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Abstract: Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross
calorific value (GCV) and inherently clean operation. Thus, hydrogen as a fuel can lead to global
sustainability. Conventional H2 production is predominantly through fossil fuels, and electrolysis
is now identified to be most promising for H2 generation. This review describes the recent state of
the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate
polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming
catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the
different components of the PEM fuel cells, which are bipolar plates, current collector, and membrane
electrode assembly. The efficiency also changes with the nature and type of the fuel, fuel/oxygen ratio,
pressure, temperature, humidity, cell potential, and interfacial electronic level interaction between the
redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating
conditions such as concentration of methanol, cell temperature, catalyst loading, membrane thickness,
and cell voltage that affect the performance are critically addressed. Comparison of various methanol
electrolyzer systems are performed to validate the significance of methanol economy to match the
future sustainable energy demands.

Keywords: hydrogen production; fuel cell; cell voltage; methanol; future energy

1. Introduction

The energy-related issues of the future, such as economic development, environmental friendliness,
pollution free atmosphere, climate change, and wider availability, are complex and multi-dimensional [1].
A highly efficient and sustainable energy system produces only minimal harmful emissions [2,3].
Fuel cells are such clean alternatives to replace power production from fossil fuels [4], yet operating
at high efficiency. H2 is a clean energy source available from both renewable and non-renewable
bases, and serves as input for the fuel cells [5,6]. It can also be regenerated by the fuel cell when
connected in reverse mode (electrolyzer) through any hydrogen carrier such as water, methanol, etc.
For instance, dark fermentation with anaerobic digestion of residual algae biomass is a significant
method to generate H2 and methane (bio-hythane) [7]. Such sustainable biofuel production can solve
the energy issues in the modern technological world to a great extent.
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According to the US Department of Energy (DOE), “Hydrogen is a leading candidate because it
can be clean, efficient and capable of production from diverse domestic resources, both renewable and
non-renewable”. There are many technologies to produce hydrogen such as electrolysis or thermolysis
of water, photoelectrochemical/photocatalytic splitting of water, hybrid fossil fuel/renewable
technologies, reforming from fossil fuels, high-temperature ceramic membranes, biomass gasification,
thermochemical processes and low-temperature techniques [8,9]. However, they are not efficient due
to CO control issues. While the thermolysis of water faces the recombination issues of H2 and O2,
difficulty to obtain heat sources, and heat exchange and corrosion problems, photoelectrolysis depends
on the solar radiation intensity and the optimization of photocatalysts. Though electrolysis is the most
widely adopted H2 production method, it faces several limitations such as requirement of large space
and external connections for monopolar electrolyzers, joining, and sealing of the cells in series for the
bipolar electrolyzers, etc. Corrosion-related issues are also very common in alkali-based electrolysis
process [10]. In recent years, there are many research activities towards aqueous methanol electrolysis
due to its high-purity hydrogen production characteristics despite of lower operating voltage. Thus,
the fuel cell and electrolyzers can contribute to sustainability by meeting the energy demand in a
positive manner.

Polymer electrolyte membrane fuel cells (PEMFCs) with H2 energy source are promising power
solutions for numerous applications [11,12] due to their superior performance, light weight, and power
density [13]. Fuel cell vehicles exhibit higher energy efficiency around 40–50% compared to conventional
internal combustion (IC) engine vehicles (gasoline/battery hybrids), which provide 10–16% efficiency
in current road tests [2]. However, the hydrogen storage units associated with the vehicles possess
considerable challenges for the wider marketplace. On-site H2 production from ethanol or methanol
can solve the distribution and storage issues at the same time, and this is why polymer electrolyte
membrane (PEM) fuel cells are gaining significant interest [14,15].

PEM-based electrolysis has numerous advantages compared to alkali-based electrolysis, such as
the ability to operate at high current densities, high-level gas purity, safe and optimum H2 compression
possibility at high pressure, adaptability to transient electrical power variations, and lower mass/smaller
dimensions [16,17]. However, the high investment cost and shorter lifetime of PEM electrolyzers require
extensive studies to develop efficient materials with high H2 production capacity [10]. Methanol fuel
in PEM electrolysis is more interesting for hydrogen production as it is economical and has respective
volumetric and gravimetric densities of 4.82 kWhL−1 and 18.8% by weight [18,19] compared with
pressurized hydrogen (0.18 kWhL−1 at 1000 psi, 25 ◦C) [20–22]. In this review, we have summarized the
recent literature focusing on PEM-based methanol electrolysis for ultra-pure and on-demand hydrogen
production. However, there are many papers in the open literature for methanol oxidation, and the
current study reports and compares the challenges and advantages in the field. The electrochemical
reforming process is environmentally friendly as bioalcohol is the fuel and the plants can recapture the
CO2 byproduct. Other advantages such as H2 production in the cathodic compartment is also discussed
in this report. The current study also includes extensive critical discussion on the operating parameters
to optimize the hydrogen production challenges and subsequently emphasizing its economic benefits.

Pure Hydrogen Production from Methanol by Electrochemical Method

Figure 1 schematically represents the various strategies of hydrogen production and the significance
of fuel cells. Narayanan et al. (2001) from the California Institute of Technology, USA [23], first proposed
the concept of H2 production by electrolysis of aqueous organic solutions. He claimed that a
methanol–water mixture could be electrolyzed through a PEM electrolyzer cell to produce high-purity
hydrogen at a very low operating voltage (ca. one-third) compared to a water electrolyzer. In addition,
the economics of H2 production by this technique includes the cost of methanol. Thus, this technique
could result in about 50% less cost compared to hydrogen produced by the electrolysis of water.
Solar energy can be converted to mechanical and electrical energy that further used for the electrolysis
process of H2 generation. In addition, the solar radiation can be useful for the thermolysis, photolysis and
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biomass conversion (photo fermentation) processes. Dark fermentation is another promising method
of biomass degradation using anerobic bacteria in the absence of light [24].
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Figure 1. Schematic representation of various strategies of H2 production from solar radiation.

PEM-based methanol electrolyzer has a structural configuration similar to a PEM fuel cell with
a polymer electrolyte membrane (PEM) sandwiched between the gas diffusion electrodes (GDEs),
anode, and cathode. A GDE has two layers, gas diffusion and catalyst, that are bonded with the
membrane to form a membrane electrode assembly (MEA). Platinum or platinum alloys are used
as electrocatalysts due to their reactivity, selectivity, and chemical stability [25,26]. Reactant gas is
supplied to the electrode by flow field plates on either side of the MEA, and analogously to in an
electrolyzer, water is fed to the anode and H2 is formed at cathode. Figure 2 shows a line sketch of the
PEM-based electrolyzer cell.

Generally, the MEA reduces the resistance to a minimum. The aqueous methanol solution at the
anode liberates CO2 by the following chemical reaction when current is applied:

Anode Reaction: CH3OH + H2O→ CO2 + 6H+ + 6e− (1)

These electrons migrate externally to the cathode. The protons (H+) liberated travel through the
proton conducting membrane to the cathode, where it combines with the electrons, to generate H2,
as shown below:

Cathode Reaction: 6H+ + 6e−→ 3H2 (2)

Overall Reaction: CH3OH + H2O→ 3H2 + CO2 (3)

Carbon dioxide is also produced in this process, in addition to H2 by steam, reforming methanol.
However, during the electrolysis of methanol–water mixture, H2 and CO2 get separated, and are
liberated in separate compartments (cathode and anode) and, thus, purification of hydrogen to
remove CO2 is not required in this process. Due to these potential advantages, in the recent year,
many systematic investigations have been carried out on H2 generation by methanol–water electrolysis
using a PEM methanol electrolyzer (PEMME) [27,28]. In addition, hypothetically, electrolysis of
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methanol occurs at about 0.02–0.03 V, which is much lower compared to the minimum theoretical
voltage of 1.23 V for water electrolysis (Table 1).Energies 2020, 13, x FOR PEER REVIEW 4 of 17 
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Figure 2. Schematic of polymer electrolyte membrane (PEM) methanol electrolyzer.

Table 1. Comparison of different energy parameters such as onset potential/efficient for different
solvents to convert hydrogen.

Fuel Electrical Potential for Electrolysis (V) Energy Density (kWh/kg)

Water 1.23 V –
Methanol 0.03 V 6.1
Ethanol 1.145 V 8.1

Ammonia – 5.7

Since methanol electrolysis occurs at a very low voltage, there is scope for development of very
low power consuming hydrogen generators based on methanol–water electrolysis [29]. The PEM
technology for electrolysis was introduced in the 1960s by GE, USA, to overcome the limitations of the
alkaline electrolysis technology [30]. The uniqueness of this technology is its potential to operate at
high current densities [31] that can possibly result in reduced operational costs.

2. Components of PEM Methanol Electrolyzer

NASA first invented PEMFCs in the early 1960s; however, their high cost and difficulty in
management prevented their commercial development until the 1990s. Further research resulted in
the development of low-cost smart electrolyte membranes, and from the 1990s, PEMFCs are one of
the priority areas of scientific attention. Their high efficiency, simplicity, flexibility, and low operation



Energies 2020, 13, 5879 5 of 17

temperature in addition to low cost are fundamental in designing a sustainable energy environment.
Commercially viable designs are under investigation, with cheaper and lighter compact structures [32].

The major components of a polymer electrolyte membrane methanol electrolyzer (PEMME)
are shown in Figure 3. MEA is placed between two Ti or graphite plates on which flow channels
are grooved. Titanium mesh is placed on either side of the MEA for effective current collection,
back support for MEA, and uniform methanol and gas distribution. To prevent electric shortage
between the plates and for fluid sealing, suitable gaskets are placed around the electrode area on both
sides of the MEA. The above set together with the grooved plates is finally clamped together between
two end plates using nuts/bolts. Current is applied between the Ti fluid distribution plates. In the
cells with graphite plates, used for fluid distribution, current is applied to the copper plates kept
between the graphite plate and end plate. Major components of the PEM methanol electrolyzers such
as electrode plates, membrane assembly, and current collector are discussed in this section.
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2.1. Bipolar Plates

The bipolar plate is one of the main components of the electrolyzer and it should fulfill the following
functional requirements [33–41]. The functional attributes of bipolar plates are good thermal/electrical
conductivity, mechanical stability, corrosion resistance at low thickness, lightweight and low cost.



Energies 2020, 13, 5879 6 of 17

Since the theoretical value for the methanol–water electrolysis voltage is 0.02 V, much smaller than
the 1.23 V required for water electrolysis, the theoretical energy consumption for aqueous methanol
electrolysis is low [6]. Therefore, stainless steel and carbon-based materials are used as bipolar plates
for PEM methanol electrolysis. However, due to its poor corrosion resistances, these materials cannot
be used on the anode side of the PEM water electrolysis at high operating voltages [42].

Shudo et al. [43] studied porous flow field methanol electrolyzer made of sintered metal powder
and reported significant improvement in hydrogen production by their bipolar plate compared to
conventional grooved bipolar plates [43]. This is due to improved reactant supply and actual byproduct
removal by the proposed porous bipolar plate. Moreover, porous structure increases the effective
electrode area by the flow field. In another investigation by the same research group [44], the influence
of grain diameter and porous metal flow field, as shown in Figure 4, is reported.
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(a) 500–1000 µm (b) 350–500 µm for SUS316L steel and (c) 350–500 µm for C276 steel. Adapted with
permission from [44], copyright 2013.

From the investigation, it is clear that the reduced grain diameter and lower cell resistance
(attributed to higher contacting spots in small area) enhanced the H2 production performance of the
electrolyzer. In our previous study [14], we used graphite as a bipolar plate for methanol electrolysis.
Initially, a titanium plate was used and ironically, for the water electrolyzer the operating voltage was
high. Consequently, we decided to fabricate PEMME using graphite plates, since the operating voltage
is low, to reduce the capital cost and compare its performance with that of Ti-based cell.

2.2. Current Collector

The current collector efficiently distributes the current to the catalyst layer from the external circuit,
leads the methanol flow to anode layers, and provides structural support to the MEA. An efficient
current collector needs to fulfil several functional attributes, namely [45]:

1. Strong corrosion resistance.
2. Good electrical conductivities.
3. Good mechanical support to the membrane.
4. Effective removal of gases and efficient reaction pathways for fuel to reach catalyst layer.

Platinized titanium mesh (Figure 5) of thickness 0.1 to 0.25 mm is used as a current collector in
most of the studies [6,46] due to its exceptional performance in water electrolysis. Titanium mesh is
expensive, and its sharp corners damage the membrane unless it is properly placed. Consequently,
in our studies [14,47], we used a pore-designed microporous-layer-coated gas diffusion layer as
a current distributor in PEM methanol electrolyzer due to the low voltage operation of methanol
electrolyzers. The pore design efficiently provides pathways to the fuel to easily reach the catalyst
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layer similarly to conventional Ti mesh (shown in Figure 5a). However, the limited number of pores
effectively control the methanol flow into the catalyst layer (B—shown in Figure 6). This reduces
the initial cost of PEM methanol electrolyzer compared with PEM water electrolyzer that contains
expensive Pt-coated titanium bipolar plate and Ti mesh current collector.
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2.3. Membrane Electrode Assembly

MEA includes anode and cathode with a membrane in between. Generally, MEA has been
prepared by various techniques, and the following materials have been used for its fabrication [48,49]:
electrocatalyst, ionomer solutions, proton exchange membranes, carbon cloth or polyimide film or
Teflon film (as catalyst decal support), solvents like isopropyl alcohol (IPA), water, etc. Due to their
important role and recent research focus, this section mainly elaborates on electrocatalyst and the
development of proton exchange membranes for PEMME.

2.3.1. Electrocatalyst for Methanol Electrolysis

There are many reports on electrooxidation of methanol [50–59], but this paper principally focuses
on methanol oxidation for hydrogen productions. Narayanan [23] et al. first described H2 production
by aqueous organic solution electrolysis using Pt–Ru catalyst. They reported that bimetallic powder of
separate Pt particles and Ru particles produce better results than its alloy. To improve the electrolysis
efficiency, they have added titanium oxide, rhodium, iridium, and osmium as an additive. They found
the best performance was achieved with 60% Pt and 40% Ru. Few studies report aqueous methanol
electrolysis and are predominantly on Pt–Ru-based alloy, due to its CO-tolerant nature. Table 2 shows
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some of the recent studies based on Pt–Ru/C as anode catalyst for methanol electrolysis applications.
For each system, the composition of Pt and Ru depends on the energy consumption value; however,
no general trend is observed based on the specific concentration.

Table 2. Energy consumption of electrolysis based on Pt–Ru/C as an anode catalyst.

Anode Catalyst Cathode Catalyst Membrane Energy Consumption
kWh (Nm3)−1 Reference

40% Pt–Ru/C 20% Pt/C Nafion-117 1.48–2.87 [23]
Pt–Ru (1:1)/C Pt/C Nafion-117 1–1.2 [60]

Pt–Ru (1:1) black Pt black Nafion-115 1.46 [61]
50% Pt–Ru/C 50% Pt/C Nafion-117 1.38–1.78 [43]

Other than Pt–Ru, there are few more novel catalysts have been tested for hydrogen evolution
reactions. Nei et al. [62] prepared Pd-modified Pt supported by tungsten carbide nanocrystals
(PtPd–WC/C) by intermittent microwave heating. They reported PtPd–WC/C had better performances
in H2 evolution reactions compared to Pt–WC/C electrocatalyst, due to the specific function of
Pd. Badwal et al. [63] investigated methanol electrolysis with Pt-based anode (methanol oxidation)
catalysts (Pt/C, Pt/C–SnO2, Pt/C–CeO2, PtRu/C, PtRu/C–SnO2, and PtSn/C) and reported the cell
performance in the order of PtRu/C > Pt/C–SnO2 > PtRu/C–SnO2 > Pt/C > PtSn/C > Pt/C–CeO2 as
shown in Figure 7a. From the durability study, it is inferred that Pt/C–SnO2 catalyst gives the lowest
cell voltage with time, representing high stability due to SnO2 addition.
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Figure 7. (a) Comparison of methanol assisted water electrolysis (2 M methanol at 60 ◦C)
by 40 wt% Pt/C, 40 wt% PtRu/C, 20 wt% PtSn/C, 40 wt% Pt/C–SnO2,40 wt% Pt/C–CeO2, and 40 wt%
PtRu/C–SnO2 (b) Current–voltage curves of membrane electrode assemblies (MEAs) of (1) Pt/C and
(2) Pt–WC/C cathode electrocatalysts in 2 mol dm−3 CH3OH at 90 ◦C. Adapted with permission
from [63], copyright 2017.

Cathode catalysts also play significant role in methanol electrolysis as alternative low-cost
electrocatalysts can be developed in that directions. Shen et al. [64] prepared tungsten carbide-supported
Pt/C (Pt–WC/C) as cathode electrocatalyst by intermittent microwave heating. The Pt-WC/C cathode
electrolyzer performed better than the Pt/C cathode electrocatalyst (Figure 7b).

In an above similar study, Dhathathreyan et al. [65] used Pd nanoparticles as cathode catalyst
and reported that the cell performance using MEA with Pd nanoparticles is similar to that of MEA
based on C-supported Pt electrocatalyst, particularly at high voltage, where it performs better than
commercial Pt/C catalyst as shown in Figure 8a. Pd nanoparticles prepared by hard template-assisted
method could be a suitable alternative electrocatalyst to C-supported Pt for methanol electrolysis.
The variation in current density with membrane thickness is represented in Figure 8b, which shows
the significant variation in fuel cell performance.
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The size of metal particles is highly dependent on the performance of metal-supported catalysts
in methanol electrolyzers. A very recent study by Li et al. synthesized Pt nanoparticles (1 wt%)
of variable sizes (2.5 and 7 nm) on porous CeO2 supports [66]. The size effect causes better activity
for H2 production for the single-site Pt/CeO2 catalyst than the nanoparticles of variable sizes (40 and
800 times respectively higher performance for 2.5 and 7 nm). The authors also proposed the capability
of the single-site catalyst in liquid alcohol hydrogen production using alcohols other than the methanol.
Karim and co-workers also demonstrated the significantly higher selectivity of Pt-supported TiO2

subnanometer-sized particles compared to the larger particles for acetylene hydrogenation [67]. As the
nuclearity of Pt decreases (from 2.1 nm to single atoms), the coordination decreases with Pt and
increases with support, weakening the electronic properties. This causes electron deficiency at Pt
and weaker CO and ethylene adsorption. The acetylene hydrogenation and H–D isotope exchange
activity of Pt/TiO2 catalysts show over two orders of magnitude difference between the single atoms
and subnanometer clusters (−0.7 nm) and nanoparticles (2.1 nm), and this behavior improves with
increased metal nuclearity, electron density, and metal–reactant binding energies.

Since Pt and other noble metals are rarely available and costly, non-noble-metal catalysts are
being investigated based simply on available materials. Molybdenum carbide nanoparticles generated
by modified carbothermal reduction on carbon catalysts is observed as good for H2 evolution in an
electrochemical cell at various pH and in a laboratory-scale electrolyzer. Such catalysts showed good
efficiency at acidic environment and durability over a month. Nitrogen functionalized few-walled
carbon nanotubes in acidic media are also reported for the H2 evolution reaction and extensive
durability [68]. However, this research is currently progressing to identify vast nanomaterials for
highly efficient H2 generation.

2.3.2. Proton Exchange Membrane

In most of the studies, a proton exchange membrane such as Nafion is used as an electrolyte
for methanol electrolyzer, due to high proton conductivity and outstanding chemical, mechanical,
and thermal stability. In our previous work [6], we have tested different thicknesses of Nafion
membranes, viz. Nafion-117 (thickness of 7 mils), Nafion-115 (thickness of 5 mils), and Nafion-112
(thickness of 2 mils), and observed that the cell performance is in the order of Nafion-112 > Nafion-115
> Nafion-117 (Figure 8b). This trend is attributed to the low resistance of the membranes. However,
Nafion-112 is not suitable for longer operation since its thinner nature enhances methanol crossover
and leads to performance degradation and hydrogen contamination. The membranes not only conduct
protons but also act as separators between anode and cathode and help to separate H2 and CO.
To circumvent that limitation, in our previous study, we developed Pt-nanocatalyzed membranes and
Pt–Pd bimetallic/Nafion nanocomposite membranes for methanol electrolysis [14,47]. Both catalyzed
membranes showed improved performance compared to conventional membranes due to better
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catalytic activity and reduced methanol crossover. The continuous improvement of activity and
durability is also impacted by the insight on the exact active sites [69].

However, there are few disadvantages, namely its cost and disposal, that make researchers move
towards alternate membranes with bifunctionality. Nafion/silica composite membrane [70] serves the
function of membrane along with self-humidification. Nagendran et al. [71] converted polyether
sulfone (PES) into ionomer via sulfonation and used it in polymer electrolyte membranes for methanol
electrolysis applications. They reported that the developed sulfonated polyether sulfone (SPES)-based
membrane had similar conductivity of Nafion but was cheaper, potent, easily made, and immune to
fuel crossover compared with Nafion membranes. From a quick overview, SPES membrane-based
methanol electrolysis exhibits a peak current density of 0.802 A/cm2 at a cell voltage of 1.2 V at 80 ◦C
under suitable fabrication conditions.

Commercial applications of the PEMFCs depend on the durability and performance of the
membrane. Catalyst layer/electrolyte membrane interfacial interaction is required to reduce the
resistance, enhance proton transport, and improve performance. Accelerated stress tests are generally
done to evaluate and mitigate the membrane degradation. Many methods are adopted to investigate
membrane degradation pathways, starting from the beginning of the reaction to carefully deal with
the degradation impact [72].

3. Optimizing Operating Parameters

Optimizing the experimental parameters is one of the key criteria to increase its efficiency and
energy requirements, which includes operating temperature and methanol concentration.

Generally, the current density and H2 gas production rate increase with temperature
(Figure 9a) [6,42,71]. This is due to higher kinetic energy at high temperatures. At lower activation
overvoltage, the catalytic activity is enhanced, and the Gibbs free energy difference between the reaction
products and reactants decreases toward the negative side (i.e., the reaction spontaneously occurs).
This causes the reduction in activation resistance and aqueous surface tension at high temperature [71].
Figure 9b shows the decrease in current efficiency with cell temperature, attributed to the methanol
electrooxidation occurring on Pt-based catalysts [61].
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Figure 9. (a) Effect of operating temperature on methanol electrolysis for pure hydrogen production
(�) 30 ◦C, (•) 40 ◦C, (N) 50 ◦C, (H) 60 ◦C, (�) 70 ◦C and (J) 80 ◦C. Adapted with permission from [6],
copyright 2008. (b) Effect of operating temperature on corresponding current efficiency. Adapted with
permission from [61], copyright 2012.

Nafion perfluorosulfonic acid polymers are commonly used as polymer electrolyte membranes due
to their excellent thermal and chemical stability. These polymers also have certain limitations such as
permeability to methanol [17,73,74], H2 purity contamination, conversion loss in fuel, cathode poisoning
by CO, and reduced cell performance [75]. Hence, optimizing methanol concentrations for methanol
electrolysis is a very important step. In most of the studies, methanol concentration was changed from
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1 to 20 M [47,76], and a sharp increase in current density and H2 production was observed in the 4
to 12 M range, with the values decreasing beyond. The lower current density at higher methanol
concentrations is due to the dissolution of Nafion ionomer present in the catalyst layer and change in
membrane conductivity. Nafion membrane consists of interconnected clusters of narrow pores, and the
less polar methanol increases the cluster size, especially at higher concentrations, and decreases the
ionic conductivity [40]. Finally, artificial intelligence techniques, such as fuzzy logic [77], can also be
used to optimize the operating parameters. The performance of direct methanol fule cell (DMFC)
system varies with mass flow rate of methanol, mass flow rate of oxidant/air, pressure of methanol,
pressure of oxidant, cell operating temperature, and current density, in addition to other parameters.

4. Methanol Electrolyzer Weight Comparison and Advantages of Methanol Economy

The approximate weight of methanol electrolyzer system for 1 Nm3/h of hydrogen production
(corresponding to 1 kW continuous electrical power from PEM fuel cells) was calculated based
on our experimental work, and compared with commercially available water electrolyzer and
methanol reformers [41–44,78]. Table 3 shows the weight comparisons of various hydrogen generators.
From the information, though methanol steam reformer has reduced weight with attractive energy
consumption [14], issues like long start-up time and meagre transient response are barriers that still
impede its commercialization. Moreover, from the weight breakdown of the methanol electrolyzer
(Figure 10) system, 38.46% of weight is occupied just by power supply unit; however, if it is replaced by
a high-energy-density battery with improved methanol electrolyzer [45], then it could be a promising
technology for commercial applications.

Table 3. Hydrogen generator weight comparisons.

Hydrogen Production Method
Weight of

1 Nm3/h Hydrogen
Generators (kg)

Hydrogen Purity (%) Company References

Methanol electrolyzer 65 99 Home made [14]
Water electrolyzer 250 99.99% Hydrogenics

Methanol steam reformer 58 99.95% Element 1 (S-Series)
Methanol steam reformer 25 75% WS FLOX (FPMC1)

Methanol is a versatile fuel that can be used as a fuel for both the heat (IC) engines as well as fuel
cells. Its unique characteristics such as high-octane number, allows it to be used as a fuel directly in IC
engines, directly/indirectly in methanol fuel cells, or indirectly (after being converted to H2) in PEM
fuel cells. Generally, natural gas is the feedstock widely used for methanol production; however,
methanol production from municipal solid waste (MSW) is also industrially mature. The MSW
from human and animal activities threatens the environment, if not disposed of properly. Hence,
in recent years, biomethanol from MSW is one of the most important subjects due to its economic and
environmental advantages, specifically, in Singapore. Based on our calculations from the literature
survey (shown below), it is possible to replace gasoline usage in Singapore by 51% volume (25% by
energy) if the total MSW is taken as the base. However, the current practice is to recycle almost
half of the total generated MSW and, hence, it can be concluded with reasonable confidence that
28.9% volume (14.2% by energy) of the gasoline usage can be easily replaced by disposable MSW in
Singapore (Figure 11).



Energies 2020, 13, 5879 12 of 17
Energies 2020, 13, x FOR PEER REVIEW 12 of 17 

 

 

Figure 10. Weight breakdown of the methanol electrolyzer system. 

Methanol is a versatile fuel that can be used as a fuel for both the heat (IC) engines as well as 

fuel cells. Its unique characteristics such as high-octane number, allows it to be used as a fuel directly 

in IC engines, directly/indirectly in methanol fuel cells, or indirectly (after being converted to H2) in 

PEM fuel cells. Generally, natural gas is the feedstock widely used for methanol production; however, 

methanol production from municipal solid waste (MSW) is also industrially mature. The MSW from 

human and animal activities threatens the environment, if not disposed of properly. Hence, in recent 

years, biomethanol from MSW is one of the most important subjects due to its economic and 

environmental advantages, specifically, in Singapore. Based on our calculations from the literature 

survey (shown below), it is possible to replace gasoline usage in Singapore by 51% volume (25% by 

energy) if the total MSW is taken as the base. However, the current practice is to recycle almost half 

of the total generated MSW and, hence, it can be concluded with reasonable confidence that 28.9% 

volume (14.2% by energy) of the gasoline usage can be easily replaced by disposable MSW in 

Singapore (Figure 11). 

Total MSW generated per year (wood, horticultural waste, paper/cardboard, and food] = 2.8253 

× 109 kg [44]. Total MSW disposed = 1.4865 × 109 kg [44]. Total gasoline consumption in Singapore = 

852,000 metric tons [46] = 852/0.745 megaliters (ML) = 1143.6 ML. 

Methanol derived from total generated MSW [79] 

185 kg of biomethanol per metric ton of MSW 

2.8253 × 109 kg × 0.185/0.793 = 659.118 ML 

Overall replacement of motor gasoline by methanol 

659.118/1143.6 × 100 = 57.63% (by volume) 

(659.118 × 15.8)/(1143.6 × 32.2) × 100 = 28.28% (by energy) 

Methanol derived from disposed MSW (185 kg of biomethanol per metric ton of MSW [46]) 

1.4865 × 109 kg × 0.185/0.793 = 346.79 ML 

Overall replacement of gasoline by methanol 

Figure 10. Weight breakdown of the methanol electrolyzer system.

Energies 2020, 13, x FOR PEER REVIEW 13 of 17 

 

346.79/1143.6 × 100 = 30.32% (By volume) 

(346.79 × 15.8)/(1143.6 × 32.2) = 14.88% (By energy) 

 

Figure 11. Replacement potential diagram of bio methanol from municipal solid waste. 

5. Future Research Perspectives 

Renewable energy resources are in high demand in the present technical era as petrochemical 

products near extinction. Hydrogen is limited in its fuel applications, and it has huge potential for 

meeting the future energy demands. Utilizing methanol for H2 production involves the use of an 

environmentally benign strategy for the next generation materials. In reading the current review, the 

authors believe readers will develop basic knowledge of future technologies based on PEMFCs and 

the application of H2 fuel in various industrial and technological areas [80]. This kind of fuel cell can 

power households to small-scale industries if properly utilized. Zohuri described the major 

challenges in large-scale hydrogen production [81] and identified steam reforming as the most 

feasible method. Methanol electrolysis possesses many limitations for large-scale production and 

hydrocarbons are a better source in that case. In addition, there are various fuel cells utilizing 

microbial organisms to biomass, extending the possibility of recycling waste and energy generation. 

6. Conclusions 

Methanol steam reforming (MSR) reactions are widely practiced for H2 production due to high 

purity and promising compactness. Radial MSR reactors are integrated in PEMFC using catalysts and 

the dense metal membranes produce high-purity gas. The main limitation involved in H2 generation 

is attributed to electronic short circuiting occurring through the polymeric membranes. The current 

Figure 11. Replacement potential diagram of bio methanol from municipal solid waste.



Energies 2020, 13, 5879 13 of 17

Total MSW generated per year (wood, horticultural waste, paper/cardboard, and food) =

2.8253 × 109 kg [44]. Total MSW disposed = 1.4865 × 109 kg [44]. Total gasoline consumption in
Singapore = 852,000 metric tons [46] = 852/0.745 megaliters (ML) = 1143.6 ML.

Methanol derived from total generated MSW [79]

185 kg of biomethanol per metric ton of MSW
2.8253 × 109 kg × 0.185/0.793 = 659.118 ML
Overall replacement of motor gasoline by methanol
659.118/1143.6 × 100 = 57.63% (by volume)
(659.118 × 15.8)/(1143.6 × 32.2) × 100 = 28.28% (by energy)

Methanol derived from disposed MSW (185 kg of biomethanol per metric ton of MSW [46])

1.4865 × 109 kg × 0.185/0.793 = 346.79 ML
Overall replacement of gasoline by methanol
346.79/1143.6 × 100 = 30.32% (By volume)
(346.79 × 15.8)/(1143.6 × 32.2) = 14.88% (By energy)

5. Future Research Perspectives

Renewable energy resources are in high demand in the present technical era as petrochemical
products near extinction. Hydrogen is limited in its fuel applications, and it has huge potential for
meeting the future energy demands. Utilizing methanol for H2 production involves the use of an
environmentally benign strategy for the next generation materials. In reading the current review,
the authors believe readers will develop basic knowledge of future technologies based on PEMFCs and
the application of H2 fuel in various industrial and technological areas [80]. This kind of fuel cell can
power households to small-scale industries if properly utilized. Zohuri described the major challenges
in large-scale hydrogen production [81] and identified steam reforming as the most feasible method.
Methanol electrolysis possesses many limitations for large-scale production and hydrocarbons are a
better source in that case. In addition, there are various fuel cells utilizing microbial organisms to
biomass, extending the possibility of recycling waste and energy generation.

6. Conclusions

Methanol steam reforming (MSR) reactions are widely practiced for H2 production due to high
purity and promising compactness. Radial MSR reactors are integrated in PEMFC using catalysts
and the dense metal membranes produce high-purity gas. The main limitation involved in H2

generation is attributed to electronic short circuiting occurring through the polymeric membranes.
The current characteristics in a fuel cell depend on the features of the polymer electrolyte membrane.
The interfacial electronic level interaction between the redox levels of electrolyte and band gap edges
of the semiconductor membranes controls the efficiency. The efficiency also depends on the nature
and type of fuel, fuel-to-oxygen ratio, flow rates, pressure, temperature, humidity, and cell potential.
Moreover, high fuel concentration and flow rate loss also contribute to the fuel-to-energy conversion
efficiency. A brief analysis of the strength, weakness, opportunity, and threat (SWOT) analysis can
provide better insights into the commercialization of methanol energy system and its infrastructure.
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