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The main objective of current communication is to present a mathematical model and
numerical simulation for momentum and heat transference characteristics of Maxwell
nanofluid flow over a stretching sheet. Further, magnetic dipole, non-uniform heat source/
sink, and chemical reaction effects are considered. By using well-known similarity
transformation, formulated flow equations are modelled into OD equations. Numerical
solutions of the governing flow equations are attained by utilizing the shooting method
consolidated with the fourth-order Runge-Kutta with shooting system. Graphical results
are deliberated and scrutinized for the consequence of different parameters on fluid
characteristics. Results reveal that the temperature profile accelerates for diverse values of
space dependent parameter, but it shows opposite behaviour for escalated integrity of
temperature dependent parameter.
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INTRODUCTION

Fluids exhibiting non-Newtonian behavior were used in many engineering applications such as
hydraulic fracturing, remediation, and solar heating applications and in several industrial processes.
The motion of non-Newtonian fluids equations is extremely nonlinear when compared to
Navier–Stokes’s equations. The models of non-Newtonian fluids are mainly parted into 3
groups: rate, integral, and differential type fluids. The model of fluid considered here is a sub-
category of a rate type fluid which is called Maxwell fluid. The model of Maxwell fluid forecasts the
impacts of relaxation time. These impacts cannot be projected by other fluid types. Nano-science is
the specified excellent way of altering the personality of a liquid. Deportation of heat characteristics
through nanofluid flow plays a major role in industrial and technological applications. Motivated by
these applications, several researchers examined the Maxwell nano liquid stream past diverse
surfaces. Irfan et al. (Irfan et al., 2018) explored the aspects of heat generation or sink and
magnetic field on the Maxwell liquid wrapped up a cylinder. Prasannakumara et al.
(Prasannakumara et al., 2018) studied the nanoparticles suspension on Maxwell fluid stream
through stretchy geometry with Soret and Dufour effects. Ahmed et al. (Ahmed et al., 2019)
used Maxwell nanofluid to scrutinize the impact of radiation effect. Ijaz and Ayub (Ijaz and Ayub,
2019) scrutinized the two-dimensional stream of a Maxwell nano liquid with the effect of activation
energy. Ahmed et al. (Ahmed et al., 2020) studied the stream of Maxwell fluid impelled through
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gyrating disks on taking account of mixed convection and
Karmann’s swirling flow of rate type nano liquid. The
boundary layer stream with magnetic dipole has extensive
applications in several engineering fields. Given this, recently,
several researchers are showing keen interest in exploring the
magnetic dipole effect on diverse liquid streams over different
geometries. Initially, Khan et al. (Khan et al., 2021) studied the
magnetic dipole and thermal radiation impacts on stagnation
point flow of micropolar-based nanofluids over a vertical
stretching sheet. Ali et al. (Ali et al., 2021) investigated the
magnetic dipole and thermal radiation effects on hybrid base
micropolar CNTs flow over a stretching sheet: Finite element
method approach. Veeranna et al. (Veeranna et al., 2021)
discussed the effect of Stefan blowing and magnetic dipole on
chemically reactive second-grade nanomaterial flow over a
stretching sheet. Prasannakumara (Prasannakumara, 2021)
analyzed the numerical simulation of heat transport in
Maxwell nanofluid flow over a stretching sheet considering the
magnetic dipole effect. Waqas et al. (Waqas et al., 2021) studied
the numerical simulation for a magnetic dipole in bioconvection
flow of Jeffrey nanofluid with swimming motile microorganisms.

The non-uniform heat source/sink effect in the heat
transference is another excellent consideration in several
realistic issues. The various types of fluids through different
surfaces with the impact of inhomogeneous reaction were
argued by various researchers. Basha et al. (Basha et al., 2018)
examined the irregular uniform heat sink/generation effect on
chemically reacting nano liquid stream through a cone and plate.
Elgazery (Elgazery, 2019) explored the nano liquid flow past a
porous instable stretchy surface with in homogeneous heat
source/sink. Irfan et al. (Irfan et al., 2020) deliberated the heat
sink/source features on Maxwell nano liquid stream through an
extended cylinder. Recently, Tawade et al. (Tawade et al., 2021)
discussed the radiant heat and non-uniform heat source onMHD
Casson fluid flow of thin liquid film beyond a stretching sheet. Xu
et al. (Xu et al., 2021) investigated the non-uniform heat source/
sink features for enhancing the thermal efficiency of third-grade
nano fluid containing microorganisms. Shi et al. (Shi et al., 2021)
discussed the heat and mass transfer analysis in the MHD flow of
radiative Maxwell nanofluid with a non-uniform heat source/
sink.

A chemical reaction is a spacious range of applications in the
fields of chemical engineering and industries. It is necessary to
concentrate the flow of heat or mass, subjected with components
in the same or different phases of chemical reactions. Khan et al.
(Khan et al., 2020) deliberate the consequence of Arrhenius
energy in the chemical gyrating stream by considering non-
linear heat flux. Asma et al. (Asma et al., 2020) scrutinized the
MHD stream of nano liquid due to a gyrating disc with the
significant impact of activation reaction. Santhi et al. (Santhi et al.,
2021) studied the heat and mass transfer characteristics of
radiative hybrid nanofluid flow over a stretching sheet with a
chemical reaction. Reddy et al. (Reddy et al., 2021) discussed the
chemical reaction impact on MHD natural convection flow
through porous medium past an exponentially stretching sheet
in presence of heat source/sink and viscous dissipation. Sandhya
et al. (Sandhya et al., 2021) studied the Casson nanofluid thin film

flow over a stretching sheet with viscous dissipation and chemical
reaction.

In fluid mechanics, the scrutiny of the various physical and
chemical phenomenon on the flow of different liquids over a
stretching surface has assisted many researchers in
developing numerous applications related to real-life
problems and industrial areas. This inspection helps us to
study the control rate of heat flow and is applicable in the
areas like production of paper sheets, extruding polymers,
crystals, glass, fibers, electronic chips, and metallic sheets.
Abbas et al. (Abbas et al., 2020) explored the stream of
micropolar fluid with hybrid nanoparticles over a
stretching sheet. Asghar et al. (Asghar et al., 2020)
delineated the mixed convective stream of a Williamson
liquid caused by an elastic surface. Ramadevi et al.
(Ramadevi et al., 2019) discussed the non-uniform heat
source/sink on the three-dimensional
magnetohydrodynamic Carreau fluid flow past a stretching
surface with modified Fourier’s law. Kumaran and Sandeep
(Kumaran and Sandeep, 2017) studied the thermophoresis
and Brownian moment effects on parabolic flow of MHD
Casson and Williamson fluids with cross diffusion. Kumar
et al. (Kumar et al., 2019a) investigated the simultaneous
solutions for MHD flow of Williamson fluid over a curved
sheet with non-uniform heat source/sink. Kumar et al.
(Kumar et al., 2019b) discussed the MHD stagnation point
flow of Williamson and Casson fluids past an extended
cylinder: a new heat flux model. Many related publications
can be found also in the references (Saha et al., 2012;
Bhattacharyya et al., 2016; Bhattacharyya et al., 2018;
Bhattacharyya et al., 2019; Bhattacharyya, 2020a;
Bhattacharyya et al., 2020a; Bhattacharyya, 2020b;
Bhattacharyya et al., 2020b; Souayeh et al., 2021).

The detailed literature survey delivered that no study
exists in the literature dealing with the analysis of
magnetic dipole flow suspended with Nimonic
80 A–AA7075 nanoparticles. Hence, a sincere effort has
been made to analyse such a flow numerically through
RKF −45 with shooting system. The basic PDEs are
developed with the help of boundary layer theory and
reduced into highly nonlinear ODEs with the guidance of
transforming variables. Numerical solutions for the
considered investigation are achieved. The heat transfer
properties, mass transfer properties, and flow features
under the influence of various physical parameters are also
studied.

MATHEMATICAL FORMULATION

Consider a steady, incompressible, and two-dimensional flow of
Maxwell nanofluid in the presence of magnetic dipole, chemical
reaction, and non-uniform heat source/sink over a stretching
sheet. Two equal and opposite forces are applied along the x-axis
so that the wall is stretched, keeping the origin fixed. The steady
two-dimensional boundary layer equations for this fluid in usual
notation are (Sarada et al., 2021):
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where μ0M
zH
zx signifies the ferromagnetic force per unit volume.

The corresponding boundary constraints are as follow:

y � 0: u � cx, v � 0, T � Tw, C � Cw,
y → ∞: u � 0, T � Tc, C � Cc.

} (5)

where the non-dimensional form of q‴ is given by (Gireesha
et al., 2019; Kumar et al., 2020).

q‴ � knfc

]nf
[Ap(Tw − Tc)f′ + Bp(T − Tc)]

Moreover, Ap > 0 and Bp > 0 defines the heat generation state,
while Ap < 0 and Bp < 0 resembles to the internal heat absorption
of the system.

Due to the magnetic dipole, the assumed liquid flow is affected
by the magnetic field, whose magnetic scalar potential is given by
(Everts et al., 2020):

ϕ1 �
x(y + a)2 + x2

α

2π
(6)

and the corresponding magnetic field H has the components

Hy � −zϕ1

zy
� 2(y + a)x((y + a)2 + x2)2 c

2π
(7)

Hx � −zϕ1

zx
� − (y + a)2 − x2((y + a)2 + x2)2 c

2π
. (8)

Since the magnetic body force is proportional to the gradient
of the magnitude of H and using
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zy
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, (9)

we attain that

zH

zy
� [ 4x2(y + a)5 − 2(y + a)3] c

2π
(10)

zH

zx
� [ − 2x(y + a)4] c

2π
(11)

Assuming that the applied field H is sufficiently strong to
saturate the assumed fluid and the variation of magnetization M
with temperature T is approximated by the linear equation

M � K(Tc − T) (12)

We introduce the following the dimensionless coordinates and
dimensionless variables as follows:

(η, ξ) � ��
c

]f
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The velocity components u and v are related to the physical

stream function ψ according to
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where the dynamic viscosity, density, specific heat capacity, and
thermal conductivity of nanofluid are given by:

μnf � μf(1 − ϕ)2.5
ρnf � (1 − ϕ)ρf + ϕρs,(ρCp)nf � (1 − ϕ)(ρCp)f + ϕ(ρCp)s,
knf
kf

� ks + 2kf − 2ϕ(kf − ks)
ks + 2kf + ϕ(kf − ks) .

The equation of continuity is trivially satisfied, whereas
moment and thermal equations are converted to
corresponding set of ordinary differential equations:

ε1f‴ − f′2 + ff″ − ε2
2βθ1(η + α)4 + Γ1{ − 2f″f′f + f2f‴} � 0,

(13)
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where
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ε1 � 1(1 − ϕ)2.5[1 − ϕ + ϕ ρs
ρf
], ε2 � 1[1 − ϕ + ϕ ρs

ρf
],

ε3 � 1[1 − ϕ + ϕ (ρCp)s(ρCp)f].
Corresponding reduced boundary conditions

f(0) � 0, f′(0) � 1, θ1(0) � 1, θ2(0) � 0, χ1(0) � 1, χ2(0) � 0,
f′(∞) → 0, θ1(∞) → 0, θ2(∞) → 0, χ1(∞) → 0, χ2(∞) → 0.

}
(17)

where

TABLE 1 | The material features of the base fluid and nanoparticles (Reddy et al.,
2020; Tlili et al., 2020; Raju et al., 2021).

Properties Engine oil (EO) (unused
360K)

Nimonic 80 A AA7075

k(Wm−1K−1) 0.138 11.2 173

ρ(Kg/m3) 847.8 8190 2810

Cp(JKg−1K−1) 2161 448 960

FIGURE 1 | Provocation of β on f ′.

FIGURE 2 | Provocation of Γ1 on f ′.

FIGURE 3 | Provocation of Bp on θ1.

FIGURE 4 | Provocation of Ap on θ1.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7677514

Souayeh et al. Numerical Simulation of Magnetic Dipole Flow

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


α �
��
c

]f

√
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2πμ2f
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Df
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Physical quantities of practical interest in their dimensionless
form are as follows (Abel and Nandeppanavar, 2009; Rehman
et al., 2017; Aleem et al., 2020):

���
Re

√
Cf � −(1 + Γ1)f″(0)(1 − ϕ)2.5 (18)

Re−1/2Nu � −knf
kf

[θ1′(0) + ξ2θ2′(0)] (19)

Re−1/2Sh � −(1 − ϕ)2.5[χ1′(0)] (20)

NUMERICAL METHOD

The dimensionless arrangement of Eqs 13–16with the conditions
(17) is profoundly coupled differential conditions. One needs to
turn towards numerical strategies to acquire the arrangement of

FIGURE 5 | Provocation of β on θ1.

FIGURE 6 | Provocation of Sc on χ1.

FIGURE 7 | Provocation of σ on χ1.

FIGURE 8 | Change in Re−1/2Cf for β versus Γ1 .
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such conditions. In this investigation, we have utilized the
method Runge–Kutta–Fehlberg fourth–fifth order with
shooting system. The calculations have been done utilizing the
representative programming Maple.

The algorithm of Runge-Kutta-Fehlberg–forth-fifth order
method is given by:

k0 � F(xm, ym)
k1 � F(xm + h

4
, ym + hk0

4
)

k2 � F(xm + 3
8
h, ym + ( 3

32
k0 + 9

32
k1)h)

k3 � F(xm + 12
13

h, ym + (1932
2197

k0 − 7200
2197

k1 + 7296
2197

k2)h)
k4 � F(xm + h, ym + (439

216
k0 − 8k1 + 3860

513
k2 − 845

4104
k3)h)

k5 � F(xm + h

2
, ym + ( − 8

27
k0 + 2k1 − 3544

2565
k2 + 1859

4104
k3

− 11
40

k4)h)
ym+1 � ym + h( 25

216
k0 + 1408

2565
k2 + 2197

4109
k3 − 1

5
k4)

ym+1 � ym + h( 16
135

k0 + 6656
12825

k2 + 28561
56430

k3 − 9
50

k4 + 2
55

k5)
RESULTS AND DISCUSSION

In this segment, the effects of assorted specification, namely,
Maxwell parameter Γ1, space dependent parameter Ap ,
ferromagnetic interaction parameter β, temperature dependent

FIGURE 9 | Change in Re−1/2Cf for ϕ versus Γ1.

FIGURE 10 | Change in Re−1/2Nu for Γ1 versus Ap.

FIGURE 11 | Change in Re−1/2Nu for β versus Bp.

FIGURE 12 | Change in Re−1/2Sh for Sc versus σ.
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parameter Bp, and reaction rate parameter σ on the fluid profiles
such as radial velocity f′, temperature profile θ1, and
concentration profile χ1, are explained via graphs. Also,
deviation in the drag force, transfer heat rate, and Sherwood
number for disparate values of corresponding specification are
discussed here. The dominant nonlinear PD equations are
reduced into terminated ODEs by using suitable analogy
variables, and the obtained expressions are tackled numerically
with the aid of RKF 45 with shooting system arrangement by
employing shooting pattern. The material features of the carrier
liquid engine oil and nanoparticle subsistence appropriate in this
work are manifest in Table 1.

Figure 1 elucidates the nature of radial velocity f′ against
diverse values of ferromagnetic interaction parameter β. It
clarifies that f′ declines significantly for higher values of β.
Physically, the Lorentz force deviates for the augmentation of
magnetic parameter and this force causes additional resistance to
the transport process. The consequence of Maxwell parameter Γ1
on f′ for both fluids is exemplified via Figure 2. In this figure, we
can perceive that radial acceleration is a developing function of
Maxwell restriction and, moreover, f′ heightens for
augmentation of Γ1.

Figure 3 portrays the behavior of temperature profile θ1 for
enhancement in the temperature dependent parameter Bp. It
indicates that θ1 decreases rapidly with an improvement of Bp.
Physically, the presence of non-uniform heat source parameters
provides less heat to the system which decayed the transportation
process. The impact of space dependent parameter Ap on θ1 for
both liquids is described in Figure 4. This figure explains the
enhancing nature of θ1 for heightening values of Ap. It happens
because of the existence of heat source specification innards
the flow field transfers additional hotness, and this
phenomenon is the reason for the growth of thermal
boundary layer thickness.

The consequence of β on θ1 is explained in Figure 5. It
signifies that an improvement in β values upsurges the
temperature profile θ1 remarkably. The influence of Sc on χ1
is explicated by Figure 6. From this figure, one can conclude that
Sc has a major impact on χ1 and it is perceived that the solute
outline layer stiffness is a declining activity of Sc. This is because
Sc is the ratio of momentum diffusivity to mass diffusivity, and
bulkier attitude of Sc correlates to a limited mass diffusivity.
Hence, concentration profile χ1 declines for both liquids.

Figure 7 illustrates the consequence of σ on χ1 for both the
liquid cases. This figure confirms that χ1 exhibits decreasing
nature for diverse values of σ, and an enhancement in the
reaction rate parameter σ reduces the concentration of the
liquids. Physically, as the values of reaction rate parameter
heightens concentration field and associated solutal layer
thickness is reduced.

Figures 8, 9 describe the variations in surface drag force Cf

against Γ1 for diverse values of β and ϕ, respectively. The
deviation in the heat transfer rate Nu against space dependent
parameter Ap for Γ1 is indicated via Figure 10. Similarly, the

variation in heat transfer rateNu against temperature dependent
parameter Bp for β is illustrated (see Figure 11). Figure 12
demonstrates the fluctuation of Sherwood number against σ
for diverse character of Sc.

FINAL REMARKS

In the present study, the ferromagnetic stream of a Maxwell nano
liquid over a sheet with heat sink/source and chemical reaction
effects is inspected. Advisable correlation transformations are
occupied to attain the corresponding set of ODEs and are
numerically solved with the assistance of Runge-Kutta-
Fehlberg-45 with shooting system performance onward with
shooting arrangement. The main outcomes of the present
investigation are given below:

• The existence of heat source specification innards the flow
field transfers additional hotness, and this phenomenon is
the reason for the growth of temperature profile.

• The presence of non-uniform heat source parameter (Bp)
provides less heat to the system which decayed the
temperature profile.

• Sc is the ratio of momentum diffusivity to mass diffusivity. A
larger value of Sc decreases the concentration profile.

• Velocity profile enhances with an increment value of Γ1,
whereas it declines for escalation of β.

• As the values of the chemical reaction parameter enhance,
the concentration profile decreases.

• Momentum boundary layer thickness is higher in larger
values of Γ1.

• Solutal boundary layer thickness is scaled back for larger
values of Sc.
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GLOSSARY

u, v Velocity components

M Magnetization

μ Dynamic viscosity

Γ Relaxation time

H Magnetic field intensity

Nu Nusselt number

T Temperature of fluid

σ Reaction rate parameter

a Distance

f’(η) Radial velocity

η, ξ Independent coordinate

α Dimensionless distance

q’’’ Non-uniform heat source/sink parameter

fθ Dimensionless temperature

θ1, θ2 Dimensionless temperature

Ap Space dependent parameter

Bp Temperature dependent parameter

β Ferromagnetic interaction parameter

Pr Prandtl number

Γ1 Maxwell parameter

λ Viscous dissipation parameter

ϕ1 Scalar potential

ψ Stream function

ε Dimensionless Curie temperature

Re Local Reynolds number

x, y Coordinate axes

ρ Density

μ0 Magnetic permeability

k Thermal conductivity

χ1 Dimensionless concentration

ρCp Heat capacitance

] Kinematic viscosity

Cf Skin friction

Sc Schmidt number

c Curie

f fluid

s1 Solid volume fraction of

s2 Solid volume fraction of

w Surface
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