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Abstract: Researchers have recently paid significant attention to special chaotic systems. In this work,
we introduce an oscillator with different special features. In addition, the oscillator is symmetrical.
The features and oscillator dynamics are discovered through different tools of nonlinear dynamics.
An electronic circuit is designed to mimic the oscillator’s dynamics. Moreover, the combined
synchronization of two drives and one response oscillator is reported. Numerical examples illustrate
the correction of our approach.
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1. Introduction

Several studies have provided important results on chaos [1–3]. Chaos was observed
in a memristive system [4], glucose–insulin regulatory system [5], financial system [6],
and modified logistic map [7], etc. Panahi et al. proposed a chaotic network model for
epilepsy [8], while a chaotic model for HIV virus was introduced in [9]. Chaos is use-
ful for developing applications [10,11]. Potential applications of chaos were reported
in wireless communication [12], robot motion [13], authenticated Hash function [14],
and pseudo-random generators [15]. Adeyemi et al. introduced the FPGA realization
of chaos-encrypted transmission via the parameter-switching technique [16]. Muhammad
and Ozkaynak combined chaos, optimization algorithms and physical unclonable func-
tions to design the novel image encryption [17]. Many studies focused on random number
generators [18–20]. Moreover, Tutueva et al. improved the random number generators [21].

More recent attention has been concentrated on chaos in systems with special fea-
tures [22]. Some noticeable features are the absence of linear terms, appearance of many
equilibrium points, and multistability. Most studies in the field of chaotic systems have
been focused on systems with linear terms. However, results based upon systems with-
out linear terms are limited. Xu and Wang were mentioned that there was much less
information about chaotic attractors without a linear term [23]. Therefore, the authors
constructed a system with natural logarithmic, exponential and quadratic terms. Using six
quadratic terms, a system with eight equilibrium points was proposed in [24]. Zhang et al.
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applied a fractional derivative to obtain a new system with six quadratic terms [25]. The
authors found four equilibrium points and twin symmetric attractors in Zhang’s system.
Previously published studies on nonlinear systems paid particular attention to saddle
point equilibrium in [26]. The existence of saddle point equilibrium is critical to the de-
sign of chaotic systems [27]. Relatively recent research has been found, concerned with
different equilibia [28,29]. Recently, investigators have examined chaos in systems with
infinite equilibrium [30,31]. Another special feature observed in nonlinear systems is
multistability [32]. Depending on the initial conditions, coexisting attractors can be seen.
Multistability has emerged as a powerful approach for investigating asymmetric and
symmetric attractors [33–35]. Interestingly, multiple attractors attract new research on
memristor circuits [36,37].

In this paper, we study a oscillator with nonlinear terms (quadratic and cubic ones).
In contrast with conventional systems, there are infinite equilibria in our oscillator. The
features and dynamics of the oscillator are presented in Section 2. Section 3 discusses the
oscillator’s implementation. A combination synchronization of the oscillator is reported in
Section 4, while conclusions are provided in the last section.

2. Features and Dynamics of the Oscillator

We consider an oscillator described by
ẋ = yz
ẏ = x3 − y3

ż = ax2 + by2 − cxy
(1)

with parameters a, b, c > 0. By solving the following equations:
yz = 0
x3 − y3 = 0
ax2 + by2 − cxy = 0

(2)

we get the equilibrium points of oscillator (1):

E∗(0, 0, z∗) (3)

Therefore, oscillator (1) has an equilibrium line. Oscillator (1) is invariant under the
transformation

(x, y, z)→ (−x,−y, z) (4)

and oscillator (1) is symmetric. Note that the Jacobian matrix at E∗ is

JE∗ =

 0 z∗ 0
0 0 0
0 0 0

 (5)

Therefore, the characteristic equation is λ3 = 0 and the eigenvalue λ = 0.
We fix a = 0.2, b = 0.1 and the initial conditions (0.1, 0.1, 0.1) while c is varied.

The Lypunov exponents (Figure 1a) and bifurcation diagram (Figure 1b) for c are presented.
As seen from Figure 1, the oscillator can generate periodical signals and chaotic signals. For
c = 0.5, chaotic attractors are displayed in Figure 2. We used the Runge–Kutta method for
simulations and the Wolf’s algorithm for Lypunov exponent calculations [38]. Interestingly,
the oscillator displays symmetric attractors, as illustrated in Figure 3. Symmetric attractors
coexist with the same parameters (a = 0.2, b = 0.1, c = 0.68) but under different initial
conditions. This means that there is multistability in the oscillator. When varying c,
multistability is reported in Figure 4.
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(a) (b)

Figure 1. (a) Lypunov exponents; (b) Bifurcation diagram of oscillator (1).

(a)

(b) (c)

Figure 2. Chaos in oscillator (1) for c = 0.5 in planes (a) x− y, (b) x− z, (c) y− z.
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(a)

(b) (c)

Figure 3. Coexisting attractors in the oscillator for c = 0.68, initial conditions: (0.1, 0.1, 0.1) (black
color), (−0.1,−0.1, 0.1) (red color) in planes (a) x− y, (b) x− z, (c) y− z.

Figure 4. Coexisting bifurcation diagrams. Two initial conditions are (0.1, 0.1, 0.1) (black color),
(−0.1,−0.1, 0.1) (red color).

Oscillator (1) displays offset boosting dynamics because of the presence of z. Conse-
quently, the amplitude of z is controlled by adding a constant k in oscillator (1), which becomes

ẋ = y(k + z)
ẏ = x3 − y3

ż = ax2 + by2 − cxy
(6)
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The bifurcation diagram and phase portraits of system (6) in planes (z− x) and (z− y)
with respect to parameter c and some specific values of constant parameter k are provided
in Figure 5 for a = 0.2, b = 0.1, c = 0.5.

(a)

(b) (c)

Figure 5. (a) Bifurcation diagram; (b,c) Phase portraits of system (6) with respect to c and specific val-
ues of constant k illustrating the phenomenon of offset boosting control. The colors for k = 0, 0.5,−0.5
are black, blue, and red, respectively. The initial conditions are (0.1, 0.1, 0.1).

From Figure 5, we observe that the amplitude of z is easily controlled through the
constant parameter k. This phenomenon of offset boosting control has been reported in
some other systems [39,40].

3. Oscillator Implementation

The electronic circuit of mathematical models displaying chaotic behavior can be
realized using basic modules of addition, subtraction, and integration. The electronic
circuit implementation of such models is very useful in some engineering applications.
The objective of this section is to design a circuit for oscillator (1). The proposed electronic
circuit diagram for a system oscillator (1) is provided in Figure 6.

By denoting the voltage across the capacitor Vv, Vy and Vz, the circuit state equations
are as follows: 

dVx
dt = 1

10R1C VyVz
dVy
dt = 1

100R2C V3
x − 1

100R3C V3
y

dVz
dt = 1

10RaC V2
x + 1

10RbC V2
y − 1

10RcC VxVy

(7)
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Figure 6. Electronic circuit diagram of oscillator (1). It includes operational amplifiers, analog
multiplier chips (AD 633JN) that are used to realize the nonlinear terms, three capacitors and
ten resistors.

For the system oscillator parameters (1) a = 0.2, b = 0.1, c = 0.5 and initial voltages of
capacitor (Vx, Vy, Vz) = (0.1 V, 0.1 V, 0.1 V), the circuit elements are C = 10 nF, R1 = 1 kΩ,
R2 = R3 = 100 Ω, Ra = 5 kΩ, Rb = 10 kΩ, and , Rc = 2 kΩ. The chaotic attractors of the
circuit implemented in PSpice are shown in Figure 7. Moreover, the symmetric attractors
of the circuit are reported in Figure 8. As seen from Figures 7 and 8, the circuit displays the
dynamical behaviors of special oscillator (1). The real oscillator is also implemented, and
the measurements are captured (see Figure 9).

(a)

(b) (c)

Figure 7. Chaotic attractors obtained from the implementation of the PSpice circuit in different planes
(a) (Vx, Vy), (b) (Vx, Vz), and (c) (Vy, Vz), for C = 10 nF, R1 = 1 kΩ, R2 = R3 = 100 Ω, Ra = 5 kΩ,
Rb = 10 kΩ, and Rc = 2 kΩ. The initial voltages of capacitors are (Vx, Vy, Vz) = (0.1 V, 0.1 V, 0.1 V).
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Figure 8. Symmetric attractors obtained from the implementation of the circuit in Pspice in different
planes ((Vx, Vy), (Vx, Vz), (Vy, Vz)) for C = 10 nF, R1 = 1 kΩ, R2 = R3 = 100 Ω, Ra = 5 kΩ,
Rb = 10 kΩ, and Rc = 1.47 kΩ. The initial voltages of capacitors are (Vx, Vy, Vz) = (0.1 V, 0.1 V, 0.1 V)

for the left panel and (Vx, Vy, Vz) = (−0.1 V,−0.1 V,−0.1 V) for the right panel.
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(a)

(b) (c)

Figure 9. Captured attractors of the circuit in planes (a) (Vx, Vy), (b) (Vx, Vz), and (c) (Vy, Vz).

4. Combination Synchronization of Oscillator

One of the successful applications of the synchronization phenomenon is in secure
communication systems. Different methods have been developed for secure commu-
nications. To increase security in communication systems, some new synchronization
techniques have been proposed in [41–43]. Based on the great advantages of such methods,
the combination synchronization is designed. This is the combination of two drives and
one response oscillator (1). The drive systems are

dxm
dt = ymzm

dym
dt = x3

m − y3
m

dzm
dt = ax2

m + by2
m − cxmym

(8)

where m = 1, 2. The response system is:
dxs
dt = yszs + u1

dys
dt = x3

s − y3
s + u2

dzs
dt = ax2

s + by2
s − cxsys + u3

(9)

Controllers ui(i = 1, 2, 3) guarantee synchronization among the three systems. We
express the error

e = Ax + By− Cz (10)

where x = (x1, y1, z1)
T , y = (x2, y2, z2)

T , z = (xs, ys, zs)T , e = (ex, ey, ez)T and A, B, C
∈ R3×3. The controllers ui are designed to asymptotically stabilize error (10) at the zero equi-
librium. Assuming that A = diag(η1, η2, η3), B = diag(γ1, γ2, γ3) and C = diag(ε1, ε2, ε3),
system (10) becomes 

ex = η1x1 + γ1x2 − ε1xs
ey = η2y1 + γ2y2 − ε2ys
ez = η3z1 + γ3z2 − ε3zs

(11)
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The differentiation of system (11) leads to the error of dynamical system, expressed as
dex
dt = η1

dx1
dt + γ1

dx2
dt − ε1

dxs
dt

dey
dt = η2

dy1
dt + γ2

dy2
dt − ε2

dys
dt

dez
dt = η3

dz1
dt + γ3

dz2
dt − ε3

dzs
dt

(12)

Replacing system (8), (9) and (11) into system (12) yields
dex
dt = η1y1z1 + γ1y2z2 − ε1yszs − ε1u1

dey
dt = η2(x3

1 − y3
1) + γ2(x3

2 − y3
2)− ε2(x3

s − y3
s )− ε2u2

dez
dt = η3(ax2

1 + by2
1 − cx1y1) + γ3(ax2

2 + by2
2 − cx2y2)− ε3(ax2

s + by2
s − cxsys)− ε3u3

(13)

From system (13), the controllers can be deduced as follows:
u1 = (η1y1z1 + γ1y2z2 − ε1yszs − v1)/ε1
u2 =

(
η2(x3

1 − y3
1) + γ2(x3

2 − y3
2)− ε2(x3

s − y3
s )− v2

)
/ε2

u3 =
(
η3(ax2

1 + by2
1 − cx1y1) + γ3(ax2

2 + by2
2 − cx2y2)− ε3(ax2

s + by2
s − cxsys)− v3

)
/ε3

(14)

where vi(i = 1, 2, 3) are specific linear functions. Define vx
vy
vz

 = Ā

 ex
ey
ez

 (15)

with 3× 3 real matrix Ā.

For Ā =

 −1 0 0
0 −1 0
−1 −2 −3

 the error dynamical system is:


dex
dt = −ex

dey
dt = −ey

dqez
dtq = −ex − 2ey − 3ez

(16)

The error dynamical system is asymptotically stable.
Numerical results (see Figure 10) verified the combination synchronization among

the two drive systems (8) and the response one. Here, system (8) is chaotic for a = 0.2,
b = 0.1, and c = 0.5. We set the initial conditions x1(0) = y1(0) = z1(0) = 0.1, x2(0) = 2,
y2(0) = −1, z2(0) = 0.1 for two drive systems (8). The response system (9) has xs(0) = 1,
ys(0) = 0.3, and zs(0) = 2.
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(a)

(b) (c)

Figure 10. Combination synchronization errors (a) ex, (b) ey, (c) ez. The control parameters are chosen
as ηi = γi = εi = 1 (i = 1, 2, 3).

5. Conclusions

By using nonlinear dynamic tools, we investigated an oscillator with noticeable
features. The oscillator has no linear term but infinite equilibria. Chaos and symmetrical co-
existing attractors were displayed by the oscillator. The results show the complex dynamics
of the oscillator, which are useful for varied applications. This work contributes to special
systems with different noticeable features. In our future studies, we would like to use this
oscillator to generate random numbers in cryptography.
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