approved in
any country

[26,130]

Inactivated
virus

14 Koçak-19 2 doses (4 or 6
µg)

Day 0 + 21 IM Kocak Farma,
Turkey

Whole inactivated
SARS-CoV-2 with
adjuvant

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,131]

Inactivated
virus

15 Adjuvanted
inacti-
vated
vaccine

2 doses (10
µg-3M or 20
µg-6M)

Day 0 + 20 SC The Scientific
and
Technological
Research
Council of
Turkey
(TÜBITAK)

Whole inactivated
SARS-CoV-2 with CpG
ODN adjuvant

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,132]

Inactivated
virus

16 Live re-
combinant
(rNDV)
vector
vaccine

2 doses Day 0 + 21 IM or IN Laboratorio
Avi-Mex

Live recombinant NDV
vector expressing
SARS-CoV-2 S protein

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,133]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Live-
attenuated
virus

1 COVI-
VAC

1–2 doses Day 0 or
Day 0 + 28

IN Codagenix, Inc
+ Serum
Institute of
India

Whole
SARS-CoV-2 with
all viral proteins

Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,134]

Live-
attenuated
virus

2 MV-014-
212

1 dose Day 0 IN Meissa
Vaccines, Inc.

RSV expressing
SARS-CoV-2 S
protein

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,55,135]

Viral
vector
(non-
replicating)

1 ChAdO x
1
AZD1222

2 doses
(standard
dose: 5 ×
1010 viral
particles,
low dose:
2.2 × 1010

viral
particles)

Day 0 + 28 IM AstraZeneca +
University of
Oxford

Chimpanzee
adenovirus-
vectored vaccine
(ChAdOx1)
expressing S
protein

Phase IV
(Recruiting)

Efficacy from clinical trials in UK,
Brazil, and South Africa: 66.7%–70.4%
overall efficacy ≥14 d after 2 doses, 62.1%
after 2 standard doses76.0% after single
low dose within 20–90 d, 90.0% after one
low dose and one standard dose.
Real-world effectiveness:
England: 60–75% after 1 dose.
Scotland: 88% against hospitalization
28–34 d after 1 dose.
U.S: 76% in adults, and 85% in elderly
(≥65 y).
Efficacy/effectiveness against variants:
UK: 70.4% against Alpha (B.1.1.7) variant,
81.5% against non-B.1.1.7 lineages.
South Africa: 10.4% against Beta (B.1.351)
variant.
England: 76.0% after 1 dose, 86.0% after 2
doses against Beta variant. 71.0% after 1
dose, 92.0% after 2 doses against Delta
variant.
Canada: 68% ≥ 14 d after dose 1 against
symptomatic infection caused by Alpha
variant.
48% ≥ 14 d after 1 dose against
symptomatic infection caused by Beta or
Gamma (P.1) variants.
67% ≥ 14 d after 1 dose against
symptomatic infection caused by Delta
variant.

WHO EUL
Approved in
118 countries 4

and issued an
Endorsed by
ART
CARPHA EU
recommenda-
tion EMA
approved

[67,72–
74,93,110,136–
145]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Viral
vector
(non-
replicating)

2 Convidicea
(Ad5-
nCoV)

1 dose (5 ×
1010 viral
particles per
dose)

Day 0 IM CanSino
Biological Inc.
+ Beijing
Institute of
Biotechnology

Recombinant
replication-
defective human
type 5 adenovirus
(Ad5) expressing S
protein

Phase IV
(Active, not
recruiting)

Efficacy from clinical trials in Pakistan,
Russia, Argentina, Mexico, and Chile:
68.8% and 65.7% against symptomatic
disease ≥14 d and ≥28 d after
vaccination, respectively. 95.5% and 91.0%
against severe disease ≥14 d and ≥28 d
after vaccination, respectively.

WHO EUL
(Approval
pending)
Approved in 8
countries 5

[26,110,146–
151]

Viral
vector
(non-
replicating)

3 Ad26.COV2.S 1 dose (5 ×
1010 viral
particles per
dose)

Day 0 IM Janssen Phar-
maceutical

Recombinant
replication-
incompetent
adenovirus
serotype 26 (Ad26)
vector encoding
full-length and
stabilized S protein

Phase IV (NR) Efficacy from clinical trials in
Argentina, Brazil, Chile, Colombia,
Mexico, Peru, South Africa, and the U.S:
66.3-76.3% and 65.5-83.5% against
moderate to severe/critical disease ≥14 d
and ≥28d after vaccination, respectively.
Real-world efficacy:
U.S. and India: 76.7% against infection
≥14 d after vaccination.
Efficacy/effectiveness against variants:
South Africa (95% predominant B.1.351
variant): 52.0–73.1% and 64.0–81.7%
against moderate to severe/critical
disease ≥14 d and ≥28 d after
vaccination, respectively.
Brazil (69% predominant P.2 lineages):
66.2–68.1% and 81.9–87.6% against
moderate to severe/critical disease ≥14 d
and ≥28 d after vaccination, respectively.

FDA EUA
WHO EUL
Approved in
55 countries 6

Endorsed by
ART
EMA
approved

[26,69,71,110,
145,152,153]

Viral
vector
(non-
replicating)

4 Gam-
COVID-
Vac
(Sputnik
V)

2 doses (1 ×
1011 viral
particles per
dose)

Day 0 + 21
(first:
rAd26-S;
second:
rAd5-S)

IM Gamaleya
Research
Institute +
Health
Ministry of the
Russian
Federation

Recombinant Ad26
and recombinant
Ad5 encoding
full-length S
protein (rAd26-S
and rAd5-S)

Phase III
(Active, not
recruiting)

Efficacy from clinical trials: 91.6%
overall efficacy against symptomatic
disease, 100% against moderate-severe
disease, 73.1% after 1 dose, 91.1% after 2
doses.
Efficacy/effectiveness against variants:
90% against Delta variant.

WHO EUL
(Approval
pending)
Approved in
69 countries 7

[26,110,154–
157]

Viral
vector
(non-
replicating)

5 GRAd-
COV2

1–2 doses (1
× 1011 viral
particles per
dose)

Day 0 + 21 IM ReiThera +
Leukocare +
Univercells

Replication
defective Simian
Adenovirus
(GRAd) encoding
S protein

Phase II–III
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,158–160]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of Doses
(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or Targeted
SARS-CoV-2 Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy
*

Current Ap-
provals/Authorizations

Reference

Viral vector
(non-
replicating)

6 LV-
SMENP-
DC

1 dose (5 × 106

cells of LV-DC
vaccine and 1 ×
108

antigen-specific
CTLs)

Day 0 SC (LV-DC
vaccine)
and IV
(antigen-
specific
CTLs)

Shenzhen Geno-Immune
Medical Institute

Modified dendritic cells
(DC) with lentivirus
vectors (LV) expressing
minigenes SMENP and
immune-modulatory genes.
Cytotoxic T-cells (CTLs) are
activated by LV-DC,
presenting specific viral
antigens

Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,161]

Viral vector
(non-
replicating)

7 hAd5-S-
Fusion +
N-ETSD
vaccine

1 dose (5 × 1010

IU/ dose SC, 1 ×
1010 IU/ dose SL)

Day 0 SC, oral,
or SL

ImmunityBio, Inc. +
NantKwest, Inc.

Human second-generation
adenovirus 5 (hAd5)
encoding S and N antigens

Phase I–II (Not
yet recruiting)

NR Not yet
approved in
any country

[26,162–164]

Viral vector
(non-
replicating)

8 AdCLD-
CoV19

1 dose (2.5 × 1010,
5 × 1010, or 1 ×
1011 virus particles
per dose)

Day 0 IM Cellid Co., Ltd. Replication-defective
human adenovirus type
5/35 vector expressing S
protein

Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,165]

Viral vector
(non-
replicating)

9 COVIVAC 2 doses (1 × 107

IU, 5 × 107 IU, or 1
× 108 IU per dose)

Day 0 + 28 IM Institute of Vaccines and
Medical Biologicals,
Vietnam

NDV expressing
membrane-anchored
pre-fusion-stabilized
trimeric S protein +/−
CpG 1018 adjuvant

Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,166]

Viral vector
(non-
replicating)

10 MVA-
SARS-2-
ST

2 doses (1 × 107

IU, or 1 × 108 IU
per dose)

Day 0 + 28 IM Universitätsklinikum
Hamburg-Eppendorf +
German Center for
Infection Research

MVA vector expressing
stabilized S protein

Phase I–II (Not
yet recruiting)

NR Not yet
approved in
any country

[26,167]

Viral vector
(non-
replicating)

11 MVA-
SARS-2-S

2 doses (1 × 107

IU, or 1 × 108 IU
per dose)

Day 0 + 28 IM University of Munich
(Ludwig-Maximilians)

MVA vector expressing S
protein

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,168]

Viral vector
(non-
replicating)

12 VXA-
CoV2-1

1–2 doses (1 × 1010

IU, or 1 × 1011 IU
per dose)

Day 0 or
Day 0 + 28

Oral Vaxart Non-replicating
adenovirus vector
expressing viral antigens
and dsRNA adjuvant

Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,169,170]

Viral vector
(non-
replicating)

13 AdCOVID, 1–2 doses Day 0 +
NR

IN Altimmune, Inc. Adenovirus expressing the
RBD of S protein

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,171]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of Doses
(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or Targeted
SARS-CoV-2 Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy
*

Current Ap-
provals/Authorizations

Reference

Viral vector
(non-
replicating)

14 COH04S1
(MVA-
SARS-2-S)

2 doses (1 × 107, 1
× 108, or 2.5 × 108

PFU per dose)

Day 0 + 28 IM City of Hope Medical
Center + National Cancer
Institute

Synthetic MVA carrying small
pieces of SARS-CoV-2 DNA
(the chemical form of genes)

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,172]

Viral vector
(non-
replicating)

15 ChAdV68-
S
ChAdV68-
S-TCE
(Homologous
and het-
erologous
prime-
boost
schedule)

2–3 doses (5 × 1010

or 1 × 1011 viral
particles of
ChAdV68-S, 10 µg
or 30 µg SEM)

Day 0 + 28,
or Day 0 +
56, or Day
0 + 112, or
Day 0 + 56
+ 112

IM Gritstone Oncology Chimpanzee Adenovirus
serotype 68 (ChAd) and
self-amplifying mRNA (SAM)
vectors expressing either S
protein alone, or S protein with
additional T-cell epitopes (TCE)

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,173]

Viral vector
(non-
replicating)

16 SC-Ad6-1 1–2 doses Day 0 or
Day 0 + 21

IM Tetherex Pharmaceuticals
Corporation

Adenovirus vector vaccine Phase I (Not
yet recruiting)

NR Not yet
approved in
any country

[26,174]

Viral vector
(non-
replicating)

17 BBV154 1–2 doses (1 × 1010

viral particles per
dose)

Day 0 or
Day 0 + 28

IN Bharat Biotech
International Limited

S protein Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,175]

Viral vector
(replicating)

18 DelNS1-
2019-
nCoV-
RBD-
OPT1

2 doses (1 × 107

EID50 and 1 ×
107.7 EID50)

Day 0 + 28 IN University of Hong
Kong, Xiamen University
+ Beijing Wantai
Biological Pharmacy

Genetically engineered live
attenuated influenza virus
vector expressing the RBD of S
protein

Phase II
(Recruiting)

NR Not yet
approved in
any country

[26,176,
177]

Viral vector
(replicating)

19 rVSV-
SARS-
CoV-2-S
Vaccine

2 doses (1 × 105, 1
× 106, 1 × 107, or 1
× 108 PFU/mL)

Day 0 + 28 IM Institute for Biological
Research

cDNA vector encoding the
sequence of the N, P, M, and L
genes of the VSV genome, and
SARS-CoV-2 S protein

Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,178]

Viral vector
(replicating)

20 AV-
COVID-19

1 dose (0.1, 0.33, or
1.0 mg)

Day 0 IM Aivita Biomedical, Inc. +
National Institute of
Health Research and
Development + Ministry
of Health Republic of
Indonesia

Autologous dendritic cells
loaded with antigens from
SARS-CoV-2 +/− GM-CSF

Phase I–II (Not
yet recruiting)

NR Not yet
approved in
any country

[26,179]

Viral vector
(replicating)

21 Covid-
19/aAPC
vaccine

3 doses Day 0 + 14
+ 28

SC Shenzhen Geno-Immune
Medical Institute

Lentivirus vector system
expressing viral minigenes to
the artificial antigen-presenting
cells (aAPCs)

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,180]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of Doses
(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or Targeted
SARS-CoV-2 Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy
*

Current Ap-
provals/Authorizations

Reference

DNA based
vaccine

1 nCov
vaccine
(ZyCoV-
D)

3 doses (1 or 2 mg) Day 0 + 28
+ 56

ID Zydus Cadila S protein Phase III (Not
recruiting)

Efficacy
from
clinical
trials in
India:
66.6%

Not yet
approved in
any country

[26,81,181,
182]

DNA based
vaccine

2 INO-4800+
electropo-
ration

2 doses (1 mg) Day 0 + 28 ID Inovio Pharmaceuticals +
International Vaccine
Institute + Advaccine
Biopharmaceutical Co.,
Ltd.

S1 and S2 subunits of
SARS-CoV-2 S protein

Phase II–III
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,183,
184]

DNA based
vaccine

3 AG0301-
COVID19

2 doses (2 mg) Day 0 + 14 IM AnGes + Takara Bio +
Osaka University

S protein Phase II–III
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,185]

DNA based
vaccine

4 GX-19 2 doses Day 0 + 28 IM Genexine Consortium S protein Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,186]

DNA based
vaccine

5 Covigenix
VAX-001

2 doses Day 0 + 14 IM Entos Pharmaceuticals
Inc.

Full-length S protein Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,187]

DNA based
vaccine

6 GLS-5310 2 doses (0.6 or 1.2
mg)

Day 0 + 56
or Day 0 +
84

ID GeneOne Life Science,
Inc.

S protein and a second
antigenic target of SARS-CoV-2

Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,188,
189]

DNA based
vaccine

7 COVID-
eVax

2 doses (0.5, 1, or 2
mg)

Day 0 + 28 IM Takis + Rottapharm
Biotech

RBD of S protein Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,190]

DNA based
vaccine

8 CORVax 2 doses Day 0 + 14 ID Providence Health and
Services

S protein +/− the combination
of electroporated IL-12p70
plasmid

Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,191]

DNA based
vaccine

9 bacTRL 1–2 doses Day 0 or
Day 0 + 28

Oral Symvivo Corporation S protein Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,192]

DNA based
vaccine

10 COVIGEN
(COV-
ALIA)

2 doses (0.8, 2, or 4
mg)

Day 0 + 28 IM or ID University of Sydney,
Bionet Co., Ltd.

S protein Phase I (Not
yet recruiting)

NR Not yet
approved in
any country

[26,193]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

RNA
vaccine

1 mRNA-
1273

2 doses (100
µg)

Day 0 + 28 IM Moderna +
National
Institute of
Allergy and
Infectious
Diseases
(NIAID)

Full-length S
protein with
proline
substitutions

Phase IV
(Recruiting)

Efficacy from clinical trials in the U.S.:
92.1% against symptomatic disease ≥14 d
after 1 dose, 94.1% ≥ 14 d after 2 doses,
and 100% against severe disease.
Real-world efficacy:
U.S.: 80% ≥ 14 d after 1 dose and 90% ≥
14 d after 2 doses. 83% ≥ 14 d after 1 dose
and 82% after 2 doses. 88.7% against
infection ≥ 36 d after 1 dose.
Canada: 72% against infection after 1
dose and 94% after 2 doses.
Efficacy/ effectiveness against variants:
Qatar: 88.1% ≥ 14 d after 1 dose, 100%
after 2 doses against Alpha variant. 61.3%
≥ 14 d after 1 dose, 96.4% after 2 doses
against Betavariant.
Canada: 83% ≥ 14 d after 1 dose and 92%
≥ 7 d after 2 doses against symptomatic
infection caused by Alpha variant. 77% ≥
14 d after 1 dose against symptomatic
infection caused by Beta or
Gammavariants. 72% ≥ 14 d after 1 dose
against symptomatic infection caused by
Delta variant.

FDA
EUAWHO
EUL
Approved in
57 countries
9EMA
approved

[26,73,88,92,94,
110,137,145,
194–198]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number
of Doses
(Dosage)

Dosing
Sched-

ule

Route
of

Admin-
istration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

RNA
vaccine

2 BNT162b2
(3 LNP-
mRNAs),
also
known as
“Comir-
naty”

2 doses (30
µg)

Day 0 +
21

IM Pfizer/BioNTech
+ Fosun
Pharma

Full-length S
protein with
proline
substitutions

Phase IV
(Recruiting)

Efficacy from clinical trials: 52.4% after 1 dose and
94.6% ≥ 7 d after 2 doses in adults.
Real-world efficacy:
England: 60–70% against infection after 1 dose,
85–90% after 2 doses in elderly (≥80 y).
72% against infection ≥21 d after 1 dose, and 86% ≥
7 d after 2 doses.
91% against infection 15–28 d after 1 dose.
UK: 70% ≥ 21 d after 1 dose, 85% ≥ 7 d after 2 doses.
Denmark: 17% ≥ 14 d after 1 dose, 64–90% ≥ 7 d
after 2 doses.
Scotland: 91% against hospitalization 28–34 d after
1 dose.
U.S.: 80% ≥ 14 d after 1 dose, 93% ≥ 14 d after 2
doses.
88.7% against infection ≥ 36 d after 1 dose.
Sweden: 42% against infection ≥ 14 d after 1 dose,
86% ≥ 7 d after 2 doses.
Canada: 59% ≥ 14 d after 1 dose and 91% after 2
doses.
Qatar: 39.4% against disease after 1 dose and 97.4%
≥ 14 d after 2 doses.
Efficacy/ effectiveness against variants:
England: 83.0% against hospitalization after 1 dose,
95.0% after 2 doses against Alpha variant.
94.0% against hospitalization after 1 dose, 96.0%
after 2 doses against Deltavariant.
Canada: 89% ≥ 7 d after 2 doses against
symptomatic infection caused by Alpha variant.
60% ≥ 14 d after 1 dose and 84% ≥ 7 d against
symptomatic infection caused by Beta or
Gammavariants. 56% ≥ 14 d after 1 dose and 87% ≥
7 d against symptomatic infection caused by Delta
variant.
Qatar: 29.5% after 1 dose and 89.5% ≥ 14 d after 2
doses against infection caused by Alpha variant.
16.9% after 1 dose and 75.0% after 2 doses against
infection caused by Beta variant.

FDA EUA
WHO EUL
Approved in
93 countries 10

CARPHA EU
recommenda-
tion
EMA
approved

[26,73,89,92,93,
110,141,142,
145,196,197,
199–209]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or Targeted
SARS-CoV-2 Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

RNA
vac-
cine

3 CVnCoV
(CureVac)

2 doses (12
µg)

Day 0 + 28 IM CureVac AG LNP-encapsulated mRNA
vaccine encoding the
full-length, pre-fusion
stabilized S protein

Phase III
(Active, not
recruiting)

Efficacy from clinical trials
conducted in 10 countries in Latin
America and Europe: 47% against
symptomatic disease across all age
groups and 15 variants, 53% against
any disease severity, 77% against
moderate and severe disease.

WHO EUL
(Pending
approval)
Not yet
approved in
any country

[26,110,
210–212]

RNA
vac-
cine

4 ARCoV or
ARCoVax

1 dose (15
µg)

Day 0 IM Academy of
Military Science
(AMS), Walvax
Biotechnology
and Suzhou
Abogen
Biosciences

LNP-encapsulated mRNA
vaccine encoding the RBD of S
protein

Phase III (Not
yet recruiting)

NR Not yet
approved in
any country

[26,213,
214]

RNA
vac-
cine

5 mRNA-
1273.211

1 dose (50
µg)

Day 0 IM ModernaTX, Inc. A multivalent booster
candidate combining
mRNA-1273 + mRNA-1273.351

Phase II-III
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,215]

RNA
vac-
cine

6 mRNA-
1273.351

1–2 doses
(20 or 50 µg)

Day 0, or
Day 0 + 28,
or Day 56
after 2nd
dose of
mRNA-
1273

IM Moderna +
NIAID

Full-length prefusion stabilized
S protein of SARS-CoV-2
B.1.351 variant

Phase II
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,216–
218]

RNA
vac-
cine

7 ARCT-021 1–2 doses ±
booster dose
(5 or 7.5 µg)

Day 0, or
Day 0 + 28,
or Day 0 +
28 ± 208
(booster)

IM Arcturus
Therapeutics

S protein Phase II (Two
trials: one is
recruiting, and
the other is
active, not
recruiting)

NR Not yet
approved in
any country

[26,219–
221]

RNA
vac-
cine

8 MRT5500 2 doses (15,
45, or 135
µg)

Day 0 + 21 IM Sanofi Pasteur
and Translate
Bio

S protein Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,222–
224]

RNA
vac-
cine

9 DS-5670a 2 doses (10,
30, 60 or 100
µg)

Day 0 + 21 IM Daiichi Sankyo
Co., Ltd.

NR Phase I–II
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,225,
226]

RNA
vac-
cine

10 EXG-5003 1 dose Day 0 ID Elixirgen
Therapeutics, Inc

Temperature-sensitive ssRNA
vaccine expressing the RBD of
S protein

Phase I–II
(Recruiting)

NR Not yet
approved in
any country

[26,227]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

RNA
vaccine

11 LNP-
nCoVsaRNA
(COVAC1)

2 doses
(0.1–10.0 µg)

ND IM Imperial
College
London

S protein Phase I (No
longer
recruiting)

NR Not yet
approved in
any country

[26,228,
229]

RNA
vaccine

12 ChulaCov19
mRNA
vaccine

2 doses (10,
25, 50, or 100
µg)

Day 0 + 21 IM Chulalongkorn
University

S protein Phase I (Not
yet recruiting)

NR Not yet
approved in
any country

[26,230,
231]

RNA
vaccine

13 PTX-
COVID19-
B

2 doses (16,
40, or 100
µg)

Day 0 + 28 IM Providence
Therapeutics

Full-length
membrane-
anchored S
protein

Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,232,
233]

RNA
vaccine

14 CoV2
SAM
(LNP)

2 doses (1.0
µg)

Day 0 + 30 IM GSK S protein Phase I
(Active, not
recruiting)

NR Not yet
approved in
any country

[26,234]

RNA
vaccine

15 HDT-301 2 doses (1, 5,
or 25 µg)

Day 0 + 28 IM SENAI
CIMATEC

Full-length S
protein

Phase I (Not
yet recruiting)

NR Not yet
approved in
any country

[26,235]

RNA
vaccine

16 mRNA-
1283

1–2 doses
(10, 30, or
100 µg)

Day 0 or
Day 0 + 28

IM ModernaTX,
Inc.

RBD and NTD of S
protein

Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,236,
237]

RNA
vaccine

17 SW-0123 2 doses NR IM Shanghai East
Hospital +
Stemirna
Therapeutics

NR Phase I
(Recruiting)

NR Not yet
approved in
any country

[26,238,
239]

RNA
vaccine

18 LNP-
nCOV
saRNA-02
(COVAC-
Uganda)

2 doses (5.0
µg)

Day 0 + 28 IM MRC/UVRI
and LSHTM
Uganda
Research Unit

S protein Phase I (Not
yet recruiting)

NR Not yet
approved in
any country

[26,240]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine Name Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/ManufacturerConstruct and/or
Targeted

SARS-CoV-2
Protein

Current Stage
of Clinical

Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Protein
subunit

1 NVX-CoV2373 2 doses (5
µg)

Day 0 + 21 IM Novavax S protein with
Matrix-M adjuvant

Phase III
(Recruiting)

Efficacy from clinical trials:
UK: 89.7% against symptomatic disease
≥7 d after 2 doses.
Real-world efficacy:
U.S.: 100% against mild and severe
disease.
Efficacy/effectiveness against variants:
UK: 86.2% against Alpha variant, 96.4%
against non-B.1.1.7 variants.
South Africa: 51.0% against Beta
variant after 2 doses. 85.6% against
symptomatic disease caused by Alpha
variant. 60% against any disease
severity in predominantly circulating
Beta variant.
U.S.: 93% against Alpha, Beta, and
other VOCs/ VOIs.

WHO EUL
(Approval
pending)
Not yet
approved in
any country

[26,102,
103,110,
241–243]

Protein
subunit

2 ZF2001
(Recombinant
SARS-CoV-2
vaccine)

3 doses (25
µg)

Day 0 + 30
+ 93

IM Anhui Zhifei
Longcom
Biopharma-
ceutical +
Institute of
Microbiology,
Chinese
Academy of
Sciences

RBD-Dimer with
alum adjuvant

Phase III
(Recruiting)

NR China (EUA),
Uzbekistan

[26,244,
245]

Protein
subunit

3 VAT00008 2 doses Day 0 + 21 IM Sanofi Pasteur
+ GSK

Monovalent and
bivalent S protein
with adjuvant

Phase III (Not
yet recruiting)

NR Not yet
approved in
any country

[26,246,
247]

Protein
subunit

4 FINLAY-FR-2 2 doses (25
µg) +
booster dose
(FINLAY-FR-
1A, 50
µg))

Day 0 + 28
Day 56
(booster
dose)

IM Instituto
Finlay de
Vacunas

FINLAY-FR-2:
chemically
conjugated RBD to
tetanus toxoid plus
adjuvant
FINLAY-FR-1A:
dimeric RBD +
alum adjuvant

Phase III
(Pending)

62% Not yet
approved in
any country

[26,248–
250]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or
Targeted SARS-CoV-2

Protein

Current Stage of
Clinical Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Protein
subunit

5 Recombinant
SARS-
CoV-2
vaccine
(Sf9 Cell)

3 doses Day 0 + 28
+ 42

IM West China Hospital
+ Sichuan University

RBD with alum
adjuvant

Phase III (Enrolling
by invitation)

NR Not yet approved
in any country

[26,251]

Protein
subunit

6 EpiVacCorona2 doses Day 0 + 21 IM Federal Budgetary
Research Institution
State Research
Center of Virology
and Biotechnology

Peptide antigens of
SARS-CoV-2 proteins
with alum adjuvant

Phase III (Active,
not recruiting)

Efficacy from
clinical trials:
100%

Russia,
Turkmenistan

[26,252,253]

Protein
subunit

7 CIGB-66 3 doses (50
µg RBD +
0.3 mg
aluminum
hydroxide)

Day 0 + 14
+ 28 or
Day 0 + 28
+ 56

IM Center for Genetic
Engineering and
Biotechnology
(CIGB)

RBD with aluminum
hydroxide adjuvant

Phase III (Pending) Efficacy from
clinical trials:
91.6%

Not yet approved
in any country

[26,254,255]

Protein
subunit

8 NanoCovax 2 doses (25
µg)

Day 0 + 28 IM Nanogen
Pharmaceutical
Biotechnology

Recombinant S protein
with alum adjuvant

Phase III
(Recruiting)

NR Not yet approved
in any country

[26,256]

Protein
subunit

9 SCB-2019 2 doses (30
µg)

Day 0 + 21 IM Clover
Biopharmaceuticals
Inc. + GSK +
Dynavax

Trimeric S protein with
CpG 1018 and Alum
adjuvants

Phase II–III (Not
yet recruiting)

NR Not yet approved
in any country

[26,257–259]

Protein
subunit

10 UB-612 2 doses (100
µg)

Day 0 + 28 IM Vaxxinity, Inc. +
Diagnósticos da
América S/A
(DASA)

RBD of S protein Phase II–III (Not
yet recruiting)

NR Not yet approved
in any country

[26,260]

Protein
subunit

11 FINLAY-
FR-1

2 doses (10
or 20 µg)

Day 0 + 28 IM Instituto Finlay de
Vacunas

RBD with adjuvant Phase II (Pending) NR Not yet approved
in any country

[26,261]

Protein
subunit

12 COVAX-
19

2 doses (25
µg)

Day 0 + 21 IM Vaxine Pty Ltd. +
CinnaGen Co.

Recombinant S protein
with Advax-CpG
adjuvant

Phase II
(Recruiting)

NR Not yet approved
in any country

[26,262]

Protein
subunit

13 MVC-
COV1901

2 doses (5,
15, or 25 µg)

Day 0 + 28 IM Medigen Vaccine
Biologics + Dynavax
+ NIAID

Recombinant S protein
with CpG 1018 and
alum adjuvants

Phase II (Active,
not recruiting for
adults, recruiting
for elderly)

NR Not yet approved
in any country

[26,263–265]

Protein
subunit

14 Razi Cov
Pars

3 doses Day 0 + 21
(IM) + 51
(IN)

IM and IN Razi Vaccine and
Serum Research
Institute

Recombinant S protein Phase II
(Complete)

NR Not yet approved
in any country

[26,266]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or
Targeted SARS-CoV-2

Protein

Current Stage of
Clinical Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Protein
subunit

15 V-01 2 doses (10
or 25 µg)

Day 0 + 21 IM Guangdong
Provincial Center for
Disease Control and
Prevention/
Gaozhou Center for
Disease Control and
Prevention

Recombinant S protein Phase II (Not yet
recruiting)

NR Not yet approved
in any country

[26,267]

Protein
subunit

16 CIGB-669 3 doses (50
µg RBD + 40
µg AgnHB)

Day 0 + 14
+ 28 or
Day 0 + 28
+ 56

IN Center for Genetic
Engineering and
Biotechnology
(CIGB)

Recombinant RBD
with AgnHB

Phase I–II
(Pending)

NR Not yet approved
in any country

[26,268]

Protein
subunit

17 KBP-
COVID-19

2 doses (15
µg in phase
I, 45 µg in
phase II)

Day 0 + 21 IM Kentucky
Bioprocessing Inc.

RBD of S protein Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,269,270]

Protein
subunit

18 BECOV2 2 doses Day 0 + 28 IM Biological E. Limited Recombinant RBD Phase I–II (Closed) NR Not yet approved
in any country

[26,271]

Protein
subunit

19 S-268019 2 doses Day 0 + 21 IM Shionogi Recombinant S protein Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,272]

Protein
subunit

20 AKS-452 1–2 doses
(22.5, 45, or
90 µg)

NR SC or IM University Medical
Center Groningen +
Akston Biosciences
Inc.

RBD-Fc fusion protein Phase I–II
(Enrolling by
invitation)

NR Not yet approved
in any country

[26,273]

Protein
subunit

21 COVAC-1
and
COVAC-2

2 doses (25,
50, or 100
µg)

Day 0 + 28 IM University of
Saskatchewan

S1 protein with SWE
adjuvant

Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,274]

Protein
subunit

22 GBP510 2 doses (10,
or 25 µg)

Day 0 + 28 IM SK Bioscience Co.,
Ltd. And CEPI

Recombinant RBD
with AS03 aluminum
hydroxide adjuvant

Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,275]

Protein
subunit

23 QazCoVac-
P

1–2 doses Day 0 + 21 IM Research Institute for
Biological Safety
Problems

Phase I–II (Active,
not recruiting)

NR Not yet approved
in any country

[26,276]

Protein
subunit

24 EuCorVac-
19

2 doses Day 0 + 21 IM POP Biotechnologies
and EuBiologics Co.,
Ltd

Recombinant S protein
with an adjuvant

Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,277]

Protein
subunit

25 Recombinant
SARS-
CoV-2
Vaccine
(CHO cell)

3 doses Day 0 + 30
+ 60

IM National Vaccine and
Serum Institute,
China

Recombinant
SARS-CoV-2

Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,278]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or
Targeted SARS-CoV-2

Protein

Current Stage of
Clinical Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Protein
subunit

26 SARS-
CoV-2
Sclamp
vaccine

2 doses (5,
15, or 45 µg)

Day 0 + 28 IM University of
Queensland +
Syneos Health +
CEPI

Recombinant S protein
with MF59 adjuvant

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,279–281]

Protein
subunit

27 IMP
CoVac-1

1 dose (500
µL)

Day 0 SC University Hospital
Tuebingen

SARS-CoV-2 HLA-DR
peptides

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,282]

Protein
subunit

28 AdimrSC-
2f

NR NR NR Adimmune
Corporation

Recombinant RBD
with alum adjuvant

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,283]

Protein
subunit

29 NBP2001 2 doses (30
or 50 µg)

Day 0 + 28 IM SK Bioscience Co.,
Ltd.

Recombinant RBD
protein with alum
adjuvant

Phase I (Active,
not recruiting)

NR Not yet approved
in any country

[26,284]

Protein
subunit

30 ReCOV 2 doses (20
or 40 µg)

Day 0 + 21 IM Jiangsu
Rec-Biotechnology

Recombinant
two-component S and
RBD protein

Phase I (Not yet
recruiting)

NR Not yet approved
in any country

[26,285]

Protein
subunit

31 Spike-
Ferritin-
Nanoparticle
(SpFN)

2–3 doses
(25 or 50 µg)

Day 0 + 28
+ 180

IM Walter Reed Army
Institute of Research
(WRAIR)

S proteins with a
liposomal formulation
QS21 (ALFQ) adjuvant

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,286–288]

Protein
subunit

32 CoVepiT 1–2 doses Day 0 or
Day 0 + 21

SC OSE Immunothera-
peutics

Target 11 viral protein
(S, M, N, and several
non-structural
proteins)

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,289]

Protein
subunit

33 CoV2-
OGEN1

1–2 doses
(50, 100, or
200 µg)

Day 0 or
Day 0 + 14

Oral VaxForm Recombinant RBD
protein

Phase I (Not yet
recruiting)

NR Not yet approved
in any country

[26,290]

Virus-like
particle

1 CoVLP 2 doses (3.75
µg)

Day 0 + 21 IM Medicago Inc. Trimeric S protein with
AS03 adjuvant

Phase II–III
(Recruiting)

NR Not yet approved
in any country

[26,291,292]

Virus-like
particle

2 RBD
SARS-
CoV-2
HBsAg
VLP

2 doses (5 or
25 µg)

Day 0 + 28 IM Serum Institute of
India + Accelagen
Pty + SpyBiotech

RBD conjugated to the
hepatitis B surface
antigen

Phase I–II
(Recruiting)

NR Not yet approved
in any country

[26,293]

Virus-like
particle

3 VBI-2902a 2 doses (5 or
10 µg)

Day 0 + 28 IM VBI Vaccines Inc. Enveloped S
glycoprotein with
aluminum phosphate
adjuvant

Phase I–II (Active,
not recruiting)

NR Not yet approved
in any country

[26,294]

Virus-like
particle

4 SARS-
CoV-2
VLP
Vaccine

2 doses NR SC The Scientific and
Technological
Research Council of
Turkey

SARS-CoV-2 VLP
adjuvanted with alum
and CpG ODN-K3

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,295]
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Table 1. Cont.

Platform/Vaccine
Type

No. Vaccine
Name

Number of
Doses

(Dosage)

Dosing
Schedule

Route of
Adminis-

tration

Developer/Manufacturer Construct and/or
Targeted SARS-CoV-2

Protein

Current Stage of
Clinical Trial
(Recruitment

Status)

Efficacy * Current Ap-
provals/Authorizations

Reference

Virus-like
particle

5 ABNCoV2 2 doses Day 0 + 28 IM Radboud University capsid virus-like
particle (cVLP) +/−
adjuvant MF59

Phase I
(Recruiting)

NR Not yet approved
in any country

[26,296]

Abbreviations: IM: Intramuscular, IN: Intranasal, IV: Intravascular, SC: Subcutaneous, ID: Intradermal, SL: Sublingual, NR: Not reported, d: days, FDA: Food and Drug Administration, WHO: World Health Organization,
EUA: Emergency Use Authorization, EUL: Emergency Use Listing, ART: Africa Regulatory Taskforce, CRS: Caribbean Regulatory System, EMA: European Medicines Agency, EU: Equivalent units, IU: Infectious unit, PFU:

Plaque-forming unit, S: Spike, RBD: Receptor-binding domain, N: nucleocapsid, M: membrane, NTD: N-terminal domain, Al(OH)3: aluminum hydroxide, Algel-IMDG: chemosorbed imidazoquinoline onto aluminum
hydroxide gel, CpG 1018: cytosine phosphoguanine 1018, CpG ODN: CpG oligodeoxynucleotide, NVD: Newcastle Disease Virus, RSV: Respiratory syncytial virus, MVA: Modified vaccinia virus Ankara, VSV: Vesicular

stomatitis virus, GM-CSF: Granulocyte-macrophage colony-stimulating factor, ssRNA: Self-amplifying ribonucleic acid, LNP: Lipid nanoparticles, AgnHBL antigen of Hepatitis B, VOCs: variants of concern, VOIs: variants
of interest. * Efficacy against COVID-19 varies by age and time after vaccinations. 1 Albania, Armenia, Azerbaijan, Bangladesh, Benin, Brazil, Cambodia, Chile, China, Colombia, Dominican Republic, Ecuador, Egypt, El
Salvador, Georgia, Hong Kong, Indonesia, Kazakhstan, Lao People’s Democratic Republic, Malaysia, Mexico, Nepal, Oman, Pakistan, Panama, Paraguay, Philippines, South Africa, Tajikistan, Thailand, Timor-Leste, Togo,
Tunisia, Turkey, Ukraine, Uruguay, and Zimbabwe. 2 Angola, Argentina, Bahrain, Bangladesh, Belarus, Belize, Bolivia, Brazil, Brunei Darussalam, Cambodia, Cameroon, China, Comoros, Egypt, Equatorial Guinea, Gabon,
Gambia, Georgia, Guyana, Hungary, Indonesia, Iran, Iraq, Jordan, Kyrgyzstan, Lao People’s Democratic Republic, Lebanon, Maldives, Mauritania, Mauritius, Mongolia, Montenegro, Morocco, Mozambique, Namibia, Nepal,
Niger, North Macedonia, Pakistan, Paraguay, Peru, Philippines, Republic of the Congo, Senegal, Serbia, Seychelles, Sierra Leone, Solomon Islands, Somalia, Sri Lanka, Thailand, Trinidad and Tobago, United Arab Emirates,
Venezuela (Bolivarian Republic of Venezuela), Vietnam, and Zimbabwe. 3 Guyana, India, Iran, Mauritius, Mexico, Nepal, Paraguay, Philippines, and Zimbabwe. 4 Albania, Angola, Argentina, Armenia, Australia, Austria,
Azerbaijan, Belgium, Belize, Benin, Bermuda, Bosnia and Herzegovina, Botswana, Brazil, Brunei Darussalam, Bulgaria, Burkina Faso, Cambodia, Canada, Central African Republic, Chile, Colombia, Costa Rica, Croatia,

Cyprus, Czechia, Côte d’Ivoire, Democratic Republic of the Congo, Dominican Republic, Ecuador, Egypt, El Salvador, Estonia, Eswatini, Fiji, Finland, France, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala,
Guinea-Bissau, Guyana, Haiti, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Italy, Jamaica, Japan, Jordan, Kenya, Kosovo, Kuwait, Latvia, Lesotho, Libya, Liechtenstein, Lithuania, Luxembourg, Malawi, Malaysia,
Mali, Malta, Mauritius, Mexico, Mongolia, Morocco, Nauru, Netherlands, Niger, Nigeria, North Macedonia, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Republic of Korea,
Republic of Moldova, Romania, Rwanda, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Sierra Leone, Slovakia, Slovenia, South Sudan, Spain, Sudan, Sweden, Taiwan, Tajikistan, Thailand, Timor-Leste, Togo, Tunisia,
Uganda, United Arab Emirates, United Kingdom of Great Britain and Northern Ireland, Uzbekistan, Vanuatu, Viet Nam, Yemen, and Zambia. 5 Argentina, Chile, China, Ecuador, Hungary, Malaysia, Mexico, and Pakistan. 6

Austria, Bahrain, Bangladesh, Belgium, Brazil, Bulgaria, Canada, Chile, Colombia, Croatia, Cyprus, Czechia, Denmark, Estonia, Faroe Islands, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kuwait,
Latvia, Libya, Liechtenstein, Lithuania, Luxembourg, Malaysia, Maldives, Malta, Mexico, Netherlands, New Zealand, Nigeria, Norway, Philippines, Poland, Portugal, Republic of Korea, Romania, Saint Vincent and the
Grenadines, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Tunisia, Ukraine, United Kingdom of Great Britain and Northern Ireland, United States of America, and Zambia. 7 Albania, Algeria,

Angola, Antigua and Barbuda, Argentina, Armenia, Azerbaijan, Bahrain, Bangladesh, Belarus, Bolivia, Brazil, Cameroon, Djibouti, Ecuador, Egypt, Gabon, Ghana, Guatemala, Guinea, Guyana, Honduras, Hungary, India,
Iran, Iraq, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lao People’s Democratic Republic, Lebanon, Libya, Maldives, Mali, Mauritius, Mexico, Mongolia, Montenegro, Morocco, Myanmar, Namibia, Nepal, Nicaragua, North
Macedonia, Oman, Pakistan, Panama, Paraguay, Philippines, Republic of Moldova, Republic of the Congo, Russian Federation, Saint Vincent and the Grenadines, San Marino, Serbia, Seychelles, Slovakia, Sri Lanka, Syrian
Arab Republic, Tunisia, Turkey, Turkmenistan, United Arab Emirates, Uzbekistan, Venezuela, Vietnam, West Bank, and Zimbabwe. 8 Afghanistan, Antigua and Barbuda, Argentina, Bahrain, Bangladesh, Barbados, Bhutan,
Bolivia, Botswana, Brazil, Cabo Verde, Canada, Côte d’Ivoire, Dominica, Egypt, Ethiopia, Ghana, Grenada, Honduras, Hungary, India, Jamaica, Lebanon, Maldives, Morocco, Myanmar, Namibia, Nepal, Nicaragua, Nigeria,

Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Seychelles, Solomon Islands, Somalia, South Africa, Sri Lanka, Suriname, The Bahamas, Togo, Tonga, Trinidad and Tobago, Ukraine. 9 Austria,
Bangladesh, Belgium, Botswana, Bulgaria, Canada, Croatia, Cyprus, Czechia, Denmark, Estonia, Faroe Islands, Finland, France, Germany, Greece, Greenland, Guatemala, Honduras, Hungary, Iceland, India, Ireland, Italy,

Kuwait, Latvia, Libya, Liechtenstein, Lithuania, Luxembourg, Maldives, Mongolia, Netherlands, Norway, Philippines, Poland, Portugal, Qatar, Republic of Korea, Romania, Rwanda, Saint Vincent and the Grenadines,
Seychelles, Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, Taiwan, Thailand, United Arab Emirates, United Kingdom of Great Britain and Northern Ireland, United States of America, Viet Nam, and West Bank.
10 Albania, Argentina, Australia, Austria, Azerbaijan, Bahrain, Bangladesh, Belgium, Bermuda, Bosnia and Herzegovina, Botswana, Brazil, Brunei Darussalam, Bulgaria, Cabo Verde, Canada, Chile, Colombia, Costa Rica,
Croatia, Cyprus, Czechia, Denmark, Dominican Republic, Ecuador, El Salvador, Estonia, Faroe Islands, Finland, France, Georgia, Germany, Greece, Greenland, Hong Kong, Hungary, Iceland, Iraq, Ireland, Italy, Japan, Jordan,
Kuwait, Latvia, Lebanon, Libya, Liechtenstein, Lithuania, Luxembourg, Malaysia, Maldives, Malta, Mexico, Monaco, Mongolia, Netherlands, New Zealand, North Macedonia, Norway, Oman, Pakistan, Panama, Paraguay,
Peru, Philippines, Poland, Portugal, Qatar, Republic of Korea, Republic of Moldova, Romania, Rwanda, Saint Vincent and the Grenadines, Saudi Arabia, Serbia, Singapore, Slovakia, Slovenia, South Africa, Spain, Sri Lanka,

Sweden, Switzerland, Tunisia, Turkey, Ukraine, United Arab Emirates, United Kingdom of Great Britain and Northern Ireland, United States of America, Uruguay, Vatican, Viet Nam, and West Bank.
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3. Conclusions

With the ongoing SARS-CoV-2 pandemic, safe and effective vaccines could be the
major aid in retrenching this outbreak and probably the best bet to return us to ‘normal
life’. The impulse of an accelerated vaccine development process, though needed, is faced
with a broad spectrum of challenges that necessitates collective strives from both the public
and the private sectors to fully understand the potential utility of these vaccines not only
for overcoming the current pandemic but also for preventing future waves.
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