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ABSTRACT 

 
ALABDULLA, HAMDA, HAMDAN., Masters : January : [2022:], Applied Statistics 

Title: Competing Risks Model Based on Fine and Gray in Presence of Interval Censored 

Data  

Supervisor of Thesis: Dr. Faiz Ahmed Elfaki. 

 

Generally, survival analysis is a significant aspect of statistics that helps in anticipating 

possible outcomes in the various phenomena of study. A competing risk model is 

widely used in survival analysis since it not only studies the event of interest but also 

studies the other possible outcomes and this is the main topic of this research. Various 

models have been developed by statisticians and are widely used in examining 

competing risks in real-life phenomena where each model seems to have its strength 

and weaknesses. The Fine and Gray model is a largely employed method in competing 

risks analysis for its various advantages, such as the accuracy and the ability to consider 

multiple competing events. The main goal of this thesis is to analyze the effect of 

covariate on the cumulative incidence function, the Cox proportional hazards model for 

the subdistribution is used on both right-censored (RC) data and the model for interval-

censored (IC) data. We simulate competing risks data, then we use midpoint imputation 

to handle the simulated interval-censored and right-censored data. In comparison to the 

Fine & Gray model with interval -censored data, the simulation results show that our 

model in this study is applicable and performs well. In additional to that both methods 

were applied to the MERS data set and the results of the two models show that the 

covariates have no effect on the cumulative incidence function. 
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CHAPTER ONE INTRODUCTION 

 

CHAPTER OVERVIEW 

In this chapter we give a general introduction to survival analysis, main types 

of censoring and introduction to Competing Risks model, followed by a brief 

introduction to Fine & Gray (FG) model based on Cumulative Incident Function (CIF). 

Also, we present the background, the statement of the problem and the objective of the 

research. 

 

1.1 INTRODUCTION  

1.1.1 SURVIVAL ANALYSIS 

Statistics as a discipline and practice deals with the collection, analysis, 

interpretation and presentation of data from different sources such as economics, 

business, medicine, social science and others. In analyzing data, survival analysis as a 

branch of statistics is largely employed for its effectiveness. Survival analysis or time 

to failure analysis is a collection of statistical data analysis techniques where the 

outcome variable of interest is the time to the occurrence of an event. Death, disease, 

equipment failure, or a complex system failure are examples of events. 

In many clinical biomedical and epidemiologic studies, survival analysis is 

commonly used. As an example, Cornelia Liedtke et al. (2008) studied the effect of 

neoadjuvant chemotherapy on triple-negative breast cancer (TNBC) patients. They 

compared the survival time, time from surgery until death, of TNBC patients to non-

TNBC patients and they discovered that TNBC patients have a lower survival rate than 

non-TNBC patients. 
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Guillermo Salinas-Escudero et al. (2020) used survival analysis to look into the 

risk factors associated with COVID-19 deaths in the Mexican population. As a result, 

they found that men, those in older age groups, people with chronic kidney disease, and 

patients hospitalized in public health facilities all had a higher risk of dying at any point 

throughout the study. 

 

In longitudinal studies, individuals who don’t experience the event of interest 

during the follow-up period or withdraw for some reasons. One appealing feature of 

survival analysis is the ability to include data from censored observations until they are 

removed from the risk set. In general, right, left and interval-censored are the three main 

types of censoring. A subject is right censored if failure occurs sometime after the 

recorded follow-up period and left censoring occurs when it is known that the failure 

occurred prior to the recorded follow-up period. Nevertheless, if the event occurs 

between two times but the precise time of failure is unknown the subject is interval 

censored (Mark Stevenson (2007); Hudgens et al (2014)). 

 

1.1.2 COMPETING RISKS 

In survival analysis, more than one event may be considered in the same 

analysis, in this case the statistical problem can be characterized as a competing risks 

problem. Competing risks (CR) are said to be present when an object is at risk of more 

than one mutually exclusive event, such as death from different causes, and the 

occurrence of one of these will prevent any other event from ever happening. Because 

of its proven effectiveness and differentiation from other models, the competing risks 

is a commonly used method in survival analysis. When conducting research to 

determine the frequency and relevant data about a specific event among many other 
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competing events in the same phenomenon, the competing risks model is used (Fine & 

Gray 1999). This method beats other previously used methods but could not provide 

only a single event of interest among the various competing events. The method is also 

known for the accurate results associated with its application instead of other methods 

that sometimes produce inaccurate results. In most cases, there is more than one 

possible occurrence in each phenomenon where only one event can occur at a time. The 

fact that only one event can occur of the many possible events implies that the many or 

the two events are competing. 

 

For instance, assuming that the main aim of the research is to find out the cause 

of deaths in hospitals, there are various possible outcomes. The first cause of death 

could be severe accidents, and diseases that doctors cannot successfully manage are 

common causes of death. Secondly, deaths can be caused by wrong medication or error 

in diagnosis, or errors in surgical procedures in the theatre. Another cause of death in 

the hospital could be the various infections contracted by the patients while in the 

wards. The death of a patient while in the hospital can result from the three competing 

causes or events. These three competing events can therefore be projected using the 

competing risks model, which helps in analyzing individual events among other 

competing events and factors. The fact explains the essence of the competing risks 

model in analyzing, interpreting, and projecting the frequency of events in survival 

analysis as a major branch of statistics. 

 

 

 

 



  

4 

 

Competing risks analysis is a subset of survival analysis that seeks to accurately 

estimate the marginal probability of an event in the presence of competing events. 

Kaplan Meier product-limit method that is used in standard survival analysis produce 

inaccurate estimates when analyzing the marginal probability for cause-specific events 

in the present of competing risk. As a workaround, the CIF was proposed to tackle this 

problem by calculating the marginal probability of a certain event as a function of its 

cause-specific probability and overall survival probability. This method combines the 

product-limit approach and competing causal pathways to offer a more interpretable 

estimate for a group of subjects' surviving experience of several competing events. 

In the next two sections will introduce the (CIF) and Fine and Gray Model. 

 

1.1.3. CUMULATIVE INCIDENCE FUNCTION (CIF) 

It's worth noting that when we talk about the crude rate, we're talking about how 

quickly people are dying from cause 1 among those who could die from any cause at 

time 𝑡. This is a real-world event rate where an individual could fail for any number of 

reasons. In competing risks theory, this crude rate is called hazard rate and it is given 

by John et al., (2014) as; 

ℎ1(𝑡) = lim
∆𝑡→0

(
𝑃𝑟[𝑡 < 𝑇 ≤ 𝑡 +  ∆𝑡, 𝛿 = 1|𝑇 ≥ 𝑡

∆𝑡
)

𝑛

 

The CIF is alternative to the crude hazard rate. This function is defined as 

𝐶1(𝑡) = ∫ ℎ1(𝑧) 𝑆(𝑧) 𝑑𝑧
𝑡

0

 

Where ℎ1(𝑧) is the hazard rate of cause 1 and 𝑆(𝑡) is the survival function of time 𝑡. 
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1.1.4 FINE AND GRAY MODEL 

Gray (1988) proposed a K-sample test for CIF, which allows for direct inference 

about the functions. The effects of this work were later quantified in the Fine-Gray 

model in a regression setting (Fine and Gray, 1999). 

 

According to the Fine-Gray model, the cumulative incidence for cause 𝑗 and 

subject 𝑖 is defined by 

𝐹𝑗(𝑡; 𝑍𝑖) = 1 − 𝑒𝑥𝑝  {−𝛬0(𝑡). 𝑒𝑥𝑝(𝛽0𝑗. 𝑍𝑖)}, 𝑖 = 1, … , 𝑛, 

where  𝛽0𝑗 is a 1 x p vector of regression coefficients, related to 𝑗′th cause,  𝑍𝑖  is a 

vector of p x 1 covariates for individual 𝑖, and Λ0(𝑡) is an unspecified, non-decreasing 

baseline with Λ0(0) = 0. This model resembles Cox's regression in some ways and was 

developed as a Cox model type based on the subdistribution hazard rate. 

More generally, any link-function can be used to assess covariate effects 

directly on the CIF:  

𝐹𝑗(𝑡; 𝑍𝑖) = h  (−Λ0(𝑡), 𝛽0𝑗, 𝑍𝑖) 𝑖 = 1, … , 𝑛,              (1.1) 

Additionally, calculate a non-decreasing baseline Λ0(𝑡) and regression 

coefficient 𝛽0𝑗. The link then provides the Fine-Gray model as given below: 

ℎ𝑓𝑔(𝑎, 𝑏, 𝑧) = 1 − exp  (𝑎 exp (𝑏𝑧)),                    (1.2) 

where b is a regression coefficient,  𝑧 is a covariate, and 𝑎 is a non-decreasing baseline. 

 

Fine and Gray (1999) took the approach of taking into account a time of 

subdistribution until the competing risks occurrence for type 1 as; 

𝑇̃ = inf {𝑡 > 0|𝑍𝑡 = 1} 

If and only if 𝑍𝑡 = 1, this equals the real-life event time, 𝑇. Otherwise, the time required 

for subdistribution is infinite. Then, for 𝑡 ∈ [0, ∞), the subdistribution time will be;  
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     𝑃(𝑇 ≤ 𝑡, 𝑍𝑇 = 1). 

Fine and Gray suggested subdistribution hazard 𝜆(𝑡) for fitting a Cox’s model 

as; 

𝜆(𝑡) = −
𝑑

𝑑𝑡
𝑙𝑜𝑔(1 −  𝑃(𝑇 ≤ 𝑡, 𝑍𝑇 = 1)) =

𝑃(𝑇>𝑡)

1− 𝑃(𝑇≤𝑡,𝑍𝑇=1)
𝛼01(𝑡)     (1.3) 

The CIF is measures a direct effect on type 1 events as; 

 𝑃(𝑇 ≤ 𝑡, 𝑍𝑇 = 1) = 1 − exp (− ∫ 𝜆(𝑢)𝑑𝑢)
𝑡

0
.          (1.4) 

 

1.2 PROBLEM STATEMENT 

Survival analysis is a collection of statistical methods for the analysis of data 

for which the variable outcome of interest is time until an event occurs. This type of 

data is commonly referred to as failure time data or lifetime data. There are various 

techniques used to analyze failure time data under left or right censoring. However, 

when competing risks (CR) are addressed in the presence of interval-censored data, 

there are few techniques that have been used to look into the effect of the explanatory 

variable on the response. Competing risks are said to be present when an object is at 

risk of two or more mutually exclusive events, for example failure due to different 

causes, and the occurrence of one cause of these is independent from the others.  

 

In this thesis, we are interested in analyzing the effect of risk factors (covariates) 

on cumulative incident function (CIF) in the presence of interval-censoring. In addition 

to that, the performance of Fine and Gray (FG) methods will be evaluated by simulated 

interval censored data and secondary data set. 
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1.3 OBJECTIVE 

The objective of this study is to evaluate and derive the MLEs of the parameters 

for FG method based on CR when the data are interval-censored. When the parameters 

are estimated, the performances of theses estimators will be evaluated. The effective of 

the covariates will be checked. Additionally, to apply and analyze these inferential 

procedures on secondary data and simulated data. Hence, the major objectives of this 

research are:  

1. Estimate the parameters of FG models with interval-censored data using MLE 

and imputation methods. 

2. Compare the performance of midpoint imputation methods for FG model with 

interval censored data. 

3. Compare the performance of FG with interval censored data and FG with right 

censored data via simulation study. 

4. Applying the proposed techniques to real medical data. 
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CHAPTER TWO LITERATURE REVIEW 

 

CHAPTER OVERVIEW 

In this chapter, we will provide literature review on survival analysis, censored 

data, competing risks model, Fine and Gray model and cumulative incidence function. 

 

According to Hansen et al. (2017), survival analysis comprises investigating the 

time of event statistics. It is a branch of statistics that analyzes the expected duration 

for an event such as death. It attempts to answer critical questions regarding a specific 

event such as the proportion of a population which will survive within a particular time. 

The analysis can also identify the rate at which the surviving population will die 

(Hansen et al., 2017). Besides, the survival analysis will be used to examine how 

particular circumstances will raise or lower the probability of survival. The general 

concept in survival analysis implies that the survivor function is the integral focus of 

the clinical studies, which comprises the probability of non-occurrence of the event up 

to a particular time.  

 

According to Austin & Fine (2017), survival analysis focuses on the expected 

time frame until an event occurs, either death or relapse. However, an event may not be 

observed for an individual in the study to constitute the censored observations. 

Censoring may therefore arise from the individual not experiencing the event within 

the study period. Also, an individual could be lost to follow-up during the research 

duration. Additionally, an individual may experience a different event, which makes 

follow-up a challenge to handle.  Based on Deng (2016), censoring is common in 

survival analysis. It entails the missing data in which time to event is not recorded for 
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varied reasons such as termination of study or the subject leaving the study (Hansen et 

al., 2017). According to Deng (2016), right censoring is the most common type of 

censoring and the easiest to compute in the analysis process. It occurs when an 

individual has been followed from a particular time up to a given time, but they have 

entirely participated in the study. The right censoring may occur when an individual 

decides not to participate in the research study before completing the event of interest. 

There are two types of right censoring; fixed type one and type two censoring.  

 

The fixed type one occurs when the research is tailored to be completed after a 

specific time. However, the individuals who may fail to be observed during the fixed 

time are censored at the fixed time. In type II censoring, the research ends when there 

is a predetermined. Notably, regardless of the type of censoring, it is caused by other 

things than failure. Left censoring is the other type that is central to the right censoring 

but involves missing data elements. The left censoring is considered when an individual 

undertakes an event before a specified time but occurs before the period of censoring 

(Zhang et al., 2018). The interval censoring is also possible when an individual partakes 

in an event between two durations, but the exact time is not recorded.   

 

A competing risk is an occurrence that hinders the observation of the event of 

interest or changes the chance of the event happening. In typical survival data, subjects 

are expected to experience an event over follow-up. For instance, in breast cancer, the 

event of interest will be death; any other event would be considered as competing event 

or risk. In real situations, subjects may experience more than one particular event type 

contrary to the survival data (Heckman &  Honoré (1989); Pintilie (2006); Austin & 

Fine (2017) and Austin et al. (2021)). Therefore, when multiple events occur when only 
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one event is expected, the events are termed as competing risks. In such situations, the 

competing events will contest each other to cause the desired event. However, the 

occurrence of one event will inhibit the occurrence of the selected event.   

 

Fine and Gray (1999) emphasize the need to model cause-specific functions 

using similar hazard assumptions as the criterion for applying the explanatory 

characteristics in the competing risks data. However, while studying a particular failure 

type, there is no direct link between cause-specific functions and the specific survival 

probability. It is worth notable that there is a significant rise in the application of the 

marginal failure possibilities for specific events and the cumulative incident function in 

working the competing risk models in survival analysis (Fine & Gray 1999). The 

application of the marginal failure probability and the cumulative incidents, not 

function, is effective owing to the ease of application and the fact that nearly everyone 

can easily understand them. Further, the cumulative incident function is preferred since 

it is cost-effective as the survival probabilities can be applied to determine the most 

effective way to promote the chances of survival. Fine and Gray (1999) cite a significant 

challenge often not addressed in the various models that seek to work out the survival 

analysis. They cite that the various analysis does not allow the researchers to directly 

analyze the effects of the characteristics on the marginal probability function. The 

model thus proposes weighting techniques and the partial probability likelihood in 

assessing the semi-parametric proportional hazard functions. The model also gives a 

similar and consistent method of assessing and predicting the cumulative incident for a 

specific event of interest. This method thus introduces not only new concepts and 

techniques in analysis but also uses such techniques to correct the weaknesses of other 

methods previously used in competing for risk analysis. 



  

11 

 

Scheike and Zhang (2008) proposed what they termed as a more straightforward 

method of assessing and analyzing the effects of the characteristics in the cumulative 

incident curve in working out competing risks. This approach introduces a simplified 

estimator that can be fed in standard programmed software to assess the effects of the 

covariates automatically. This model considers both the effects that vary with time and 

constant effects throughout the research period (Scheike & Zhang (2008) and Chenxi 

(2016)). Compared to the sub-distribution approach, the method proves that it can 

provide finite characteristics as proven in the simulation trials of the system, making it 

appear better than other methods. This method further analyses the survival chances by 

introducing a complete remission against the competing risks, though with more 

concentration on the event of interest. The method involves modeling all the cause-

specific hazards and estimating the cumulative incident curve based on cause-specific 

hazards as modeled. It also applies the FG model and the direct links between the 

covariates and the cumulative incident curve. This model appears more proficient as it 

considers the none proportional hazards, which other competing risk models often 

ignore. This test is also accurate compared to other methods as it indicates the exact 

position of none proportionality in the cumulative incident curve. This method, as 

presented by Scheike and Zhang (2008), improves the FG model as it introduces the 

application of flexible regression models in analyzing competing risks while 

considering the none proportional covariates. 

 

Jeong and Fine (2007) and Shayan et al. (2011) formulate a parametric 

regression analysis around CIF’s about the competing risk models in survival analysis. 

The distribution of the events of interest or the events under study uses the Gompers 

distribution or the improper baseline sub-distribution. This method is concerned with 
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analyzing the maximum probability of each competing risk to determine the chances of 

occurrence of the event of interest (Jeong et al. (2006) and Jeong & Fine (2007)). This 

method considers the cause-specific characteristics and the likelihood of the 

occurrences of events as linked to the chances of the desired event. While estimating 

the long-term probability of cases with cause-specific events, the approach takes a 

straightforward presentation in the parametric setting. For instance, when analyzing the 

deaths of patients with hypertension in the hospital, the parametric regression method 

produces empirical results. This method analyses the probability of the various possible 

events around the fate of hypertension patients in the hospital, including the desired 

event. The model considers the maximum likelihood of recovery of such patients based 

on the cause-specific scenarios around recovery as a possible event. The projective 

regression model, as proposed by Jeong and Fine (2007), also considers the maximum 

probability of the death of the patients. It then applies the cumulative incident function 

of these outcomes and uses such data to project the maximum likelihood of the desired 

event. 

 

Generally, regression models in competing risks effects are founded on 

balanced hazards models and simple hazard proportions. Such measures hardly 

conform with notions extracted from diagrams indicating total incidence functions in 

every level of the risk factors. Klein and Anderson (2005) thus illustrate a method that 

models the CIF’s directly as drawn from the empirical analysis of previous cases (Klein 

& Andersen 2005). The technique is founded on the derived values as drawn from a 

jackknife statistic designed from the cumulative incidence curve. The pseudo values 

used in this technique are utilized in a general approximation equation that is burger 

used in obtaining estimations of model parameters in competing risk models. Klein and 
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Anderson (2005) thus examine the characteristics of the estimator and correlate the 

method in analyzing the effects of alternative events that may arise besides the 

likelihood of the occurrence of the event of interest. 

 

The distribution of the events of interest or the events under study uses the 

Gompers distribution or the improper baseline sub-distribution. The technique is 

founded on the derived values as drawn from a jackknife statistic designed from the 

cumulative incidence curve. This method considers the cause-specific characteristics 

and the likelihood of the occurrences of events as linked to the chances of the 

occurrence of the desired event (Fine, 2001). For instance, in a random examination of 

the drug when treating an infection, patients can experience worse conditions or die 

from competing events. The analysis aims at describing the effect of the drug on the 

likelihood of recurrence or death from other causes, all of which are competing events. 

A semiparametric transformation model for the crude failure likelihoods of a competing 

risk, conditional on covariates, is thus more applicable in this case. The criterion is 

formulated to expand the standard method to survival data with dominant right 

censoring in survival analysis. This method achieves the approximation of the 

regression coefficients using a rank-based least-squares criterion. The conducted 

simulations indicate that the method functions satisfactorily with practical sample sizes 

and not extensive imaginary data. 

 

Masked data Bayesian analysis in competing risk brackets is researched to 

examine the effect of covariates upon functions (hazard) where the time is precisely 

empirical for part of the subjects but not exactly identified to occur for the other objects 

(Yousif et al., 2020). These data are called partially interval-censored data and are 
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commonly a product of periodic assessment and inspection. Gamma and Dirichlet 

methods are deduced as initials for masking baseline hazards and probabilities. The 

distribution of the events of interest or the events under study applies the Gompers 

distribution or the improper baseline sub-distribution. The model also gives a similar 

and consistent method of assessing and predicting the cumulative incident for a specific 

event of interest. The application of the marginal failure probability and the cumulative 

incidents, not function, is effective owing to the ease of application and the fact that 

nearly everyone can easily understand them. 

 

The random variate is the period to events like death, a recurring illness, or an 

aloof metastasis. Examples of interval-censored data occur in clinical studies that 

comprise recurrent investigation. In this case, a person set for pre-planned observations 

for a medically observable variation in illness or well-being status may miss some 

changes and come back in a different state (Anderson, 2017). Another instance arises 

in the AIDS cases where AIDS is determined based on blood testing done periodically 

and not constantly. Interval censoring data usually represents a random variable lying 

within an interval instead of being observed precisely. 

 

Competing risks models estimate the marginal likelihood of an event in the 

presence of competing occurrences. Regression models for interval-censored data are 

associated with fundamental parametric regression models (Suhaini et al 2020). The 

standard maximum probability methods and the approximate coverage at the rate of nth 

root make inferences. First, the Fine- Gray subdistribution risk model is commonly used 

to approximate result occurrence over time in the event of competing hazards 

(Anderson, 2020). The method is preferred since it instantly relates covariates to the 
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accumulative incidence function (CIF). Parametric models include statistical programs 

but, each distributional imposes rigorous assumptions on the hazard function shape. An 

example is the Poisson log-linear model, where the hazard is presumed constant in some 

interval sets of the follow-up time. 

 

Midpoint imputation applies when the periods between successive visits are 

short. If the width of the interval widens, there are issues. A midpoint restores each 

finite value, and analysis is done, if the mid-points are precise observations. (Suhaini et 

al 2020). However, the midpoint imputation leads to biased approximations especially, 

when the perceived intervals are too long. 

 

Other imputation methods are multiple and combined imputation methods; 

multiple methods transform interval to right-censored data for typical methods. They 

clarify complicated scenarios and include; the uniform and weighted weight methods. 

In line with Suhaini et al (2020), the uniform weight method presumes that the actual 

failure time of a subject is equally distributed (Sj, Li<Ri, for j=1,…, m). The study 

worked out a pseudo-hazard and collapsing risk relying on equal weights. MI methods 

obtain test statistic and their variance grid like the attribution of an actual collapse under 

a similar presumption (Suhaini et al 2020). The study explained the weighted weight 

based on NPMLE from the initial data made by Turnbull’s technique and utilized the 

NPMLE as ascription weights.  

 

The combined model begins with imputing a specific time interval and uses the 

subdistribution hazards model to approximate the parameter and the measured survival 

function. The model conducts a repetition protocol between parameter approximation, 
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imputation, and the measured survival function (Suhaini et al 2020). Multiple imputed 

variates account for ambiguity within the period intervals. In addition, different survival 

models are befitted in sequence to impute the period for corresponding changes based 

on similar initial status. The multiple imputed methods are not actual MI methods since 

they don't use a Bayesian structure and no prior dispersal specification for the parameter 

(Suhaini et al 2020). Multiple imputed variates were used to account for ambiguity 

within period intervals but may not hold the same features as the MI method. Therefore, 

multiple imputation methods fill missing data to make a complete matrix. 
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CHAPTER THREE METHODOLOGY 

 

CHAPTER OVERVIEW 

This chapter will present the computation of FG competing risk model and MLE 

will be obtained under right-censored data. Furthermore, the proposed similar model 

under interval-censored data via imputation methods will be introduced. Derivation of 

the point estimate for the survival function for both models will be discussed. 

 

3.1 COX PROPORTIONAL HAZARD (CPH) MODEL 

The distribution of survival times is the focus of survival analysis. Although 

there are well-known methods for estimating unconditional survival distributions, the 

most interesting survival modeling investigates the relationship between survival and 

one or more predictors, referred to as covariates in the literature on survival analysis. 

The Cox proportional-hazards regression model (introduced by Cox, 1972), a widely 

applicable and widely used method of survival analysis, is the subject of this appendix 

(Fox,2008). 

 

One of the commonly used survival/mathematical model for assessing the risk 

factors effect (exploratory variable) on the failure time through the hazard function is 

CPH and it was used extensively since it was introduced by (Cox, 1972). Let 𝑇 denote 

the time until the unit experiences failure, and let 𝑍 denote the observed vector of 

covariates. Then, under the CPH model the function of hazard is given as; 

                                  𝜆(𝑡|𝑋) = 𝜆0(𝑡) 𝑒𝑥𝑝 (𝛽′𝑍)                                                          (3.1) 

The model's survival function is given by 

𝑆(𝑡|𝑍) = 𝑒𝑥𝑝(− 𝑒𝑥𝑝(𝛽′𝑍 ) 𝛬0(𝑡)) =  𝑆0(𝑡)𝑒𝑥𝑝 (𝛽′𝑍 ) 
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and the corresponding distribution function has the form 

𝐹(𝑡|𝑍) = 1 − 𝑒𝑥𝑝 (−𝛬0(𝑡)𝑒𝑥𝑝 (𝑍′𝛽)). 

Here 𝜆0(𝑡) is the baseline hazard, 𝛽   is the vector of regression parameters, 𝑍 is the 

vector of covariates of an individual, 𝛬0(𝑡) = ∫ 𝜆0(𝑠)𝑑𝑠
𝑡

0
  is cumulative baseline 

hazard and 𝑆0(𝑡) = 𝑒𝑥𝑝 (−𝛬0(𝑡)) is the baseline survival function. 

 

3.1.1 CPH MODEL FOR THE SUBDISTRIBUTION 

CPH for the subdistribution was presented by Find-Gray (1999). This model is 

built on the log (-log (1-u)) transformation model that is generally used with univariate 

survival data. Further, this model was estimated using the subdistribution of the hazard 

that is originally introduced by Gray (1988) and given as;  

               𝜆𝑗
∗(𝑡, 𝑍) = 𝑙𝑖𝑚

𝑑𝑡→0

1

𝑑𝑡
𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝑑𝑡, 𝐶 = 𝑗|𝑇 ≥ 𝑡 ∪ (𝑇 ≤ 𝑡 ∩ 𝐶 ≠ 𝑗), 𝑍) 

                                      =
𝑑𝐹𝑗(𝑡, 𝑍)/ 𝑑𝑡

1 − 𝐹𝑗(𝑡, 𝑍)
  

=
−𝑑 𝑙𝑜𝑔(1 − 𝐹𝑗(𝑡, 𝑍))

𝑑𝑡
,                                            

Where; 𝑗 is the interest cause of failure and  𝜆𝑗
∗ is the hazard function for the improper 

random variable  𝑇∗ = 𝐼(𝐶 = 𝑗) × 𝑇 + (1 − 𝐼(𝐶 = 𝑗)) × ∞. The implied failure time 

 𝑇∗ has a distribution function equal to 𝐹𝑗(𝑡, 𝑍).  Obviously, the risk set connected to 

the hazard   𝜆𝑗
∗ is unusual, that is, the units which have failed due to cause other than 

the cause of interest remain in the risk set indefinitely as long as they have not 

experienced the event of interest.  Under a PHs specification, the hazard of 

subdistribution is given as;  
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                                               𝜆𝑗
∗(𝑡, 𝑍) =  𝜆0𝑗

∗ (𝑡)𝑒𝛽𝑗
′𝑍,                                    (3.2) 

where:  𝜆0𝑗 
∗  is an unspecified and nonnegative function, and the corresponding CIF is  

                  𝐹𝑗(𝑡, 𝑍) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑗|𝑋) = 1 − 𝑒−𝛬0𝑗
∗ (𝑡)𝑒

𝛽𝑗
′𝑍

 ,                  (3.3) 

where: 𝛬0𝑗
∗ = ∫  𝜆0𝑗

∗ (𝑠)𝑑𝑠
𝑡

0
. 

The full likelihood associated with observed censored data is given by Kalbfleisch & 

Prentice (1980) as; 

   𝐿 = ∏ ∑ 𝑃(𝑆𝑖|𝑇𝑖, 𝐶𝑖 = 𝑗, 𝑍𝑖)𝑓𝑗(𝑇𝑖|𝑍𝑖)
𝑗∈𝑆𝑖

𝑛1

𝑖=1

∏ 𝑆(𝑇𝑖|𝑍𝑖)

𝑛2

𝑖=𝑛1+1

,             (3.4) 

where respectively 𝑛1 and 𝑛2 represent the number of failed and censored as the type 

right units. As the relationship between the subdistribution hazard  𝜆𝑗
∗(𝑡) and the 

subdensity  𝑓𝑗(𝑡) and the CIF has the form  

                                                     𝜆𝑗
∗(𝑡) =

 𝑓𝑗(𝑡)

1 − 𝐹𝑗(𝑡)
 ,                                     (3.5) 

and the relationship between the subsurvival function  𝑆𝑗(𝑡)  and the CIF  𝐹𝑗(𝑡)  has the 

form 

                         𝐹𝑗(𝑡) +  𝑆𝑗(𝑡) = 𝑃(𝐶 = 𝑗),   ∑ 𝑃(𝐶 = 𝑗)
𝐾

𝑗=1
= 1.            (3.6) 

Then (3.4) can be rewritten as 

𝐿 = ∏ ∑ 𝑃(𝑆𝑖|𝑇𝑖 , 𝐶𝑖 = 𝑗, 𝑍𝑖) 𝜆𝑗
∗(𝑇𝑖|𝑍𝑖)(1 − 𝐹𝑗(𝑇𝑖|𝑍𝑖))

𝑗∈𝑆𝑖

𝑛1

𝑖=1

 

                                        × ∏ [1 − ∑ 𝐹𝑗(𝑇𝑖|𝑍𝑖)
𝐾

𝑗=1

𝑛2

𝑖=𝑛1+1

].                              (3.7) 
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Further, substituting (3.2) and (3.3) in (3.7) then the likelihood for the right-censored 

will be as;  

𝐿 = ∏ ∑ 𝑃(𝑆𝑖|𝑇𝑖, 𝐶𝑖 = 𝑗, 𝑍𝑖)
𝑗∈𝑆𝑖

𝑛1

𝑖=1

 𝜆0𝑗
∗ (𝑡)𝑒𝛽𝑗

′𝑍𝑒−𝛬0𝑗
∗ (𝑡)𝑒

𝛽𝑗
′𝑍

 

                           × ∏ [1 − ∑ (1 − 𝑒−𝛬0𝑗
∗ (𝑡)𝑒

𝛽𝑗
′ 𝑍

)
𝐾

𝑗=1

𝑛2

𝑖=𝑛1+1

].                         (3.8) 

Now to derive a likelihood for Interval-Censored (IC) data we need to extend 

the RC data likelihood to accommodate the interval-censored observations. Using the 

relationships mentioned previously the likelihood can be defined as  

  

 

 

 

 

 

                                                                

The likelihood for interval-censored will takes the form of equation (4.0) after 

substituting (3.1) and (3.2) into (3.9) as; 

L = ∏ ∑ P(Si|Ti, Ci = j, Zi) λ0j
∗ (Ti)eβj

′
Zie−Λ0j

∗ (Ti)e
βj
′

Zi

j∈Si

n1

i=1

                               

× ∏ [ 1 − ∑ (1 − e−Λ0j
∗ (𝑇𝑖)e

βj
′

Zi

)
𝐾

𝑗=1
 ]                  

n2

i=n1+1

 

× ∏ [1 − ∑ 𝐹𝑗(𝑇𝑖|𝑍𝑖)
𝐾

𝑗=1
]

𝑛2

𝑖=𝑛1+1

 

× ∏ ∑ 𝑃(𝑆𝑖|𝑇𝑖, 𝐶𝑖 = 𝑗, 𝑍𝑖) 
𝑗∈𝑆𝑖

[𝐹𝑗(𝑅𝑖|𝑍𝑖)

𝑛3

𝑖=𝑛2+1

− 𝐹𝑗(𝐿𝑖|𝑍𝑖)] (3.9) 

𝐿   = ∏ ∑ 𝑃(𝑆𝑖|𝑇𝑖 , 𝐶𝑖 = 𝑗, 𝑍𝑖) 𝜆𝑗
∗(𝑇𝑖|𝑍𝑖)(1 − 𝐹𝑗(𝑇𝑖|𝑍𝑖)                          

𝑗∈𝑆𝑖

𝑛1

𝑖=1
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  × ∏ ∑ P(Si|Ti, Ci = j, Zi)

𝑗∈𝑆𝑖

[e−Λ0j
∗ (Li)e

βj
′

Zi

− e−Λ0j
∗ (Ri)e

βj
′

Zi

]

n3

i=n2+1

.    (4.0) 

 

Further, we will take the log of the likelihood function of equations (3.8) and (4.0) that 

depends on the unknown parameters β, the values of Z  being known. In large sample, 

the distribution of β can be approximated by a normal distribution with the score vector, 

estimated by maximizing the likelihood from the first derivative, and a variance-

covariance matrix, estimated from the second derivative of the likelihood function. 

The regression coefficients β are estimated by the values β̂, which maximize the 

logarithm of the full likelihood. The values β̂ = (β̂1, … , β̂𝑛) are obtained by equating 

to zero the 𝑛 first derivatives of log likelihood function of equations (3.8) and (4.0)   

with respect to β. An iterative process such as the EM algorithm or Newton-Raphson 

are adopted to solve this system of equations for β. 
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CHAPTER FOUR SIMULATION STUDY AND REAL DATA 

ANALYSIS 

 
CHAPTER OVERVIEW  

This chapter focuses on the analysis of the failure time data in competing risks model 

via a cumulative incidence framework. The modified Fine & Gray model with interval-

censored (IC) data will be compared with right-censored model when there is more than 

one cause of failure that at least one is known. Furthermore, the results obtained from 

simulated data and secondary data are compared to these models that is based on the 

right-censored (RC) data with fully observed causes of failure, as proposed by  Fine 

and Gray (1999) to our FG model with IC. All calculations were computed using R 

software. 

 

4.1 SIMULATION STUDY 

Under competing risks framework via the CIF, simulation data was generated 

based on the CIF through Cox model with subdistribution hazard function. Following 

Fine and Gray (1999) and Yosra (2017) we generate the failure times. If we have two 

events, 1 & 2, as suggested by FG the CIF to follow the model 

                  𝑃(𝑇 ≤ 𝑡, 𝐶 = 1|𝑍) = 1 − (1 − 𝑝(1 − 𝑒−𝑡))
𝑒𝜃1

′ 𝑧

 ,             (4.1) 

where p ∈ (0,1) and 𝑃(𝐶 = 1|𝑍) = 1 − (1 − 𝑝)𝑒𝜃1
′ 𝑧

 is the probability of experiencing 

the event of interest 1, given the vector of covariates 𝑍. The distribution function (4.1) 

results from a proportional subdistribution hazards model (4.1) with baseline hazard 

𝜆01
∗ (𝑡) =

𝑝𝑒−𝑡

1 − 𝑝(1 − 𝑒−𝑡)
                       (4.2) 
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The competing CIF was assumed to be; 

 𝑃(𝑇 ≤ 𝑡, 𝐶 = 2|𝑍) = 𝑃(𝐶 = 2|𝑋)𝑃(𝑇 ≤ 𝑡|𝐶 = 2, 𝑍) 

                               = (1 − 𝑝)𝑒𝜃1
′ 𝑧

(1 − 𝑒−𝑡𝑒𝜃1
′ 𝑧

) ,                          (4.3) 

where:  𝑃(𝑇 ≤ 𝑡, 𝐶 = 2|𝑍)  is an exponential distribution with hazard function   eθ1
′ z . 

This simulation is designed so that the unit’s event type can be determined first 

with 𝑃(𝐶 = 1| 𝑍), then the corresponding failure time 𝑇 is generated conditional on 𝐶 

with distribution 

𝑃(𝑇 ≤ 𝑡| 𝐶 = 𝑗, 𝑍) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑗|𝑍)/𝑃(𝐶 = 𝑗|𝑍),        𝑗 = 1,2.         (4.4) 

 

Following Yosra (2017), in our simulation study, we assumed the number 0.5 

or -0.5 as values of one covariate Z, whereas for sample size of 26, 50 and 100 

respectively the true parameters of (p, 𝜃1, 𝜃2) represented as (0.7, -2.387, 3.183), (0.7, 

-1.85, 2.23) and (0.7, -1.00, 2.34). From uniform distribution U[1,7] we generated the 

censored times. Variety of interval-censoring rates are generated based on different 

samples with different sizes. The assumed models result in units that fail due to cause1 

and cause 2 with different interval width as 0.2, 0.3, and 2. After generating the interval 

censored data, the inspection times based on imputation methods such as midpoint will 

be used to turn the data into right-censored data with ranging between 51% and 55%, 

for cause 1 and ranging between 45% and 49% for cause 2. 

We will estimate the unknown parameters using the initial value of zero for the 

regression coefficients with their standard error and p-value of estimations based on our 

model (IC) and right censored (RC) model that are applied to simulated data sets.  
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The estimations of regression coefficients, bias and mean square error (MSE) 

of estimation for right and interval-censored data for three data sets with different 

sample sizes across three interval-censoring levels are summarize in Table 4.1. It is 

clear from this Table that the interval-censoring rate has a significant impact on model 

performance. Further, it can be seen from Table 4.1 that the parameters estimate exhibit 

some evidence of error (i.e., the MSE values), however, this is not significant as the 

MSE is more than 5% of the sample standard error. This suggests that the estimates of 

all regression parameters from both IC and RC models are accurate. Moreover, Figures 

4.1 to 4.8 showed that the comparisons of the estimated CIF’s between the IC model 

and RC model through three different data sets for both causes of failure. The varieties 

in the data sets levels basically aim to investigate how sensitive are the proposed models 

to interval-censored as mentioned previously in Section 3.  Then, from the figures it 

can be inferred that interval-censored and right-censored has a slight impact on CIF 

curves that correspond to IC and RC models as the distance between them when the 

different level of interval censored changes. Nevertheless, the CIF curves show a 

substantial consistency with Fine & Gray CIF curves except for IC model which show 

an indication of little change in its pattern in the early time period. This change is 

attributed to the difference of the points of time. In contrast, Figures 4.4 and 4.8 

compare the estimated CIF of IC and RC models with three interval-censoring rates. 

Obviously, the performance of the modified model is not affected by the width of the 

interval censoring (0.2, 0.3, and 2) as the CIF curves for the three different interval-

censoring levels are nearly equal. However, the estimated CIF based on IC are 

compared with RC as showed in the Figures 4.1 to 4.8 and Table 4.1 mentioned above. 

We find that the fit is reasonable in both cause of failures, although it is not perfect for 

some case for cause 2.  In additional to that it was observe that when the sample size 
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increase the MSE will decrease suggestion that the models fitting better with large 

sample.  

 

4.2 DATA SET AND APPLICATION 

This section discusses the application of the proposed models to the data set 

based on a retrospective data on the Middle East respiratory syndrome corona virus 

(MERS or MERS-CoV) outbreak in the Kingdom of Saudi Arabia (KSA) between 2012 

and 2016. The data set was the case-by-case data list compiled and regularly maintained 

by Rambaut (2013) from different sources that including World Health Organization 

(WHO) bulletins, Ministry of Health of the KSA and media reports. We consider age, 

gender, patient type (patient is a Healthcare worker (HCW) or non HCW), patient 

comorbidity status and patient of exposure to known risk factors (animal contact and 

camel contact indirectly or directly) as the variables in this study. 

The information on the event time, i.e., a patients time of infection until 

occurrence of MRES infection, end of MRES or death, whatever occurs first, and on 

the event type.  

 

The dataset contains 1361 patients with MERS with age between 25 to 74 years. 

Of those, 901 are males, 460 are females, the number of patients with comorbidity about 

1090, 629 of the patients exposure to camel, 1086 of the patients infection through the 

HCW and about 750 cases whose contact infection are unknown, for more details about 

the data reader refer to; Rambaut (2013); Oyelola et.al (2017); Oyelola and Elfaki 

(2018); Oyelola et al (2019. The patients are effected by MRES due to contact with 

HCW, comorbidity and exposure to camel in this situation we have competing risks in 

survival analysis. Therefore, we consider the event of interest that a person confirmed 
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with MRES disease due to one of these causes; through HCW, comorbidity or exposure 

to camel or other causes.  

 The estimations of regression coefficients from both model with their standard 

error and P-value of estimation for MERS data set with two different covariates that 

gender and age are summarize in Table 4.2. It is clear from the summaries that the 

interval-censoring width has a significant impact on model performance. Further, it can 

be seen from table 4.2 that the parameters estimate with their SE and P-value obtained 

from gender are more significant compare with one from age suggesting that older 

people are easily affected with MERS diseases through HCW and comorbidity. In 

additional to that, these results suggests that, the estimates of all regression parameters 

from both IC and RC models are almost similar. Since the test gives p-values below 

0.001 for both covariates, respectively, suggesting that the both models fit well for the 

CIF for the three causes of failure.  

The CIF curve is a proper summary curve, showing the CIF failure rates over 

time due to a particular cause. Figures 4.9 to 4.20 compare the cumulative incidence 

functions of the three causes of failures that infection based on the HCW, comorbidity 

and exposure to MERS from two models based on two covariates. The figures confirm 

the results in Tables 4.2 as the estimated CIFs indicate no evidence of effect by infection 

of MERS in cause 2, which is a little greater than the other causes across the three 

causes of failures. The infection the disease due to HCW, comorbidities and exposure 

to MERS are significant with respect to P-value for both causes. Obviously, the HCW 

and comorbidities for gender are more prone to infection since in the hospital the HCW 

acquired infection among patients and from patients to HCW. These results indicate 

that the performance of our model is reasonable for interval-censored compare with RC 

model.  
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4.3 CONCLUDING REMARKS 

Fine & Gray models that is; the RC model and the modified with IC are used 

under the hazard of subdistribution framework to evaluate the impact of covariates on 

CIF in this chapter. The first model deals with right-censored data, whereas the second 

deals with interval-censored data. Both models are easy to implement and their results 

are comparable.   

 

Table 4.1. Result from Simulated Data for Regression Coefficients of RC and IC 

Models. 

 

No of 

Sample 

Size 

 

Model 

Cause 1 

 𝜃               Bias (𝜃)    MSE (𝜃) 

  Cause 2 

𝜃               Bias (𝜃)    MSE (𝜃) 

50 RC 

IC 

-1.853         -7.50e-10           0.154 

-1.743         -4.54e-09            0.277 

2.429           5.32e-08            0.123 

2.277           1.16e-10           0.216 

100 RC 

IC 

-1.005         -4.21e-09            0.124 

-0.9692        -3.93e-08           0.275 

2.347            1.89e-11           0.095 

2.055            1.13e-08           0.049 

26 

 

RC 

IC 

-2.387            -2.79e-08            0.281 

-2.523            -3.012e-08            0.364 

3.183             3.95e-07         0.501 

2.777             8.52e-11          0.664 
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Figure 4.1: Estimation of the CIFs obtained by IC and RC models for cause 1 with  

  sample size 100. 

 

 

Figure 4.2: Estimation of the CIFs obtained by IC and RC models for cause 1 with  

  sample size 50. 
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Figure 4.3: Estimation of the CIFs obtained by IC and RC models for cause 1 with  

  sample size 26. 

 

 

Figure 4.4: Estimation of the CIFs obtained by IC and RC models based on different 

width of interval-censored for Cause 1 with sample size 50. 
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Figure 4.5: Estimation of the CIFs obtained by IC and RC models for cause 2 with 

sample size 100. 

 

 

Figure 4.6: Estimation of the CIFs obtained by IC and RC models for cause 2 with 

sample size 50. 
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Figure 4.7: Estimation of the CIFs obtained by IC and RC models for cause 2 with 

sample size 26. 

 

 

Figure 4.8: Estimation of the CIF obtained by IC and RC models based on different 

width of interval-censored for Cause 2 with sample size 50. 
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Table 4.2. Result from MERS Data for Regression Coefficients of IC and RC 

Models. 

 

Causes of Failure Method Covariate Parameter 

Estimate 

Standard 

Error 

P-value 

Cause 1 

HCW RC Gender -0.6214 0.09233 1.7e-11 

IC      -0.5820 0.09209 2.6e-10 

RC Age -0.8508 0.09400 0.001 

IC -0.8229 0.09388 0.001 

Comorbidities RC Gender 0.2506 0.06070 3.6e-05 

IC 0.2694 0.05879 4.6e-06 

RC Age 1.151 0.06081 0.001 

IC 1.127 0.05901 0.001 

MERS Exposure RC Gender -0.5966 0.06022 0.001 

IC -0.5358 0.05685 0.001 

RC Age -0.4515 0.05971 4e-14 

IC -0.4229 0.05689 1.1e-13 

Cause 2 

Other than HCW RC Gender 0.4734 0.07015 1.5e-11 

IC 0.4654 0.06801 7.7e-12 

RC Age 0.6256 0.06390 0.001 

IC 0.6031 0.06184 0.001 

Other than 

Comorbidities 

RC Gender -0.2573 0.09460 0.00650 

IC -0.2499 0.09328 0.0074 

RC Age -1.5940 0.11000 0.001 

IC -1.5750 0.1087 0.001 
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Causes of Failure Method Covariate Parameter 

Estimate 

Standard 

Error 

P-value 

Other than 

MERS Exposure 

RC Gender 0.9513 0.1032 0.001 

IC 0.9440 0.1025 0.001 

RC Age 0.6108 0.08227 1.1e-13 

IC 0.6032 0.08142 1.3e-13 

 

 

Figure 4.9: Estimation of the CIFs obtained by IC and RC models based on HCW-

Gender for cause 1. 
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Figure 4.10: Estimation of the CIF obtained by IC and RC models based on HCW-

Gender for Cause 2. 

 

Figure 4.11: Estimation of the CIF’s obtained by IC and RC models based on 

Comorbidities -Gender for Cause 1. 
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Figure 4.12: Estimation of the CIF’s obtained by IC and RC models based on 

Comorbidities -Gender for Cause 2. 

 

 

Figure 4.13: Estimation of the CIF’s obtained by IC and RC models based on MERS 

Exposure -Gender for Cause 1. 
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Figure 4.14: Estimation of the CIF’s obtained by IC and RC models based on MERS 

Exposure -Gender for Cause 2. 

 

 

Figure 4.15: Estimation of the CIF’s obtained by IC and RC models based on HCW-

Age for Cause 1. 
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Figure 4.16: Estimation of the CIF’s obtained by IC and RC models based on HCW-

Age for Cause 2. 

 

Figure 4.17: Estimation of the CIF’s obtained by IC and RC models based on 

Comorbidities- Age for Cause 1. 
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Figure 4.18: Estimation of the CIF’s obtained by IC and RC models based on 

Comorbidities- Age for Cause 2. 

 

Figure 4.19: Estimation of the CIF’s obtained by IC and RC models based on MERS 

Exposure - Age for Cause 1. 
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Figure 4.20: Estimation of the CIF’s obtained by IC and RC models based on MERS 

Exposure - Age for Cause 2. 
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CHAPTER FIVE CONCLUSION AND SUGGESTIONS FOR FUTURE 

RESEARCH 

 

CHAPTER OVERVIEW 

Conclusion that discusses the results of the previous chapters and some 

suggestions for further research will be parented in this chapter.  

 
5.1 CONCLUSION 

Competing risks data with two causes of failure is studied in this thesis. Further, 

the failure times are observed exactly between an interval of time under study, instead, 

they are only known to be included in an interval of time. This type of data is termed 

interval-censored data. The main goal of this study is to provide models that can be 

used to assess the effect of covariates on the cumulative incidence function. The Cox’s 

proportional hazard model and the subdistribution hazard model is used. The statistical 

literature has several methods developed to study the competing risks data with 

different censoring scenarios. However, less work for the interval-censored data has 

been done so far to our knowledge especially for the use of MERS data to competing 

risks model.  

 

In order to achieve our objectives, we start with modified the likelihood function 

for interval-censored data. The later function that include the observed data, needs to 

be constructed that to deal with interval-censored data based on competing risks 

framework.  

 

Since the major aims are to assess the effect of covariates on the CIF, therefore 

the Cox’s proportional hazards model for the subdistribution is adopted to evaluate the 
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effect of covariate on the CIF. Two cases are studied here, Fine & Gray model based 

on interval-censored (IC) data and right-censored (RC) data. Later the method of 

midpoint imputation will be used to impute the data to right censoring.  

 

To evaluate the proposed methodologies of this study, the simulation studies are 

conducted that is similar to the one proposed by Fine and Gray (1999). First, we 

simulate the competing risks data into interval censoring and then the method of 

midpoint is used to turn the simulated data into right censored data. The simulation 

results show that the our model in this study is applicable and performs well compared 

to the model with Fine & Gray model with right-censored data.    

 

In conclusion, to show that this work is a useful tool that can be employed to 

solve real life issues, the proposed methodologies are applied to real MERS data set as 

this study has interest in studying the risks factors that can affect medical experiments 

which relate to the lifetime data analysis.  However, this does not mean that the 

proposed models of this study cannot be applied to data sets from other study fields.  

The data set reported in Rambaut A. (2013) and others is modified to become interval-

censored data with three causes of failure then analyzed using methods proposed in this 

study. The obtained results from the two models, namely, the modified IC model and 

RC model based on CIF formulation, indicate that the CIF are not influenced by the 

covariates.   

 

5.2 SUGGESTIONS FOR FUTURE RESEARCH 

In this research, we used midpoint imputation method to deal with the interval 

censored data for the simulation study as well as for MERS data. It will be better to use 



  

42 

 

different imputation methods such; as EM algorithm or multiple imputation among 

others and made a comparison between them for better performance and inference. 

Also, one can develop a full parametric model which might be more suitable in some 

situations.   
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