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Continuous power supply in an integrated electric system supplied by solar energy and
battery storage can be optimally maintained with the use of diesel generators. This article
discusses the optimum setting-point for isolated wind, photo-voltaic, diesel, and battery
storage electric grid systems. Optimal energy supply for hybrid grid systems means that
the load is sufficient for 24 h. This study aims to integrate the battery deprivation costs and
the fuel price feature in the optimization model for the hybrid grid. In order to count
charge–discharge cycles and measure battery deprivation, the genetic algorithm concept
is utilized. To solve the target function, an ANN-based algorithm with genetic coefficients
can also be used to optimize the power management system. In the objective function, a
weight factor is proposed. Specific weight factor values are considered for simulation
studies. On the algorithm actions, charging status, and its implications for the optimized
expense of the hybrid grid, the weight factor effect is measured.
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INTRODUCTION

A hybrid grid (HG) is an electrical distribution network that allows the penetration of various locally
produced sources with or without storage equipment (Navigant Research, 2016). Reliability and cost
savings can be achieved by the use of renewable energy sources (RESs), traditional turbines, storage
plants, and electricity charges, as well as the use of an HG. A hybrid grid can work in both connected
and isolated modes. The HG can be linked to the main grid in the grid-connected mode via a
common interconnector point and participate in energy trading as either a customer or a provider
via grid receipt or power transmission.

A power management system (PMS) is also used for the most efficient use of hybrid grid units.
The PMS techniques canmaximize the transmission of power generation outputs fromHG units and
ensure economic load demand (LD), as well as monitor the frequency and voltage of HG systems.
Rauf et al. (2016) outlined the latest HG-PMS architecture and the different power and heat
generation systems and electric cars, as well as the core functionality and limitations of HG-PMS and
the use of optimization technology. Photovoltaic (PV) and wind power are the most commonly used
sources of renewable energy in HGs. However, because of the intermittent nature of renewable
energy sources, it is recommended that it be assisted by appropriate storage units and optimally
integrated into the HG scheme. In terms of the maximum use of the battery storage (BS) in the HG,
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several studies were carried out for optimal delivery of HG
generation and storage devices. For this reason, many
advanced methods of optimization were published. A
combined hybrid supply of energy and a battery source
multimedia problem is solved with multi-target integral linear
programming (Mathieu et al., 2013). Fuzzy logic control (FLC)
determines the charging and discharge of the battery. Capital and
maintenance expenditures, fuel prices, electricity costs, and
carbon sanctions are the target functions to be minimized.
The PMS solution for GC-HG is combined with the energy
storage system (ESS) and local generation (PS) in a genetic
algorithm (Rauf et al., 2016). The proposed PMS would
determine how much HG electricity will be added to the ESS
and how much will be replaced on the main grid. The primary
aim is to maximize profits from power grid trade. Kasis et al.
(2017a) investigated the planning of battery and HG generation
plants. The system is modeled on a stochastic framework, and the
PMS is solved using a deep Q-learning algorithm. In the study by
Kasis et al. (2017b), we examined a dynamic dispatch in the HG of
BS. The objective function of the problem is designed to
maximize the battery operational benefit. To solve the battery
management issue, a reinforcement study is proposed in
combination with a search of Monte-Carlo trees. In the study
by Schuitema et al. (2017), FLC was proposed to control the BS
level of the state of charge (SOC) limited to the minimum and
maximum limits. Moreover, a backtracking search algorithm is
introduced to determine an optimum battery SOC control to
allow for smooth BS operation throughout the time and to
minimize the overloading and unchanging capacity. In the
study by Books and Barooah (2019), an optimum power send
for the GCHG was introduced with PV units and battery
deactivators in the programming algorithm. The proposed goal
is to maximize the amount of PV, minimize operating costs, and
trade electricity costs with the grid. In the study by Kim et al.
(2016), for a day-long plan, an optimal PMS solution was tested.
The problem of optimization is modeling so that the operating
costs for HG generation units are minimized and the consumption
of renewable sources maximized. The optimization problem is
fixed by convection programming, and a rolling horizon-predictive
controller in combination with a predictive model determines the
best environment for a BS. In the study by Aduda et al. (2018), the
PMS of an isolated HG was targeted using a cuckoo-search
algorithm with RES, DG, and BS. The target problem feature is
to decrease overall costs and reduce gas emissions. Applying a GA
achieves an economic advantage by using RES (Lin et al., 2015).
The device studied is an isolated HG, BS, and DG with renewable
sources. The goal feature proposed is to minimize capital and to
maintain HG units, fuel costs, and pollution costs. In the GC-HG
floral pollination algorithm (Chen et al., 2017), integrated RES,
micro turbines, fuel cells, and BS are examined for the solution of
PMS. The aim is to minimize BS operating costs, energy produced
costs, the energy expenses of the grid exchanged, and costs for the
demand response. In the study by Vrettos et al. (2016), an amended
algorithm to check the ideal operating condition of BS in a
population HG was proposed in a particle swarm optimization
(PSO). An effective battery charging and discharge feature is added.
Most of these research works do not take into account the objective

purpose of reducing battery life. As shown, the loading and
unloading processes have a major influence on BS lifetime. This
article includes one of the objective functions that should be
reduced, which is lifecycle deprivation costs. The genetic
algorithm is used for charging and discharging cycles and
quantifying the cost of battery deprivation (BDC). In order to
resolve the unit engagement of a grid-connected HG, the
effectiveness of the artificial neural network with genetic
algorithms has been demonstrated. This study uses the ANN-
GA algorithm for solving a problem of 48-h programming for
isolated rural HG units. The following is an overview of the article.
HG Modeling discusses modeling of HG devices; PMS Problem
Formulation deals with proposed PMS, including potential
objective functions and devices; ANN With Genetic Application
deals with application of the ANN and genetic algorithms in the
PMS;Discussion on Simulation Outcomes deals with the simulation
and discussion; and Conclusion ends the article.

HG MODELING

The hybrid grid (HG) includes RES, wind turbine (WT), BS, and
DGs with PV panels.

Photovoltaic Panels
In a simplified model, the solar irradiation is proportional to the
photovoltaic module’s performance, which can be calculated as
follows (Chen et al., 2017):

UPV � IPVAPVηPV , (1)

where IPV is the irradiation developed by solar (kWh/m2) on the
photovoltaic modules, APV shows the area of the PV panels (m2),
and ηPV presents the overall efficiency of PV panels.

The total energy output can be defined as given for a number
of PV modules:

UPVT � UPV pNPV, (2)

where NPV is the number of PV modules.

Wind Generator
Wind speed (WS) at the hub height is proportional to the WG’s
energy output, which can be expressed mathematically as follows
(Chen et al., 2017):

EWG � 0.5ηWTρairCPAV
3, (3)

where ηWT is theWG’s efficiency, ρair is the air density (Kg/m
3),CP

is the coefficient of power for the wind generator, A is the swept
area of the rotor, and V is the per hour speed of the generator.

The per hour wind speed can be expressed mathematically as
follows (Silva and Santiago, 2018):

V

Vref
� (hhub

href
)

α

, (4)

where Vref is the reference of per hour speed href (m), hhub is the
height (m) of the hub, and α is the proponent of power α ∈ [17, 14]
(Sedghi et al., 2016).
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For a certain number of WGs, the total energy output can be
expressed below:

EWTT � EWT ∗NWT, (5)

where NWT is the number of wind turbines.

Battery Energy Storage System
A diagram of the BS is shown in Figure 1. The power of the
battery can be described as follows in the battery mode:

PG � PL + PBS. (6)

The grid power delivered to the PBS is denoted by PG, and the
load is denoted by PL. The battery power PB and the power
consumed by the BS controller PC are covered by PBS. As a result,
the grid power may be expressed as follows:

PG � PL + PB + PC. (7)

The BS controller provides power conversion and control. It is
reasonable to presume that it is proportionate to the power flow.

PMS PROBLEM FORMULATION

Objective Functions
Cost of Diesel Energy
The energy produced by photovoltaic (PV) and wind turbines
(WTs), among the energy sources in the studied hybrid grid
(HG), is dependent on environmental conditions and has no cost
to produce, in contrast to DG, which needs fuel to generate
electricity. The FC of the DGs is therefore defined in the
following:

F1 � ∑T

t�1 ∑NDG

i�1 Ci(PDGi(t)), (8)

where T is prospect time, NDG is the number of DGs, and
Ci(PDGi(t)) shows the cost of diesel energy.

A quadratic function of the DG output power is used to model
fuel costs for each DG in a timely manner, expressed as
follows [182]:

Ci(PDGi(t)) � aiP
2
DGi

(t) + biPDGi(t), (9)

where ai and bi are cost coefficients of DGi, and PDGi(t) is the
DGi ’s power delivered.

Battery Control
Battery power control is primarily used in this study to
implement load-side power factor control (PFC). At the same
time, we would like to retain the battery’s state of charge
(SOC) around a given level, say 80 percent. As a result, the
battery power PB is divided into two components, the line
frequency-dependent component PBf(Δf) and the offset
component PBs(SOC), for battery SOC compensation as
follows:

PB � PBf(Δf) + PBs(SOC). (10)

The grid power in Eq. 2 becomes the following:

PG � PL + [PBf(Δf) + PBs(SOC)] + PC. (11)

The BS control will satisfy the criterion PG ≥ 0.
The linear and step response droop are the two droop control

systems recognized by the North American Electric Reliability

FIGURE 1 | Cycle life vs. DOD of a lithium-ion battery.
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Corporation (NERC) (Zhao et al., 2014). The battery power is
regulated in the following way:

PBf(Δf) � {Gb · Δf;
∣∣∣∣Δf∣∣∣∣> Δfth

0;
∣∣∣∣Δf∣∣∣∣≤Δfth

, (12)

whereGb is the battery power increase that is computed as follows
in (W/Hz):

Gb � 1
R
( p.u. W

p.u. Hz
) × PB,ref

60 (Hz) �
1
R
× RB,ref

60
(W/Hz), (13)

where R is the droop setting in (p.u. Hz/p.u. W), and PB,ref is
the battery PFC operation’s reference power. According to the
dead-band, Δfth is the frequency deviation threshold. fo is the
frequency scheduled value, and Δf � (f − fo) is the frequency
deviation. The offset power PBs(SOC) compensates for the
battery energy wasted in regulation.

PBs � (SOCset − SOC) × B × Pb, (14)

where SOCset is the set value of SOC. Pb is the battery rated power
and B is the gain used to change the offset power
compensation’s speed.

As a result, the battery power equation is as follows:

PB(Δf, SOC) � [PBf(Δf) + PBs(SOC)], (15)

PB(Δf, SOC) � Gb · Δf
∣∣∣∣|Δf|>Δfth

+ [(SOCset − SOC) × B × Pb].
(16)

Figure 1 depicts the relationship between regular battery life
loss and DOD, with cycle loss increasing with cycle depth.

Here, we propose a method to evaluate the battery energy lost
in the PFC operation. The energy exchange, ΔEB, can be as
follows:

ΔEB � ΔEBf + ΔEBs, (17)

where ΔEBf and ΔEBs are the energy exchanges for primary
frequency control and SOC compensation, respectively.

ΔEB � ∑
i ∈ NR

(Gb · Δfi)∣∣∣∣|Δfi|>Δfth
+∑ i∈NRPBsi, (18)

where NR is the set of the total number of samples.

Eloss � ∑
i∈NR

(vbi × ibi) given that(SOC1 � SOCnR), (19)

where vbi and ibi are the battery voltage and current at sample i,
respectively.

A model of the battery energy efficiency presented in the study
by Ohmori et al. (2016) is used as follows:

FIGURE 2 | Battery circuit model.

FIGURE 3 | Flowchart of the ANN and the genetic algorithm.

FIGURE 4 | Load demand of an isolated hybrid grid throughout a day.
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Rb(ib) � Re + Rp(ib) � Re + Rp0e
−α·|ib|, (20)

where Re, Rp0, and α are the model parameters identified
experimentally.

Eloss,sim � ∑
i∈NR

i 2
bi Rbi. (21)

Restriction Criterion
Restrictions of Power Flow
The power flow limit that all HG energy sources, considering PV
andWTs, BS, and DGs, fulfil the demanded power by load side of
HG naturally for each hour is expressed as follows:

∑n

i�1 PDGi(t) + PWT(t) + PPV(t) + PBS(t) � PLD(t), (22)

where PDGi(t) presents the power generated by the diesel
generator, PWT(t) shows the power produced by the wind
turbine, PBS(t) presents the power developed by the battery,
PPV(t) presents the power produced by PV panels, and PLD(t)
presents the power demand by the load side.

Restrictions of Renewable Generation
The PV andWG output must be kept at the t′ time interval within
the following minimum and highest power restrictions because the
RES power generated depends on the setting (Zhao et al., 2014):

PPVPV,maxPV,min, (23)

PWGWG,maxWG,min, (24)

where PPV,min and PPV,max are the lowest and highest power
restrictions created by each PV module. PWG,min and PWG,max are
the lowest and highest power restrictions created by each WG.

Restrictions of Diesel Generator
Under the lowest and highest power restrictions, the output
power can be expressed as follows (Chen et al., 2017):

PDGiDGi,maxDGi,min, (25)

where PDGi,min and PDGi,max are the lowest and highest power
restrictions developed by each DGi.

The power delivered by the DGs is also constrained by
physical limitations for starting and closing, as expressed by
ramp rate limits and expressed by Chen et al. (2017) as
follows:

−DRi ≤PDGi(t + 1) − PDGi(t)≤URi, (26)

where DRi and URi are the shutting-down and the starting-up
restrictions of DGi, correspondingly.

Restrictions of Battery Source
The battery voltage should be within the specified power limit and
can be expressed as follows:

PBSch,top <PBS(t)<PBSdch,bottom, (27)

where PBSch,top and PBdch,bottom are the battery’s maximum
charging and discharging powers, correspondingly.

At all times, the battery’s energy storage level must be kept
between the minimum and maximum limits:

EBS,lowest〈EBS(t)〈EBS,highest, (28)

where EBS,bottom and EBS,top are the bottom and top of battery
energy restrictions, correspondingly.

The SOC heights have a significant impact on battery life; as a
result, battery SOC levels should be kept within the predefined
limits:

SOClowest < SOC(t)< SOChighest. (29)

ANN WITH GENETIC APPLICATION

The forward propagation in each ANN-layer is expressed as
follows (Kang et al., 2012), (Lu et al., 2010) and (Eftekhari, 2017):

•Xl
j � blj +∑N

i�1 conv1D(wl−1
ij , Sl−1i ), (30)

whereXl
j is the input, b

l
j is the bias of the j

th neuron in layer l, Sl−1i
is the output of the neuron in layer l-1, wl−1

ij is the kernel from the
ith neuron in layer (l-1) to the jth neuron in layer l, and conv1D
(. . ..) is used for performing 1D convolution without zero-
padding. The dimension of the input array, Xl

j, is less than
the output array’s dimension, Sl−1i . The output, Yl

j, in layer l
may be expressed by passing input Xl

j through activation
function f (.), as follows:

•Yl
j � f(Xl

j), (31)

•Slj � Yl
j ↓ ss, (32)

TABLE 1 | Battery specifications.

Battery constraints Energy capacity
(kWh)

Functional size
(kWh)

Maximum power during
charge condition (kWh)

Maximum power during
discharge condition (kWh)

Initial SOC
(%)

SOCmax (%)

Value 10 9.6 8 8 30 75
Battery constraints SOCmin (%) Battery cost (Rs.) Cost of maintenance (Rs./year) Rate of interest (ROI) (%) Life span (years)
Value 10 40,000/- 23,000/- 5.3 12

TABLE 2 | Diesel generator specifications.

DGi ai bi Pmin (kW) Pmax (kW) DRi (kW) URi (kW)

1 0.03 0.25 0 6 5 5
2 0.0001 0.0490 0 10 9 9
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where Slj represents the output of the j
th neuron in layer l and ↓ ss

stands for the down-sampling operation with a factor, ss.
The GA algorithm propagates the error from the output

of the MLP-layer. Let l � 1 for the input layer and l � L
for the output layer. Assume that QL is the number of
classes in the output, for a given input vector; let its target
be [t1,. . ..., tQL] and output vectors, [yL

1 , . . ..., y
L
QL
]. In the

output layer, the mean-squared error (MSE), E, is expressed as
follows:

E � ∑QL

i�1 (yL
i − ti)2. (33)

The delta error, Δl
j � zE

zXl
j
, should be computed to calculate the

derivative of E with respect to each parameter in the network.
For updating all weights of neurons and the bias of that neuron
in the preceding layer, the chain-rule of the derivative is used as
follows:

FIGURE 5 | Wind turbine output power throughout a day.

FIGURE 6 | PV output power throughout a day.

FIGURE 7 | Mean square error with number of epochs.
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FIGURE 8 | Impact of the weight factor value, that is, e � 0.250, 1,000 on the battery SOC behavior.
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zE

zwl−1
ij

� Δl
j y

l−1
i , (34)

+
zE

zblj
� Δl

j. (35)

Therefore, the regular back propagation from the first MLP
layer to the last ANN layer is performed as follows:

zE

zSlj
� ΔSlj � ∑M

i�1
zE

zXl+1
i

zXl+1
i

zSlj
� ∑M

i�1 Δ
l+1
i wl

ji. (36)

After performing the first back propagation from layer
(l+1) to current layer l, the GA may carry to the input
delta of ANN layer l, Δl

j. Assume that the zero-order up-
sampled map is uslj � up(s1j ); then the delta error is expressed
as follows:

Δl
j �

zE
zyl

j

zyl
j

zXl
j

� zE

zuSlj

zuSlj
zyl

j

f′(Xl
j) � up(ΔSlj)βf′(Xl

j), (37)

where β � (ss) − 1.
The GA of delta error (ΔSlj Σ← Δl+1

i ) is expressed as follows:

ΔSlj � ∑M

i�1 conv1Dz(Δl+1
i , rev(wl

ji)), (38)

where rev (.) is used for array reversing and conv1Dz (. . .) is used
for full 1D convolution performing with zero-padding.

The derivative of the error with respect to weight and bias may
be expressed as follows:

zE
zwl

ij

� conv1D(Slj, Δl+1
i ), (39)

zE

zblj
� ∑

n
Δl
j(n). (40)

The weights and biases can be updated with learning rate ∝
using the following equations:

wl−1
ij (t + 1) � wl−1

ij (t) − ∝
zE

zwl−1
ij

, (41)

blj(t + 1) � blj(t) − ∝
zE

zblj
. (42)

Implementation of ANN With the Genetic
Algorithm
This study considers the costs of battery deprivation and the cost
of fuel for traditional generators. A combination of two ANNs
and genetic algorithms is used to solve PMS problems. The
objective function is optimized using the ANN, while the
genetic algorithm for the search is used to establish the BDC.
Figure 2 and Figure 3 show the flood map of the overall
implementation of the ANN and the genetic algorithm for the
PMS issue.

DISCUSSION ON SIMULATION
OUTCOMES

Methodology
An isolated HG with PV panels, a WT, a charger, and two DGs
was used to test the suggested objective feature using the ANN.
The judgement variables in this study are as follows: PDG1(t),
PDG2(t), PBat(t), PPV(t), and PWT(t) The simulation runs in a

TABLE 3 | For 1,000 test runs using the ANN-GA algorithm, objective output was measured using different weight values.

e= 0 e= 250 e= 450 e= 650 e= 1000

Best cost (Rs./day) 9,596,600 23,133,042 11,759,582 25,068,741 22,744,352
Average cost (Rs./day) 22,345,050 50,475,000 744,865,935 59,664,120 34,458,960
Worst cost (Rs./day) 1.0213e + 06 1.0347e + 06 1.0221e + 08 1.0287e + 08 7.4360e + 07

TABLE 4 | Diesel generators generate optimal power PDGi(t) using the ANN for
e � 250.

Time (h) PDG1 (kW) PDG2 (kW) Time (h) PDG1 (kW) PDG2 (kW)

1 0,217,857 1,126,109 13 4,290,849 0,733,674
2 041,551 3,238,563 14 4,933,234 1,697,407
3 200,718 3,866,612 15 3,959,647 68,234
4 1,535,267 2,337,054 16 4,872,569 704,285
5 2,317,106 6,790,868 17 3,349,535 8,579,052
6 2,767,133 1,919,401 18 2,636,031 797,911
7 1,934,837 4,363,621 19 4,022,178 2,164,111
8 3,285,469 1,568,873 20 2,812,477 145,311
9 1,603,434 2,256,644 21 1,904,528 4,709,048
10 367,349 1,759,593 22 1,863,599 0,492,047
11 2,280,909 0,355,728 23 3,849,791 1,398,528
12 0 244,283 24 3,553,457 2,230,391

TABLE 5 | Battery produces optimal power using the ANN for e � 250.

Time (h) PBS (kW) Time (h) PBS (kW)

1 260,343 13 −1,84,472
2 −1,25,340 14 −3,63,345
3 −2,52,479 15 −1,84,412
4 248,992 16 −3,55,124
5 133,245 17 −3,30,215
6 311,644 18 −0,35,564
7 −0,42,237 19 −0,68,842
8 2,112,556 20 2,904,458
9 0,755,864 21 2,544,735
10 −3,22,344 22 1,441,235
11 −2,77,456 23 −0,225,871
12 −1,44,254 24 −0,112,344

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7744088

Riyaz et al. Power Management of Hybrid Grid System

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


1-h time period and has a 24-h horizon as a scheduling program.
Figure 4 shows the hourly LD over a 24-h loop. Throughout the
day, the average LD is 7.2 kW. The load side demanded more
power in between 19 and 22 h. The mounted WT has a maximum
power of 10 kW at a wind speed of 25 m/s. The WT parameters
19.6, 1.225, and 0.4 are used to quantify the swept area, air density,
and coefficient efficiency, respectively. Under the rated conditions
of the environment, the solar photovoltaic used is rated at 10 kW.
Table 1 presumes that the original SOC battery is already known
and taken as 50 percent for the battery constraints used in this
study. As seen inTable 2, in [19, 31], the values of these parameters
are defined in parameters of both DGs, including cost of fuel
variables, maximum and minimum power limits, and range limit.

The ANN-GA solves the energy dispatching (ED) dilemma
where 50 is the population size and 100 is the cumulative number
of iterations. The better costs, using different weighting criteria,
the worse cost, and the mean cost of the proposed goal feature are
used to evaluate its efficacy.

Results and Discussion
In the objective role of simulation research, various WF
importances are taken into account to assess the effect of a
given WF goal and to see its impact on the HG approach. The
impact of the WF on the algorithm behavior, battery SOC status,
and optimized cost-activity functions is thus analyzed. The ED
problem is solved by the ANN. To examine the accuracy and
effectiveness of the proposed ANN protective algorithm, two
other conventional methods are used for comparisons which are
neural networks (ANNs) and fuzzy neural networks (FNNs); the
structure of these methods is shown in Table 2. The accuracy of
testing results is computed for the proposed method and for the
two other methods. The test results are used to check the accuracy
by measuring the F1 score, which is the harmonic mean between
precision and recall (Fleer and Stenzel, 2016). Table 2 shows that
the accuracy of the proposed method has high identification
accuracy from the other two methods and with the same total
MSE of 0.001, the proposed method is convergent with less than
2,550 epochs, as compared with the convergence epoch numbers
of the ANN and the FNN. This proves that the performances of
the proposed ANN algorithm are effective and perform higher
classification accuracy. The learning of the total MSE with the
number of epochs for the proposed ANN algorithm and the other
two methods is shown in Figures 5–7.

To avoid overcharging and over-discharging, the battery’s
state of charge (SOC) is used as a restriction on the ED issue.
The effect of WF on battery SOC activity is depicted in Figure 8.
A range of WF values are assessed with the objective feature (0,
250, and 1,000). If the battery does not get drained, numerous
charge and discharge cycles are clearly shown, which indicate that
the battery provides considerable energy in the HG. If further
charging loops, however, are prevented and a battery life
extension is possible, then the goal intersects with the
relationship among the two goals. This graph demonstrates

TABLE 6 | Renewable generators generate optimal power and express by PWT(t)
and PPV(t).

Time (h) PPV (kW) PWT (kW) Time (h) PPV (kW) PWT (kW)

1 0 0.005 13 2,396,065 0.555
2 0 0.007 14 3,343,408 0,74
3 0 0.006 15 2,042,591 0,79
4 0 0.004 16 094,129 0.703
5 0 0.005 17 3,995,774 0.582
6 0 0.005018 18 0,685,681 0.544
7 1,093,852 0.017 19 0,107,896 0.426
8 1,509,264 0.013 20 0 0.283
9 2,167,166 0.004 21 0 0.285
10 525,085 0.016 22 0 0.341
11 479,016 0.090272 23 0 0,41
12 3,745,608 0.291 24 0 0.367

FIGURE 9 | Resulting ED solution of HG generation units.
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that the SOC condition is sustained more consistently and load
times are shortened. The number of mutual batteries with HGs is
also smaller, and the cost function is higher than in Table 3.

In order to maintain the trade-offs among the two goals, the
next ED problem simulation result of HG units is conducted for e
� 250. Using the ANN algorithm, the maximum power of both
installed DGs can be calculated. The results of high performance
at night and low morning output of both DGs during the
simulation stage are seen in Table 4. The optimum power
exchange between the HG and the battery is shown in Table 5
using the ANN-GA algorithm. The best power generation RGs of
the ANN-GA algorithm also appear in Table 6. As PV and WT
generators begin electricity production, they generate renewable
energy that helps sustain DG generation. For charging the tank,
most RE industries are used.

Figure 9 shows the optimum ED solution for HG devices over
a period of 24 h as seen in Tables 4–6. Both HG units are
specifically participating in the satisfaction of the LD. The
battery charges due to the lower LD and DGs are reduced to
minimal until the panel and the WT generator start generating
electricity. As described in the article, the HG charges the pile
while the battery delivers power to the HG, if positively. The
surplus power can be supplied to the battery where the energy
given by the RE or by the DGs is lower. Then the DGs and the
battery should cooperate in order for the LD to fulfill the need
when the RE supply is limited and LD energy demands more in
the night.

CONCLUSION

This article expresses a 24-h horizon energy transmission cycle of
an isolated HG with battery storage. In addition to the fuel cost,

the objective feature proposes battery depletion costs. The
question of energy transmission was to reduce the FC of DG
and BDC to a minimum. In the proposed target function, a WF is
implemented. The ANN-GA addresses the energy supply issue in
order to ensure the best supply of isolated HGs such as the WT
engine, PV, two DGs, and batteries. The results show that it is
necessary to select the appropriate value of WF for the best cost
function. WF also affects the state of the SOC battery. The results
show that the SOC battery with WF equal to 250 remains more
robust and the charging cycles decreased. The ED problem of HG
generating units is performed on e � 250 in order to resolve the
trade-off between the BDC and FC. The ANN-GA adds all HG
units together to satisfy the LD
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NOMENCLATURE

HG hybrid grid

RES renewable energy source

GC grid-connected

PMS power management system

LD load demandload demand

BS battery storage

FLC fuzzy logic control

GA genetic algorithm

LD load demandload demand

APV area of PV panels

NPV no. of PV modules

hhub height (m) of hub

PBch battery charge power

ηBdch battery discharge efficiency

Cbat cyc regular cost of charging

CM maintenance costs

ARF annual recovery factor

PWT(t) power generated by wind turbine

ESS energy storage system

SOC state of the charge

PSO particle swarm optimization

BDC battery deprivation cost

ANN- artificial neural network

WT wind turbine

WS wind speedwind speed

DOD depth of discharge

TLL total life lost,

IPV irradiation developed by solar

ηPV overall efficiency

WS wind speedwind speed

PBdch battery discharge power

ηBch battery charge efficiency

Ci(PDGi(t)) cost of diesel energy

Scyc(DOD) period of depth stress value

CBat cost of purchasing the batteries

PDGi(t) power generated by diesel generator

PPV(t) power generated by PV panels

CSD self-degradation cost

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 77440812

Riyaz et al. Power Management of Hybrid Grid System

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Power Management of Hybrid Grid System With Battery Deprivation Cost Using Artificial Neural Network
	Introduction
	HG Modeling
	Photovoltaic Panels
	Wind Generator
	Battery Energy Storage System

	PMS Problem Formulation
	Objective Functions
	Cost of Diesel Energy
	Battery Control

	Restriction Criterion
	Restrictions of Power Flow
	Restrictions of Renewable Generation
	Restrictions of Diesel Generator
	Restrictions of Battery Source


	ANN With Genetic Application
	Implementation of ANN With the Genetic Algorithm

	Discussion on Simulation Outcomes
	Methodology
	Results and Discussion

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References
	Nomenclature


