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Abstract We consider the prediction of future observa-

tions from the log-logistic distribution. The data is assumed

hybrid right censored with possible left censoring. Differ-

ent point predictors were derived. Specifically, we obtained

the best unbiased, the conditional median, and the maxi-

mum likelihood predictors. Prediction intervals were

derived using suitable pivotal quantities and intervals based

on the highest density. We conducted a simulation study to

compare the point and interval predictors. It is found that

the point predictor BUP and the prediction interval HDI

have the best overall performance. An illustrative example

based on real data is given.

Keywords Hybrid censoring � Log-logistic distribution �
Point prediction � Prediction intervals

1 Introduction

In designing a life test to investigate the lifetime distribu-

tion of a certain product, information on future observa-

tions can help us in determining the cost of the testing

process and whether actions are needed to redesign the test

(Valiollahi et al. 2017). Manufacturers can predict the

number and times of future failures of a product using the

past record of failures. Such predictions are useful to

quantify future warranty costs and insure that a sufficient

number of spare parts is available.

Prediction helps in developing plans and reduce the

probability of risks in future. In manufacturing companies,

financial managers need prediction bounds on the costs of

future warranty (Meeker and Escobar 1998). Prediction

gives managers the ability to make informed decisions and

develop data-driven strategies. Therefore, it is necessary to

develop point and interval predictors for future failure

times.

Several studies have been conducted in the literature to

study point and interval predictors for various types of

lifetime distributions under a variety of experimental

conditions. For example, Asgharzadeh et al. (2015) con-

sidered prediction of future failures for the two parameter

Weibull random variable under hybrid censoring. They

obtained three classical point predictors, namely the MLP,

the BUP, and the CMP in addition to a Bayesian point

predictor. Moreover, Valiollahi et al. (2017) have studied

prediction based on censored samples from the generalized

exponential distribution. Similar work on prediction for

future failures from the exponential distribution can be

found in Lawless (1971) and Ebrahimi (1992). The Weibull

case was considered by Kundu and Raqab (2012). The one

and two sample Bayesian prediction problems with hybrid

censored data were considered by Shafay et al. (2012).

Classical and Bayesian prediction in the Bur III model

were discussed by Singh et al. (2019). ChauPattnaik et al.

(2021) discuss component based reliability prediction using

Markov chains techniques. Prediction of remaining useful

life in some distributions was investigated using Artificial

neural networks (ANN) by Farsi and Hosseini (2019).

It appears that little attention was given to developing

and comparing the performance of point and interval pre-

dictors for future failures in the loglogistic model when the
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data are both left censored and right hybrid censored. In

this paper, we developed various types of point predictors

as well as prediction intervals. Using simulation tech-

niques, the bias and mean squared error performance of the

point predictors was investigated. The prediction intervals

where compared based on their observed coverage proba-

bilities and estimated expected interval lengths. The

application of the methods studied in tis paper to real data

was discussed using two examples.

The log-logistic distribution is an important statistical

model with several applications in various fields. It is used

in modeling population growth as first suggested by Ver-

hulst (1838). It is known as the Fisk distribution in eco-

nomic literature after Fisk (1961) where it was use for

studying income inequality. In addition, it has several

applications in reliability and life testing studies and

sometimes used instead of the log-normal distribution as it

is right skewed and has an increasing hazard rate function,

it has heavier tail than the lognormal and its cumulative

distribution functionand hazard function are available in

simple closed forms, see Tahir et al (2014) and Akhtar and

Khan (2014). The probability density, the cumulative dis-

tribution, and the reliability functions are given by (Law-

less, 2003)

f tð Þ ¼
abðatÞb�1

ð1þ ðatÞbÞ2
t� 0; a[ ; b[ 0;

0otherwise

8
><

>:
ð1Þ

F tð Þ ¼ P T � tð Þ ¼ ðatÞb

1þ ðatÞb
; ð2Þ

S tð Þ ¼ 1� F tð Þ ¼ 1� atð Þb

1þ atð Þb
¼ 1

1þ atð Þb
; ð3Þ

The hybrid censoring scheme is as follows: Assume that

n units are put on test, the researcher terminates the

experiment either when m\n units fail or when a certain

time s for the experiment is reached. If Xm is the time of the

mth failure the life test will be stopped at time

T� ¼ minðXm; sÞ. When n units are put on life test, and r

out of n units have failure time less than a certain time t0,

the available information about the m units is that

0� ti � t0, i ¼ 1; . . .; r where ti is the failure time of the ith

unit. The failure times of the r units, t1; . . .; tr are left

censored.

The remaining part of the paper is structured as follows.

In Sect. 2, the likelihood equations are derived. In Sect. 3,

predictive likelihood equations are obtained in addition to

the point predictors. In Sect. 4, the prediction intervals are

derived. In Sect. 5, we performed simulations to compare

the performance of different predictors. An illustrative

example based on real data is given in Sect. 6 . The

conclusions and suggestions for further study are presented

in the final section.

2 Likelihood construction and the maximum
likelihood estimator

Now we will construct the likelihood function in the log-

logistic case assuming a hybrid censored sample that

include possibly left censored observations. Similar like-

lihood construction were considered by other authors in

other situations including Ahmadi et al. (2012) for the

proportional hazards model and Kundu and Mitra (2016)

for the Weibull distribution. Assume that n units are placed

on life test, assume that r units are left censored at timet0.

The contribution to the likelihood from a left censored

observation is Li a; bð Þ ¼ at0ð Þb

1þ at0ð Þb and hence the Likelihood

based on the left censored observations is
Qr

i¼1
at0ð Þb

1þ at0ð Þb ¼
at0ð Þrb

1þ at0ð Þbð Þr : Now we will consider hybrid censoring, we have

two cases:

Case 1: There are m units with corresponding failure

times: trþ1; trþ2; trþ3; . . .; trþm where ti\s for all

i ¼ r þ 1; . . .; r þ m.

Case 2: We obtained s failures before time s with failure

times: trþ1; trþ2; trþ3; . . .; trþs where s\m and

trþs\s\trþsþ1.

The hybrid censoring scheme is given in Figure 1 in

Kundu and Pradhan (2009). A description of time termi-

nated and failure terminated censoring types is given in

several sources including Kececioglu (1991).

Combining the two cases as follows: Let d be the

number of observed failures and s� be the experiment

termination time, we have

d ¼ m case 1

s case 2

�

s� ¼
trþm case 1

s case 2

(

The d observations contribution to the likelihood is
Qrþd

i¼rþ1 f ðtiÞ ¼
Qrþd

i¼rþ1
ab atið Þb�1

ð1þ atiÞbð Þ2 : The n� ðr þ dÞ censored

data contribution to the likelihood is 1� F s�ð Þð Þn�ðrþdÞ
.

The full likelihood function for both cases is
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a; bð Þ ¼ at0ð Þrb

1þ at0ð Þb
� �r �

Yrþd

i¼rþ1

ab atið Þb�1

ð1þ atiÞb
� �2 �

1

1þ as�ð Þb

 !n� rþdð Þ
8
<

:

9
=

;

¼ at0ð Þrb

1þ at0ð Þb
� �r �

Yrþd

i¼rþ1

ab atið Þb�1

ð1þ atiÞb
� �2 �

1þ as�ð Þb
� � rþdð Þ�n
� �

ð4Þ

The Log-Likelihood function is

ln L a; bð Þ ¼ rb lnðat0Þ � r lnð1þ at0Þb
� �

þ
Xi¼rþd

i¼rþ1

lnðabðatiÞb�1Þ � 2
Xi¼rþd

i¼rþ1

lnðð1

þ atiÞb
� �

� n� r þ dð Þð Þ lnð1þ as�Þb
� �

;

ð5Þ

The log-likelihood function derivatives are given by

oL

oa
¼ rb

a
� rbðat0Þb

a 1þ at0ð Þb
� �þ db

a
� 2

Xi¼rþd

i¼rþ1

b atið Þb

a 1þ atið Þb
� �

� n� r þ dð Þð Þb as�ð Þb

a 1þ as�ð Þb
� � :

ð6Þ

oL

ob
¼ r ln at0ð Þ � rðat0Þb ln at0ð Þ

1þ at0ð Þb
� � þ

Xi¼rþd

i¼rþ1

1þ b ln atið Þ
b

� 2
Xi¼rþd

i¼rþ1

atið ÞblnðatiÞ
1þ atið Þb
� �� n� r þ dð Þð Þ as�ð Þblnðas�Þ

1þ as�ð Þb
� �

ð7Þ

It is clear that the maximum likelihood estimator can’t

be obtained explicitly. Therefore, numerical techniques can

be used like the Newton Raphson technique or the

Expectation–Maximization algorithm of Dempster et al.

(1977) to find the MLEs.

3 Point prediction of future observations

We consider prediction of Y ¼ TpþðrþdÞ where p ¼
1; . . .; n� ðr þ dÞ based on T ¼ ðTrþ1; . . .; TrþdÞ. Due to the
Markov property for censored order statistics (Aggarwala

andBalakrishnan 1998),Y jT ¼ t has the same distribution as

the pth order statistic of a sample of size n� ðr þ dÞ from the

distribution G yð Þ ¼ F yð Þ�Fðs�Þ
1�Fðs�Þ for all y[ s�. The density

function is g yð Þ ¼ d
dy G yð Þ ¼ f ðyÞ

1�Fðs�Þ. Therefore, the condi-

tional density of Y ¼ TpþðrþdÞ given T ¼ t ¼ ðtrþ1; . . .; trþdÞ
for all y[ s� is given by (Valiollahi et al. 2017):

f yjtð Þ ¼ n� r þ dð Þð Þ!
p� 1ð Þ! n� r þ dð Þ � pð Þ!

G yð Þð Þp�1
1� G yð Þð Þn� rþdð Þ�pg yð Þ

Replace G yð Þwith F yð Þ�Fðs�Þ
1�Fðs�Þ andg yð Þwith f ðyÞ

1�Fðs�Þ, we get:

yjtð Þ ¼ p
n� r þ dð Þ

p

� �

ayð Þb� as�ð Þb
h ip�1

1þ ayð Þb
� ��nþ rþdð Þ�1

� 1þ as�ð Þb
� �n� rþdð Þ�pþ1

�abðayÞb�1;

ð8Þ

for all y[ s�, p ¼ 1; . . .; n� ðr þ dÞ.

3.1 The maximum likelihood predictor

Referring to Asgharzadeh et al. (2015), the predictive

likelihood function (PLF) of Yandða; bÞ is given by

L y; a; bjtð Þ ¼ f ðyjt; a; bÞ � gðtja; bÞ

where f ðyjt; a; bÞ is the conditional density of Y and

gðtja; bÞ is the likelihood function of the log-logistic dis-

tribution. Hence,

L y; a; bð Þ ¼ p
n� r þ dð Þ

p

� �

ayð Þb � as�ð Þb
h ip�1

1þ ayð Þb
� ��nþ rþdð Þ�1

1þ as�ð Þb
� �n� rþdð Þ�pþ1

abðayÞb�1

at0ð Þrb

1þ at0ð Þb
� �r

Yrþd

i¼rþ1

ab atið Þb�1

ð1þ atiÞb
� �2 1þ as�ð Þb

� � rþdð Þ�n
� �

ð9Þ

ln L y; a; bð Þ ¼ p� 1ð Þln ayð Þb � as�ð Þb
h i

þ ð r þ dð Þ � n

� 1Þlnð1þ ayð ÞbÞ þ ð1
� pÞ:ln 1þ as�ð Þb

� �
þ d þ 1ð Þln abð Þ

þ b� 1ð Þln ayð Þ þ rbln at0ð Þ

� rln 1þ at0ð Þb
� �

þ ðb� 1Þ
Xi¼rþd

i¼rþ1

ln atið Þ

� 2
Xi¼rþd

i¼rþ1

lnð1þ atið ÞbÞ

ð10Þ

It follows that

The maximum likelihood predictor (MLP) is the value (
�
YMLPÞ

in the maximizer of this function. Theerfore we
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obtain the derivatives of the log predictive likelihood as

follows:

olnL y; a; bð Þ
oy

¼

1

y

p� 1ð Þb ayð Þb

ayð Þb � as�ð Þb
þ r þ d � n� 1ð Þb ayð Þb

1þ ayð Þb
þ b� 1

" #

ð11Þ

olnL y; a; bð Þ
ob

¼ p� 1ð Þ ayð Þbln ayð Þ � as�ð Þbln as�ð Þ
ayð Þb � as�ð Þb

þ r þ d � n� 1ð Þ ayð Þbln ayð Þ
1þ ayð Þb

þ 1� pð Þ as�ð Þbln as�ð Þ
1þ as�ð Þb

þ ðd þ 1Þ
b

þ ln ayð Þ þ rlnðat0Þ �
r at0ð Þbln at0ð Þ
1þ at0ð Þb

þ
Xi¼rþd

i¼rþ1

lnðatiÞ � 2
Xi¼rþd

i¼rþ1

atið Þbln atið Þ
1þ atið Þb

ð13Þ

Solving the predictive likelihood equations will give the

maximum likelihood predictor of Y ( �
YMLPÞ

3.2 The best unbiased predictor

A predictor could be obtained using the conditional dis-

tribution of Y ¼ TpþðrþdÞ given T ¼ ðTrþ1; . . .; TrþdÞ, see
Valiollahi et al. (2019). This predictor YCond is the best

unbiased predictor (BUP) of Y . It is given by: YCond ¼

E Y jTð Þ ¼
R1

s�
yf yjt; a; bð Þdy where s� is the experiment ter-

mination time. It follows that

YCond ¼ r
1

s�
y � p

n� r þ dð Þ
p

� �

� ayð Þb� as�ð Þb
h ip�1

� 1þ ayð Þb
� ��nþ rþdð Þ�1

� 1þ as�ð Þb
� �n� rþdð Þ�pþ1

� abðayÞb�1 � dy ¼ p
n� r þ dð Þ

p

� �

� 1þ as�ð Þb
� �n� rþdð Þ�pþ1

�I1;

where I1 ¼ r
1

s�
y� ayð Þb� as�ð Þb

h ip�1

�

1þ ayð Þb
� ��nþ rþdð Þ�1

�abðayÞb�1 � dy;
Using the binomial theorem we obtain

ayð Þb� as�ð Þb
h ip�1

¼
Xp�1

k¼0

p� 1

k

� �

�1ð Þp�1�k� ayð Þb
� �k

� as�ð Þb
� �p�1�k

; I1 ¼
XP�1

k¼0

p� 1

k

� �

�1ð Þp�1�k

� as�ð Þb
� �p�1�k

�br1s� ayð Þb
� �kþ1

: 1þ ayð Þb
� ��nþ rþdð Þ�1

dy;

Let t ¼ 1

1þ ayð Þb then ayð Þb ¼ 1�t
t and 1þ ayð Þb ¼ 1

t and

dy ¼ �dt
ab ayð Þb�1t2

as y ¼ s�; t ¼ 1

1þ as�ð Þb, as y ! 1; t ! 0 and

the integral I2 ¼
R1

s�
ayð Þb

� �kþ1

� 1þ ayð Þb
� ��nþ rþdð Þ�1

dy

will become

I2 ¼
1

ab
� r

1

1þ as�ð Þb

0

tð Þn� rþdð Þ�k�1�1
b� 1� tð Þkþ

1
bdt; YCond

¼ p
n� r þ dð Þ

p

� �

� 1þ as�ð Þb
� �n� rþdð Þ�pþ1

�
Xp�1

k¼0

p� 1

k

� �

�1ð Þp�1�k� as�ð Þb
� �p�1�k

� 1
a
� r

1

1þ as�ð Þb

0

tð Þn� rþdð Þ�k�1�1
b� 1� tð Þkþ

1
bdt;

ð14Þ

We can replace a and b by their MLEs to obtain YCond:

Note that, I2 can be expressed as 1
ab � Bð 1

1þ as�ð Þb ; n�

r þ dð Þ � k � 1
b ; k þ 1

b þ 1Þ where Bðz; a; bÞ is the

olnL y; a; bð Þ
oa

¼ b
a

p� 1ð Þ þ r þ d � n� 1ð Þ ayð Þb

1þ ayð Þb
þ 1� pð Þ as�ð Þb

1þ as�ð Þb
þ d þ r þ 1ð Þ � r at0ð Þb

1þ at0ð Þb
� 2

Xi¼rþd

i¼rþ1

atið Þb

1þ atið Þb

 !

ð12Þ
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incomplete beta function: B z; a; bð Þ ¼
Rz

0

tð Þa�1 �

1� tð Þb�1dt for 0� z\1.

3.3 The conditional median predictor

Another predictor is the conditional median predictor Ymed .

It is defined as Ymed satisfying

P Y � YmedjT ¼ Trþ1; . . .; Trþdð Þð Þ
¼ P Y � YmedjT ¼ Trþ1; . . .; Trþdð Þð Þ;

(Valiollahi et al., 2017). Consider the distribution of

B yð Þ ¼ F yð Þ�Fðs�Þ
1�Fðs�Þ where F is the cumulative distribution

function of the log-logistic distribution.

B yð Þ ¼ ayð Þb

1þ ayð Þb
� as�ð Þb

1þ as�ð Þb

 !

� 1

1� F s�ð Þ

¼ ayð Þb

1þ ayð Þb
� as�ð Þb

1þ as�ð Þb

 !

� 1þ as�ð Þb
� �

¼ ayð Þb� as�ð Þb

1þ ayð Þb

Following Asgharzadeh et. A. (2015), B yð Þ can be

considered as having a Beta distribution

Bðp; n� r � d � pþ 1Þ. Consider:
P Y � YmedjT ¼ Trþ1; . . .; Trþdð Þð Þ

¼ P
aYð Þb � as�ð Þb

1þ aYð Þb
� aYmedð Þb � as�ð Þb

1þ aYmedð Þb

 

jT ¼ ðTrþ1; . . .; TrþdÞ
�

;

Equivalently, P B� aYmedð Þb� as�ð Þb

1þ aYmedð Þb

� �
¼ 0:5 and hence

aYmedð Þb� as�ð Þb

1þ aYmedð Þb ¼ Med ðBÞ. Therefore,

Ymed ¼ 1
a

Med Bð Þþ as�ð Þb
1�Med Bð Þ

h i1
b
. (15).

Where the unknown parameters are substituted by their

MLEs.

4 Prediction intervals

We consider deriving prediction intervals for Y ¼ TpþðrþdÞ
based on the data T ¼ ðTrþ1; . . .; TrþdÞ. Let

Z ¼ B yð Þ ¼ ayð Þb� as�ð Þb

1þ ayð Þb , it is clear that Z has a Beta distri-

bution Bðp; n� r � d � pþ 1Þ. It could be used as a pivot

to obtain ð1� cÞ100% prediction interval of Y (As-

gharzadeh et al. 2015). If Bc is the 100cth percentile of

Bðp; n� r � d � pþ 1Þ then ð1� cÞ100% PI of Y is

ða1; b1Þ where.

a1 ¼ 1
a

Bc
2
þ as�ð Þb

1�Bc
2

� 	1
b

and a2 ¼ 1
a

B
1�c

2
þ as�ð Þb

1�B
1�c

2

� 	1
b

. (16).

The parameters a and b are to be replaced by their

MLEs. Another Prediction interval is based on the highest

density interval, see Valiollahi et al. (2017). It is the

interval consisting of all points with density function

higher than that of other values. The HDI for unimodal

distributions produces the shortest such interval. Since B yð Þ
is distributed as Bðp; n� r � d � pþ 1Þ, the ð1� cÞ100%
HDI for prediction of Y is ða2; b2Þ

where a2 ¼ 1
a

w1þ as�ð Þb
1�w1

h i1
b

and b2 ¼ 1
a �

w2þ as�ð Þb
1�w2

h i1
b
,

(17).where w1, w2 are defined as:
Rw2

w1

gðzÞdz ¼ 1� c and

g w1ð Þ ¼ gðw2Þ. Solving g w1ð Þ ¼ g w2ð Þ; we get

w1

w2

� �p�1

¼ 1� w2

1� w1

� �n�r�d�1

; ð18Þ

It is clear that if p ¼ 1, we get ð1�w2

1�w1
Þn�r�d�1 ¼ 1, hence

w1 ¼ w2 and no prediction interval can be obtained. For

other values of p, we obtain the solutions w1 and w2 of the

above equation and then substitute MLEs of the parameters

a and b.

5 Simulation study

We will design a simulation study to investigate the per-

formance of the predictors. Hybrid censored samples of

size n from log-logistic distribution will be generated. The

parameters ða; bÞ from which the samples are generated are

taken as ð3; 2Þ, the sample size n is taken as 20,30,50 and

80.

Following Piegorsch (1987), we used 2000 replications,

based on each sample we obtain the point and interval

predictors for the future values of

Y ¼ TpþðrþdÞ,p ¼ 1; 2; . . .; n� ðr þ dÞ. We reported the

bias and mean square prediction error (MSPE) for the point

predictors MLP, BUP and CMP. The Bias and MSPE of

each predictor value are calculated as follows: If �
yi

is the

value of the predictor of Y ¼ TpþðrþdÞ obtained from the ith

iteration,i ¼ 1; . . .; 2000, then Bias ¼ 1
N ð
PN

i¼1ð�yi
� YÞÞ

and MSPE ¼ 1
N ð
PN

i¼1 ðð�yi
� YÞ2Þ.

We also investigated the performance of the prediction

intervals developed in this paper. We calculated their

empirical coverage probabilities and simulated expected

lengths. The results for the point and interval predictors are

given in Tables 1, 2, 3.
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6 A real data example

We will consider the real data set used by Schmee and

Nelson (1977) and later discussed by Lawless (2003). It

represents the number of miles to failure of 96 locomotive

controls. The experiment was stopped after 135,000 miles

and the 37 failure times were recorded (in thousands):

22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0,

69.5, 76.5, 77.0, 78.5, 80.0,

81.5, 82.0, 83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5,

112.5, 113.5, 116.0, 117.0,

118.5, 119.0, 120.0, 122.5, 123.0, 127.5, 131.0, 132.5,

134.0.

Hybrid censored samples will be obtained from this data

set. We will predict Tp for p ¼ 1, 2, 3, 4 and 5. We notice

that the (MLEs) obtained are ba ¼ 0:00623 and

bb ¼ 2:5941. The following data were generated according

to the scheme where t0 ¼ 0, t1 ¼ 135 and m1 ¼ 25:

Data values: 22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5,

57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 81.5, 82.0,

83.0, 84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5

Using the formulas (10), (14), (15), (16) and (17)

derived in this paper, we obtained the following prediction

results.

We note that all Point Predictors produce accurate

results. Moreover, both Prediction Intervals contain the

Table 1 Performance of point

and interval predictors for p ¼ 1
n t0 t1 m Point predictors Interval prediction

MLP BUP CMP Pivotal HDI

30 1/9 1/3 12 Bias - 0.0356428 - 0.0001214 - 0.0067327 Cov.Prob 0.9170 –

MSPE 0.0023130 0.0000000 0.0000453 Length 0.0794 –

30 0 1/3 12 Bias 0.0209951 - 0.0010612 - 0.0064391 Cov.Prob 0.9065 –

MSPE 0.0023301 0.0000011 0.0000415 Length 0.0649 –

50 1/9 1/3 20 Bias - 0.0491196 0.0003674 - 0.0036448 Cov.Prob 0.9285 –

MSPE 0.0030274 0.0000001 0.0000133 Length 0.0470 –

50 0 1/3 20 Bias - 0.0180144 - 0.0005035 - 0.0038210 Cov.Prob 0.9200 –

MSPE 0.0016416 0.0000003 0.0000146 Length 0.0394 –

80 1/9 1/3 32 Bias - 0.0279471 - 0.0000879 - 0.0025565 Cov.Prob 0.9425 –

MSPE 0.0011871 0.0000000 0.0000065 Length 0.0297 –

80 0 1/3 32 Bias - 0.0021231 - 0.0002719 - 0.0023719 Cov.Prob 0.9380 –

MSPE 0.0009112 0.0000001 0.0000056 Length 0.0251 –

30 1/9 0.509 18 Bias - 0.0988914 - 0.0021778 - 0.0141224 Cov.Prob 0.9380 –

MSPE 0.0126730 0.0000047 0.0001994 Length 0.1428 –

30 0 0.509 18 Bias - 0.0961920 - 0.0007020 - 0.0094334 Cov.Prob 0.9345 –

MSPE 0.0136949 0.0000005 0.0000890 Length 0.1030 –

50 1/9 0.509 30 Bias - 0.0430364 - 0.0005838 - 0.0076966 Cov.Prob 0.9260 –

MSPE 0.0037569 0.0000003 0.0000592 Length 0.0830 –

50 0 0.509 30 Bias - 0.1058517 0.0001221 - 0.0051086 Cov.Prob 0.9385 –

MSPE 0.0140694 0.0000000 0.0000261 Length 0.0616 –

80 1/9 0.509 48 Bias - 0.0072073 - 0.0008286 - 0.0052486 Cov.Prob 0.9445 –

MSPE 0.0012743 0.0000007 0.0000275 Length 0.0520 –

80 0 0.509 48 Bias 0.0077276 - 0.0000515 - 0.0033197 Cov.Prob 0.9440 –

MSPE 0.0021962 0.0000001 0.0000110 Length 0.0390 –

20 0 1/3 8 Bias - 0.0073401 - 0.0030650 - 0.0107117 Cov.Prob 0.893 –

MSPE 0.0026192 0.0000094 0.0001147 Length 0.1039 –

20 0 0.509 12 Bias 0.0370314 - 0.0003054 - 0.0132941 Cov.Prob 0.9025 –

MSPE 0.0070952 0.0000001 0.0001767 Length 0.0937 –
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true ‘‘future’’ failure. The HDI intervals are shorter than the

corresponding pivotal intervals (Table 4).

7 Conclusions and suggestions for further
research

In this paper, we studied prediction of future values of the

log-logistic distribution under hybrid censored data with

possible left censoring. We obtain the predictive likelihood

function and use it to obtain the MLP. The conditional

density of the future failure was used to obtain the BUP,

and CMP. Prediction intervals based on pivotal quantities

were constructed. Moreover, we obtained the HDI interval.

We investigated and compared the performance of the

point predictors in terms of their Biases and MSPE. The

two prediction intervals were compared in terms of cov-

erage probability and average width.

Based on the results of the simulation study, it appears

that the BUP has the best performance in terms of Bias and

MSPE, followed by the CMP. As for prediction intervals, it

appears that the interval based on pivotal quantity when

p ¼ 1 has an observed coverage probability that is close to

the nominal level for all combinations of n, t0, t1, and m:

n� 30. As the value of p gets larger, the observed coverage

probability of both intervals gets close to the nominal level

for large values of n. The expected length of the HDI

interval is smaller than that of the interval based on pivotal

quantity for p[ 1.

Table 2 Performance of point and interval predictors for p ¼ 2

n t0 t1 m Point predictors Interval prediction

MLP BUP CMP Pivotal HDI

30 1/9 1/3 12 Bias - 0.0798906 - 0.0003420 - 0.0078126 Cov.Prob 0.9040 0.8970

MSPE 0.0077366 0.0000001 0.0000610 Length 0.1228 0.1080

30 0 1/3 12 Bias - 0.1098029 - 0.0041781 - 0.0097948 Cov.Prob 0.8820 0.8600

MSPE 0.0142840 0.0000175 0.0000959 Length 0.0961 0.0852

50 1/9 1/3 20 Bias - 0.0255834 0.0004877 - 0.0038237 Cov.Prob 0.9115 0.9090

MSPE 0.0014081 0.0000002 0.0000146 Length 0.0697 0.0616

50 0 1/3 20 Bias - 0.0105547 - 0.0014895 - 0.0050050 Cov.Prob 0.9145 0.9085

MSPE 0.0015578 0.0000022 0.0000250 Length 0.0582 0.0516

80 1/9 1/3 32 Bias - 0.0081806 0.0001233 - 0.0024999 Cov.Prob 0.9345 0.9355

MSPE 0.0004983 0.0000000 0.0000062 Length 0.0437 0.0387

80 0 1/3 32 Bias 0.0481446 - 0.0007660 - 0.0029591 Cov.Prob 0.9220 0.9140

MSPE 0.0032718 0.0000006 0.0000088 Length 0.0370 0.0328

30 1/9 0.509 18 Bias - 0.1722274 - 0.0010769 - 0.0159727 Cov.Prob 0.9210 0.9125

MSPE 0.0336022 0.0000012 0.0002551 Length 0.2291 0.1994

30 0 0.509 18 Bias - 0.0629317 - 0.0018666 - 0.0118709 Cov.Prob 0.9035 0.8940

MSPE 0.0094738 0.0000035 0.0001409 Length 0.1602 0.1404

50 1/9 0.509 30 Bias 0.0727522 - 0.0019253 - 0.0100715 Cov.Prob 0.9370 0.9315

MSPE 0.0074687 0.0000037 0.0001014 Length 0.1290 0.1131

50 0 0.509 30 Bias 0.0462383 - 0.0008137 - 0.0065900 Cov.Prob 0.9255 0.9185

MSPE 0.0054594 0.0000007 0.0000434 Length 0.0933 0.0822

80 1/9 0.509 48 Bias 0.0729730 - 0.0011922 - 0.0060945 Cov.Prob 0.9300 0.9345

MSPE 0.0067363 0.0000014 0.0000371 Length 0.0791 0.0696

80 0 0.509 48 Bias - 0.0040232 - 0.0003281 - 0.0038653 Cov.Prob 0.9385 0.9380

MSPE 0.0022064 0.0000001 0.0000149 Length 0.0577 0.0510

20 0 1/3 8 Bias 0.0247661 - 0.0043042 - 0.0130384 Cov.Prob 0.8445 0.8265

MSPE 0.0034740 0.0001852 0.0001700 Length 0.1447 0.1277

20 0 0.509 12 Bias - 0.0055823 - 0.0057162 - 0.0217901 Cov.Prob 0.9105 0.8940

MSPE 0.0072028 0.0000327 0.0000474 Length 0.2511 0.2185
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Under the effect of left censoring, the expected length of

both intervals get slightly larger while the coverage prob-

abilities get closer to the nominal level. Left censoring does

not appear to have clear fixed on the performance of point

predictors.

As m and t1 increase, the bias and MSPE ofthe point

predictors are almost unchanged. However, it is slightly

increasing for the CMP. On the other hand, the lengths of

the pivotal and HDI intervals gets slightly larger and the

coverage probability of both intervals gets closer to the

nominal.

Table 3 Performance of point and interval predictors for p ¼ 3

n t0 t1 m Point predictors Interval prediction

MLP BUP CMP Pivotal HDI

30 1/9 1/3 12 Bias - 0.0002865 0.0009938 - 0.0073408 Cov.Prob 0.8860 0.8860

MSPE 0.0018606 0.0000010 0.0000539 Length 0.1590 0.1458

30 0 1/3 12 Bias 0.0402289 - 0.0034564 - 0.0094984 Cov.Prob 0.8550 0.8440

MSPE 0.0044099 0.0000119 0.0000902 Length 0.1230 0.1135

50 1/9 1/3 20 Bias 0.0218879 - 0.0001042 - 0.0046385 Cov.Prob 0.9100 0.9050

MSPE 0.0013513 0.0000000 0.0000215 Length 0.0892 0.0822

50 0 1/3 20 Bias 0.0449275 - 0.0017215 - 0.0053526 Cov.Prob 0.8890 0.8820

MSPE 0.0037440 0.0000030 0.0000287 Length 0.0735 0.0680

80 1/9 1/3 32 Bias - 0.0304175 0.0007796 - 0.0019608 Cov.Prob 0.9290 0.9240

MSPE 0.0014383 0.0000006 0.0000038 Length 0.0550 0.0507

80 0 1/3 32 Bias - 0.0116306 - 0.0003288 - 0.0025965 Cov.Prob 0.9220 0.9125

MSPE 0.0011558 0.0000001 0.0000067 Length 0.0459 0.0424

30 1/9 0.509 18 Bias - 0.1929948 - 0.0002218 - 0.0189897 Cov.Prob 0.8985 0.9040

MSPE 0.0426268 0.0000000 0.0003606 Length 0.3256 0.2989

30 0 0.509 18 Bias - 0.0178158 - 0.0037171 - 0.0153040 Cov.Prob 0.9010 0.8940

MSPE 0.0067576 0.0000138 0.0002342 Length 0.2153 0.1970

50 1/9 0.509 30 Bias 0.0327140 - 0.0006912 - 0.0098018 Cov.Prob 0.9150 0.9075

MSPE 0.0038957 0.0000005 0.0000961 Length 0.1711 0.1564

50 0 0.509 30 Bias 0.0235009 - 0.0025488 - 0.0087723 Cov.Prob 0.9200 0.9110

MSPE 0.0041981 0.0000065 0.0000770 Length 0.1199 0.1101

80 1/9 0.509 48 Bias - 0.0471465 - 0.0000941 - 0.0053663 Cov.Prob 0.9345 0.9405

MSPE 0.0038174 0.0000000 0.0000288 Length 0.1007 0.0924

80 0 0.509 48 Bias 0.0519966 - 0.0011418 - 0.0048357 Cov.Prob 0.9350 0.9335

MSPE 0.0050858 0.0000013 0.0000234 Length 0.0735 0.0676

20 0 1/3 8 Bias 0.0110992 - 0.0083584 - 0.0180271 Cov.Prob 0.8135 0.7960

MSPE 0.0044274 0.0000699 0.0003249 Length 0.1904 0.1751

20 0 0.509 12 Bias 0.0567831 - 0.0043021 - 0.0249301 Cov.Prob 0.8715 0.8550

MSPE 0.0126722 0.0000185 0.0006215 Length 0.3603 0.3306

Table 4 The values of point

predictors and the 95%

prediction intervals

Exact Value MLP BUP CMP PIVOTAL HDI

p ¼ 1 113.5 113.5 114.7 114.1 (112.5,120.6) –

p ¼ 2 116.0 115.6 116.9 116.2 (113.1,125.6) (112.6,123.7)

p ¼ 3 117.0 116.7 119.2 118.5 (114.0,127.6) (113.0,127.6)

p ¼ 4 118.0 118.2 121.4 120.7 (115.2,133.0) (114.3,131.3)

p ¼ 5 119.0 118.8 123.6 123.0 (116.5,136.4) (115.6,134.7)

123

Int J Syst Assur Eng Manag



In conclusion, we recommend that the best point pre-

dictor is the BUP as it has the least bias and MSPE, and the

best interval prediction method is the HDI method for

p[ 1.

The work in this paper can be extended in several ways.

For example, it may be of interest to consider prediction

under other types of censoring that occur frequently in life

testing experiments. Another possibility is to consider

Bayesian prediction techniques. Moreover, it is of interest

to consider prediction and the performance of the predic-

tion techniques developed in this paper under step-stress

life testing models.
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