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Goodness-of-fit testing based on Gini Index of spacings
for progressively Type-II censored data
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ABSTRACT
In this article, we propose two new scale invariant test statistics when the
available data are subject to progressively Type-II censoring. The proposed
tests are based on Gini index of spacings. It is observed thorough extensive
Monte Carlo simulations that the proposed tests are quite powerful in com-
pare to similar existing goodness-of-fit tests studied by Balakrishnan et al.
and Wang. We also illustrate the method proposed here using a real data
from reliability literature.
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1. Introduction

In parametric procedures, we assume a specific distribution for a given dataset, on the contrary
to the nonparametric methods that are distribution free and no particular probability model is
considered. The goodness-of-fit technique first introduced by Karl Pearson (1900) is a statistical
procedure for testing whether or not a probability distribution may be considered for modeling a
given set of data. Many authors have been considered this problem and presented several meth-
ods for complete and censored data. See, e.g., D’Agostino and Stephens (1986), Huber-Carol et al.
(2002) and Nikulin and Chimitova (2017) among others.

Censoring is a sampling method that allows the researcher to control the experimental time
and costs by censoring a proportion of the sample while using the information of all the experi-
mental units. Progressive Type-II censoring introduced first by Herd (1956) and Cohen (1963) is
very common in reliability and life testing methods. In this type of censoring, n units are placed
on a test according to the following plan. Remove R1 units when the first failure occurs. Remove
R2 units when the second failure occurs. Finally, remove Rm units when the mth failure occurs.
So, R1 þ R2 þ � � � þ Rm ¼ n�m units will be censored and m failure will be observed. The vector
R ¼ ðR1, :::,RmÞ is called the progressive censoring scheme which is fixed prior to the study. See
Balakrishnan and Aggrawala (2000), Balakrishnan (2007) and Balakrishnan and Cramer (2014)
for an excellent overview on progressive Type-II censoring and related developments.

Several authors have been considered the goodness-of-fit testing problem based on progres-
sively Type-II censored data. Pakyari and Balakrishnan (2012) presented a modification to the
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empirical distribution function (EDF)-based statistics. Balakrishnan, Habibi Rad, and Arghami
(2007), Rad, Yousefzadeh, and Balakrishnan (2011), Park and Pakyari (2015), Baratpour and
Habibi Rad (2016) and Noughabi (2017b) proposed statistics based on Kullback–Leibler informa-
tion. Balakrishnan et al. (2002), Balakrishnan, Ng, and Kannan (2004) and Pakyari and
Balakrishnan (2013) adopted spacings-based tests. Interested readers may also refer to
Balakrishnan and Lin (2003), Balakrishnan, Habibi Rad, and Arghami (2007), Wang (2008),
Kohansal and Rezakhah (2013) and Doring and Cramer (2019) among others.

There are some discussions in the literature that tests based on empirical distribution function
(EDF-based), such as Kolmogorov-Smirnov, Cram�er-von Mises and Anderson-Darling perform
well in determining differences between distribution functions, whilst tests based on spasings are
usuful for detecting the differences between densities (see e.g., Pyke 1965).

In this article, we present a test statistic based on Gini index of spacings. Gini index is a measure of dis-
persion based on the sum of pairwise distances between spacings. Several authors have employed Gini
index for the problem of goodness-of-fit in the case of complete samples. See e.g., Jammalamadaka and
Goria (2004), Noughabi, Arghami, and Mohtashami Borzadaran (2014), Noughabi (2017a). However, little
works have been done when the available data are subject to censoring.

The rest of this article is organized as follows. In Sec. 2, the proposed test statistics are studied.
The new tests are based on the weighted mean of the differences of overlapping spacings. The weights
are designed in such a way that earlier differences assign more weights than the later differences. The
power of these tests is studied by Monte Carlo simulations in Sec. 3. We will see that the new tests
exhibit more power in comparison to competing spacing-based methods for most cases. We have
considered the testing for the exponential and the normal models with different choice of alternative
distributions. Finally, in Sec. 4, we present a real dataset and explain the proposed method.

2. Proposed tests

Let X1:m:n,X2:m:n, :::,Xm:m:n be the progressively Type-II right censored sample with progressive
censoring scheme R ¼ ðR1,R2, :::,RmÞ from a distribution with CDF, F(x).

We are interested to test that the censored data come from a population with a specific distri-
bution function F0ðxÞ: That is, the null and alternative hypothesis are of the form:

H0 : FðxÞ ¼ F0ðxÞ, versus Ha : FðxÞ 6¼ F0ðxÞ
Without loss of generality, one may use the probability integral transformation to reduce the

above hypothesis to the hypothesis of uniformity by the transformation U ¼ FðXÞ: That is, the
problem reduces to testing the hypothesis of the form:

H0 : FðuÞ ¼ u , 0 < u < 1 versus Ha : FðuÞ 6¼ u , 0 < u < 1 (1)

The overlapping spacings are defined by

Si ¼ ciðUi:m:n � Ui�1:m:nÞ, for i ¼ 1, :::,m and U0:m:n ¼ 0, (2)

where

cj ¼
Xm
l¼j

ðRl þ 1Þ, 1 � j � m

Note that cj is the number of items under risk before the jth failure has occurred. The fSig
defined above is called one-step spacings and is the differences between consecutive observations.
If the null hypothesis (1) is in fact false, then the spacings in (2) gives values more irregular than
those from a uniform spacings. Hence, very small or very large values of (2) will indicate highly
irregular spacings and will tend to reject the null hypothesis of uniformity. Statistics of the form
(2) are of great interest in contexts like goodness-of-fit testing (see, e.g., Pyke 1965 and Kale 1969

2 R. PAKYARI



for a somewhat back dated but an excellent review). The idea of spacings can be generalized to
say h-step (or higher-order) spacings for 1 � k < m defined by

SðhÞi ¼ ci ðUiþh�1:m:n � Ui�1:m:nÞ, i ¼ 1, :::,m,U0:m:n ¼ 0:

Note that SðhÞi are the spacings between h observations (see, e.g., Hartley and
Pfaffenberger 1972).

Jammalamadaka and Goria (2004) introduced the Gini index of spacings for complete data
defined by

P
i

P
j jSi � Sjj: This measure of dispersion provides sum of pairwise distances

between the spacings. In this paper, we introduce the Gini mean difference of spacings for pro-
gressively Type-II censored data and propose two test statistics based on that, say

Gk ¼
Xm
i¼1

Xm
j¼1

1�i<j�m

WðkÞ
l jSi � Sjj, for k ¼ 1, 2 and l ¼ 1, 2, :::, q, (3)

where q ¼ mðm�1Þ
2 is the number of double sigma terms and Wð1Þ

l and Wð2Þ
l , are decreasing

weights defined respectively by:

Wð1Þ
l ¼ 2ðqþ 1� lÞ

qðqþ 1Þ , l ¼ 1, 2, :::, q,

and

Wð2Þ
l ¼ 6ðqþ 1� lÞ2

qðqþ 1Þð2qþ 1Þ , l ¼ 1, 2, :::, q:

Note that
Pq

l¼1 W
ðkÞ
l ¼ 1 for k¼ 1, 2. The two weights Wð1Þ

l and Wð2Þ
l are defined to be decreas-

ing so that more weights are assigned to adjacent spacings. Also, Wð1Þ
l employ linear weights whilst

Wð2Þ
l assigns quadratic weights. The exact distribution of G1 and G2 is not specified and in Sec. 3 we

will use Monte Carlo simulations to find the emprical critical points. We will show that these tests
exhibit more power in compare to existing tests based on spacings. The test statistics G1 and G2 are
clearly location-scale invariant, with large and small values tend to rejection the null hypothesis.

Note that one may consider the generalized Gini mean difference of spacings defined by

GðrÞ
k ¼

Xm
i¼1

Xm
j¼1

1�i<j�m

WðkÞ
l jSi � Sjjr, for k ¼ 1, 2 and l ¼ 1, 2, :::, q :

We have not considered this statistic here, however the special case of r¼ 2 corresponds to the
Greenwood statistic (Greenwood 1946).

3. Simulation study

In this section, we will study the power of the proposed test statistics G1 and G2 thorough extensive
Monte Carlo simulations using statistical software R. We generated 100, 000 random samples for dif-
ferent combinations of sample size n, number of failures m and censoring schemes R. The tests are
evaluated at the 5% and 10% significance levels. We used the 27 censoring schemes employed by
Balakrishnan, Ng, and Kannan (2004) and these are listed in Table 1 for convenience.

We studied testing for the exponential and normal models as the null hypothesis. For the
exponential model we considered the log-normal (LN) and F distributions as alternatives.
Specifically, the following alternatives were used:

1. The log-normal distribution with scale parameter 1.0 and shape parameters 0.5 and 1.0,
denoted, respectively, by LNð0, 0:5Þ and LN(0, 1) with the following pdf:
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f ðxÞ ¼ 1ffiffiffiffiffi
2p

p
rx

exp � ð log x� lÞ2
2r2

, x > 0

where l and r are the mean and standard deviation of the logarithm. Both alternative models
have skewed to the right density functions; however, the LNð0, 0:5Þ model is almost symmetric
and will be easily distinguishable from the exponential distribution.

Table 1. Progressive censoring schemes used in the Monte Carlo simulations.

Scheme no. n m R ¼ ðR1, R2, :::, RmÞ
[1] 20 8 R1 ¼ 12, Ri ¼ 0, for i 6¼ 1
[2] 20 8 R8 ¼ 12, Ri ¼ 0, for i 6¼ 8
[3] 20 8 R1 ¼ R8 ¼ 6, Ri ¼ 0, for i 6¼ 1, 8
[4] 20 12 R1 ¼ 8, Ri ¼ 0, for i 6¼ 1
[5] 20 12 R12 ¼ 8, Ri ¼ 0, for i 6¼ 12
[6] 20 12 R3 ¼ R5 ¼ R7 ¼ R9 ¼ 2, Ri ¼ 0, for i 6¼ 3, 5, 7, 9
[7] 20 16 R1 ¼ 4, Ri ¼ 0, for i 6¼ 1
[8] 20 16 R16 ¼ 4, Ri ¼ 0, for i 6¼ 16
[9] 20 16 R5 ¼ 4, Ri ¼ 0, for i 6¼ 5
[10] 40 10 R1 ¼ 30, Ri ¼ 0, for i 6¼ 1
[11] 40 10 R10 ¼ 30, Ri ¼ 0, for i 6¼ 10
[12] 40 10 R1 ¼ R5 ¼ R10 ¼ 10, Ri ¼ 0, for i 6¼ 1, 5, 10
[13] 40 20 R1 ¼ 20, Ri ¼ 0, for i 6¼ 1
[14] 40 20 R20 ¼ 20, Ri ¼ 0, for i 6¼ 20
[15] 40 20 Ri ¼ 1, for i ¼ 1, 2, :::, 20
[16] 40 30 R1 ¼ 10, Ri ¼ 0, for i 6¼ 1
[17] 40 30 R30 ¼ 10, Ri ¼ 0, for i 6¼ 30
[18] 40 30 R1 ¼ R30 ¼ 5, Ri ¼ 0, for i 6¼ 1, 30
[19] 60 20 R1 ¼ 40, Ri ¼ 0, for i 6¼ 1
[20] 60 20 R20 ¼ 40, Ri ¼ 0, for i 6¼ 20
[21] 60 20 R1 ¼ R20 ¼ 10, R10 ¼ 20, Ri ¼ 0, for i 6¼ 1, 10, 20
[22] 60 40 R1 ¼ 20, Ri ¼ 0, for i 6¼ 1
[23] 60 40 R40 ¼ 20, Ri ¼ 0, for i 6¼ 40
[24] 60 40 R2i�1 ¼ 1, R2i ¼ 0, for i ¼ 1, 2, :::, 20
[25] 60 50 R1 ¼ 10, Ri ¼ 0, for i 6¼ 1
[26] 60 50 R50 ¼ 10, Ri ¼ 0, for i 6¼ 50
[27] 60 50 R1 ¼ R50 ¼ 5, Ri ¼ 0, for i 6¼ 1, 50

Figure 1. Plot of pdf and CDF of standard exponential (solid black line), LNð0, 0:5Þ (dashed blue line), LN(0, 1) (dotted green)
and F(5, 2) (dotted dashed red line).
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2. The Fisher’s F distribution with (5, 2) degrees of freedom denoted by F(5, 2) with pdf given by

hðxÞ ¼ 1
B �1

2 ,
�1
2

� � �1
�2

� ��1
2 ð1þ �1

�2
xÞ��1þ�2

2

This alternative model has positively skewed density function. All the pdfs and CDFs are
depicted in Figure 1.

See Johnson, Kotz, and Balakrishnan (1994, 1995) for detailed discussion of the above men-
tioned distributions. We compare the empirical powers for the above mentioned alternatives to
the Wang (2008) statistic:

TW ¼ 2
Xm�1

i¼1

log
S�1 þ S�2 þ � � � þ S�m
S�1 þ S�2 þ � � � þ S�i

,

where

S�i ¼ ciðXi:m:n � Xi�1:m:nÞ, i ¼ 1, 2, :::,m� 1,

are the spacings based on the censored data Xi:m:n: Note that the Wang statistic TW has chi-
squared distribution with 2m� 2 degrees of freedom under the null hypothesis of exponentiality.

For testing the normal distribution we considered the student’s t distribution with 2, 3 and 4
degrees of freedom, denoted respectively by t(2), t(3), and t(4). In Figure 2, the pdfs and CDFs of
the normal model and the alternative student’s t models are depicted. We compared the empirical
power with the Balakrishnan, Ng, and Kannan (2004) statistic

TB ¼
Pm�1

i¼2 ðm� iÞGi

ðm� 2ÞPm
i¼2Gi

,

where

Gi ¼ Xi:m:n � Xi�1:m:n

li:m:n � li�1:m:n
, for i ¼ 2, 3, :::,m,

and li:m:n is the expected value of the ith progressively Type-II censored order statistic from the
standard normal distribution. We used Royston (1982) approximation for li:m:n as

Figure 2. Plot of pdf and CDF of standard normal (solid black line), t(2) (dashed blue line), t(3) (dotted green) and t(4) (dotted
dashed red line).
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Table 2. Estimated power (%) for the log-normal and F distribution when testing for exponential model with a ¼ 0:10 and
a ¼ 0:05 (in parenthesis).

LNð0, 0:5Þ LN(0, 1) F(5, 2)

Sch. No. G 1 G2 TW G1 G2 TW G1 G2 TW
1 99.10 99.16 98.96 25.06 26.08 21.07 34.61 34.32 29.99

(97.01) (96.90) (96.58) (15.26) (15.32) (12.37) (25.79) (25.62) (22.79)
2 91.17 93.19 96.15 25.36 28.14 28.01 16.80 18.38 14.32

(81.82) (84.17) (88.35) (15.32) (16.81) (16.22) (09.22) (09.99) (07.53)
3 96.63 96.98 98.15 26.73 29.06 27.76 16.16 17.45 12.40

(90.40) (91.38) (93.56) (16.23) (17.38) (16.16) (08.87) (09.41) (06.43)

4 99.73 99.80 99.67 22.49 24.07 18.51 46.37 43.94 41.38
(98.91) (99.09) (98.74) (13.46) (14.27) (10.66) (38.14) (36.23) (33.98)

5 98.54 99.10 99.57 25.66 29.02 28.67 13.43 15.01 10.23
(95.61) (96.77) (98.04) (15.38) (17.48) (16.81) (07.10) (07.91) (05.06)

6 99.17 99.42 99.72 22.77 25.51 22.82 37.83 36.00 30.86
(97.21) (97.78) (98.73) (13.65) (15.18) (13.42) (30.41) (28.71) (24.06)

7 99.89 99.94 99.85 19.71 21.55 16.53 56.14 52.39 51.91
(99.51) (99.68) (99.48) (11.74) (12.76) (09.30) (48.79) (45.60) (44.73)

8 99.76 99.88 99.91 22.37 26.01 23.57 17.17 17.47 13.20
(99.06) (99.41) (99.56) (13.37) (15.64) (13.75) (09.60) (09.92) (07.41)

9 99.83 99.93 99.89 19.12 21.54 17.70 54.57 50.77 49.63
(99.33) (99.59) (99.56) (11.31) (12.76) (10.02) (47.40) (44.01) (42.58)

10 100 100 99.99 41.47 44.29 35.03 38.35 37.33 33.36
(99.96) (99.96) (99.93) (28.66) (30.23) (23.65) (29.71) (28.67) (25.88)

11 98.49 99.08 99.80 39.24 44.30 49.50 24.72 28.02 28.82
(95.84) (97.07) (98.75) (26.58) (30.10) (32.98) (15.01) (17.05) (17.12)

12 99.67 99.82 99.98 42.92 47.79 51.68 24.02 27.21 26.02
(98.82) (99.10) (99.82) (29.78) (33.07) (35.33) (14.79) (16.60) (15.66)

13 100 100 100 34.61 39.59 28.07 57.51 52.29 55.14
(100.00) (100.00) (99.99) (23.51) (27.12) (18.20) (50.92) (45.88) (48.19)

14 99.99 100 100 47.43 54.72 57.92 19.82 23.81 21.18
(99.97) (99.99) (99.99) (34.01) (39.92) (41.65) (11.56) (14.14) (12.09)

15 100 100 100 43.36 50.75 49.10 22.65 23.15 18.39
(99.99) (99.99) (100.00) (30.57) (36.46) (34.63) (14.94) (15.05) (11.58)

16 100 100 100 27.26 33.63 22.94 74.00 67.07 72.77
(100.00) (100.00) (100.00) (17.86) (22.41) (14.18) (68.66) (61.52) (66.83)

17 100 100 100 41.58 50.35 47.00 13.86 14.29 10.65
(100.00) (100.00) (100.00) (29.29) (36.21) (32.35) (07.67) (07.72) (05.51)

18 100 100 100 36.95 45.28 37.89 26.71 22.36 22.83
(100.00) (100.00) (100.00) (25.44) (31.94) (25.09) (18.53) (15.10) (15.46)

19 100 100 100 49.84 55.72 39.66 53.48 48.55 51.80
(100.00) (100.00) (100.00) (37.79) (42.59) (28.17) (46.74) (41.83) (44.82)

20 100 100 100 62.21 69.89 76.60 33.44 39.61 42.54
(99.99) (100.00) (100.00) (48.95) (55.99) (61.70) (22.42) (26.76) (28.21)

21 100 100 100 63.01 70.27 73.09 26.46 32.04 28.71
(100.00) (100.00) (100.00) (49.67) (56.59) (58.45) (16.96) (20.89) (18.22)

22 100 100 100 36.48 46.14 29.23 80.39 72.79 81.22
(100.00) (100.00) (100.00) (25.86) (33.77) (19.21) (75.86) (67.88) (76.44)

23 100 100 100 62.91 72.73 71.07 14.58 18.73 12.59
(100.00) (100.00) (100.00) (49.56) (59.89) (56.34) (08.01) (10.96) (06.62)

24 100 100 100 49.22 60.94 50.89 48.45 40.50 45.73
(100.00) (100.00) (100.00) (36.73) (47.52) (37.47) (41.43) (33.89) (38.71)

25 100 100 100 31.09 41.88 25.87 88.26 81.87 88.96
(100.00) (100.00) (100.00) (20.81) (29.56) (16.67) (84.94) (77.62) (85.41)

26 100 100 100 50.91 63.54 54.33 25.53 19.34 23.81
(100.00) (100.00) (100.00) (37.44) (49.45) (39.67) (17.49) (12.34) (15.99)

27 100 100 100 43.59 56.46 43.00 50.44 38.33 50.00
(100.00) (100.00) (100.00) (31.05) (42.45) (29.95) (41.28) (30.09) (40.67)

Note: Maximum value for each scheme is emboldened.
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Table 3. Estimated power (%) for the t distribution with 2, 3 and 4 degrees of freedom when testing for normal model with
a ¼ 0:10 and a ¼ 0:05 (in parenthesis).

t(2) t(3) t(4)

Sch. No. G 1 G2 TB G1 G2 TB G1 G2 TB
1 32.25 32.19 36.18 22.16 21.99 25.67 17.82 17.63 20.56

(24.31) (24.20) (27.54) (15.06) (14.92) (17.31) (11.17) (11.01) (12.76)
2 30.07 29.98 35.11 21.43 21.67 24.61 17.52 17.78 19.65

(22.27) (22.11) (24.94) (14.35) (14.48) (15.88) (11.04) (11.15) (11.96)
3 32.63 32.47 37.05 22.78 22.79 25.43 18.35 18.52 20.18

(24.57) (24.32) (27.27) (15.43) (15.49) (16.87) (11.58) (11.65) (12.42)

4 38.53 40.37 42.24 26.06 27.40 30.71 20.55 21.29 24.90
(30.50) (32.24) (33.58) (18.63) (19.66) (21.66) (13.59) (14.21) (16.05)

5 37.70 37.57 45.39 26.25 26.44 31.90 20.75 21.12 24.84
(29.63) (29.29) (34.24) (18.54) (18.68) (21.51) (13.61) (13.88) (15.51)

6 39.25 39.81 45.72 27.11 27.52 33.86 21.37 21.74 27.27
(31.07) (31.41) (34.96) (19.41) (19.70) (22.65) (14.22) (14.42) (16.71)

7 42.57 46.13 46.50 28.46 30.83 34.08 21.99 23.60 27.55
(34.77) (37.88) (36.96) (21.01) (22.86) (24.01) (14.88) (16.10) (17.70)

8 41.67 41.69 46.32 28.91 29.13 33.09 22.65 23.03 26.07
(34.02) (33.60) (36.76) (21.43) (21.38) (23.09) (15.57) (15.62) (16.65)

9 43.40 46.16 47.11 29.20 31.14 34.79 22.63 28.35 28.10
(35.51) (37.92) (37.60) (21.65) (23.06) (24.58) (15.47) (16.30) (18.08)

10 45.23 45.24 44.46 30.00 30.01 30.98 22.92 22.80 24.32
(37.18) (36.68) (37.77) (22.30) (21.78) (23.41) (15.59) (15.23) (16.59)

11 35.96 35.90 45.14 25.09 25.35 31.70 19.99 20.26 26.46
(27.91) (27.72) (32.16) (17.68) (17.96) (20.58) (13.09) (13.35) (15.08)

12 42.85 41.69 53.59 29.07 28.59 37.03 22.46 22.28 28.19
(34.13) (33.09) (40.42) (20.99) (20.81) (25.29) (15.05) (15.11) (17.78)

13 57.93 60.59 52.11 38.80 40.92 37.97 28.90 30.38 30.18
(50.48) (53.06) (44.18) (30.65) (32.68) (28.77) (21.04) (22.47) (20.87)

14 53.63 52.99 67.39 36.15 36.20 48.20 27.24 27.56 37.29
(45.71) (44.83) (55.23) (27.91) (27.84) (35.24) (19.45) (19.71) (24.61)

15 56.69 55.13 65.80 38.73 37.73 48.22 29.18 28.68 37.97
(49.03) (47.04) (54.87) (30.35) (29.33) (35.30) (21.25) (20.62) (24.74)

16 65.27 69.73 56.19 43.38 47.71 41.52 31.75 34.94 32.81
(58.01) (62.53) (46.86) (35.01) (38.83) (31.03) (23.76) (26.49) (22.62)

17 62.11 61.65 68.86 42.41 42.61 49.98 31.58 32.14 38.94
(54.88) (54.33) (61.38) (34.03) (34.04) (39.51) (23.55) (23.93) (27.47)

18 61.59 61.78 61.55 42.52 42.86 44.39 31.86 32.35 34.61
(54.60) (54.65) (55.68) (34.13) (34.44) (35.66) (23.73) (24.32) (24.79)

19 65.79 67.75 54.30 44.71 46.57 39.04 33.15 34.39 30.73
(58.56) (60.52) (48.61) (36.47) (37.99) (31.57) (24.95) (26.03) (22.48)

20 54.89 54.47 71.54 36.92 37.21 52.08 27.69 28.17 40.21
(47.05) (46.27) (57.79) (28.76) (28.81) (37.61) (19.97) (20.27) (26.41)

21 63.48 61.13 78.25 43.14 41.63 58.26 32.07 31.17 44.96
(55.85) (52.83) (67.90) (34.55) (32.91) (44.92) (23.76) (22.76) (31.25)

22 77.20 81.34 59.79 53.75 58.67 44.46 39.04 43.50 35.27
(71.64) (75.95) (51.16) (45.61) (50.42) (34.16) (30.64) (34.44) (24.86)

23 73.11 72.35 83.14 50.86 50.79 63.51 37.42 36.80 49.29
(67.10) (66.37) (76.75) (42.81) (43.00) (52.79) (29.14) (29.73) (37.14)

24 74.78 75.39 68.98 52.40 53.31 52.63 38.67 39.58 41.67
(69.11) (69.54) (59.83) (44.50) (45.18) (40.54) (30.39) (31.14) (29.06)

25 80.80 85.24 61.64 56.53 62.58 46.43 41.05 46.28 36.39
(75.62) (80.58) (52.39) (48.54) (54.55) (35.04) (32.53) (37.50) (25.49)

26 75.38 75.58 76.20 53.62 54.23 57.54 39.90 40.57 44.47
(69.51) (69.81) (72.79) (45.53) (46.14) (49.31) (31.26) (32.28) (34.43)

27 74.21 75.64 67.29 52.80 54.37 49.98 39.40 40.82 38.71
(68.42) (69.99) (63.98) (44.80) (46.37) (42.48) (30.89) (32.45) (29.56)

Note: Maximum value for each scheme is emboldened.
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li:m:n � U�1 i� 0:375
mþ 0:25

� �
,

in our simulation study.
Table 2 shows the empirical power when testing for exponential model with alternative distri-

butions LNð0, 0:5Þ, LN(0, 1) and F(5, 2) for 5% and 10% significance levels. In most cases except
the proposed tests G1 and G2 exhibit more power in compare to the Wang statistic. Indeed, for
the log-normal alternative G2 outperforms G1 and both perform better than Wang statistic for
most cases, specifically for LN(0, 1). In F(5, 2) alternative, for almost all schemes both tests G1

and G2 performs better than the Wang statistic TW. Moreover, for scheme numbers 2, 5, 8, 14,
17 and 23 (all corresponding to the conventional Type-II right censoring), the G2 statistic per-
forms than G1.

Table 3 shows empirical power for the student’s t distribution with 2, 3, and 4 degrees of free-
dom when testing for the normal model at the 5% and 10% significance levels. Note that as one
would expect, the power will decreases as the degrees of freedom increases. This is due to the
fact that the t distribution will tend to the normal distribution with increase of the degrees of
freedom and therefore any test will encounter difficulties to distinguish between the two distribu-
tions. It is observed from the table that the Balakrishnan, Ng, and Kannan (2004) statistic, TB

works better for smaller sample size, however for larger sample sizes (m � 10) starting from
scheme 10, the proposed tests outperform the TB statistic, except for the schemes corresponding
to the conventional Type-II censoring. Moreover, the test statistic G2 shows better power than G1

for most cases.
In summary, our proposed test statistics G1 and G2 perform well in compare to the existing

test statistics and among them G2 is the one that we recommend.

4. Illustrative data analyses

In this section, we illustrate the proposed goodness-of-fit procedure discussed earlier with a real
dataset. The data is concerning times to breakdown of an insulating fluid tested at 34 kilovolts
(see Nelson 1982, Table 6.1, 228). Wang (2008) randomly generated a progressively Type-II cen-
sored sample of size m¼ 8 from n¼ 19 observations. The log-data, the progressive censoring
scheme employed and the spacings are given in Table 4. We are interested to test the suitability
of the exponential model to the log-data. Note that q ¼ mðm�1Þ

2 ¼ 28 and the test statistic G1 and
G2 are given, respectively, by

G1 ¼
X8
i¼1

X8
j¼1

i<j

Wð1Þ
l jSi � Sjj ¼ 0:5192,

Table 4. Insulating fluid log-data.

i 1 2 3 4 5 6 7 8

xi:m:n 0.18999 0.77997 0.95993 1.30996 2.77986 4.84962 6.49999 7.35000
Ri 0 0 3 0 3 0 0 5
Si 0.3951 1.1134 0.3073 0.4439 1.5577 1.0136 0.8494 0.2623
S�i 3.6098 10.6196 3.0593 4.5504 17.6388 13.6781 14.0726 5.1001

Table 5. Test statistics and the corresponding p-values for the data in Table 4 when testing for the exponential distribution.

Criterion G1 G2 TW
Test statistic 0.5192 0.5045 16.4775
p-value 0.8263 0.8282 0.2859
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and

G2 ¼
X8
i¼1

X8
j¼1

i<j

Wð2Þ
l jSi � Sjj ¼ 0:5045:

We used the Monte Carlo simulation to estimate the p-values; p� valueG1 ¼ PðG1 >
0:5192Þ ¼ 0:8263 and p� valueG2 ¼ PðG2 > 0:5045Þ ¼ 0:8282:

The values of the test statistics and the corresponding p-values are presented in Table 5. The
p-values in Table 5 strongly suggest the exponential model for the log-data by all the test statis-
tics. This result is consistent with the conclusion of Nelson (1982), Viveros and Balakrishnan
(1994), Balakrishnan et al. (2002) and Wang (2008).
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