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Abstract: A ZnO-Fe-MXene nanocomposite was fabricated and examined with diverse spectroscopic
techniques. The hexagonal structure of ZnO, MXene, and ZnO-Fe-MXene nanocomposites were
validated through XRD. FTIR showed the characteristic vibrational frequencies of ZnO and MXene.
The micrographs of the SEM showed nanoparticles with a flower-like structure. The electrocatalytic
reduction efficiency of ZnO-Fe-MXene nanocomposite was analyzed through cyclic voltammetry and
electrochemical impedance spectroscopy methods. The ZnO-Fe-MXene electrode was confirmed to
have a high current density of 18.75 mA/cm2 under a CO2 atmosphere. Nyquist plots also illustrated a
decrease in the impedance of the ZnO-Fe-MXene layer, indicating fast charge transfer between the Zn
and MXene layers. Additionally, this electrochemical study highlights new features of ZnO-Fe-MXene
for CO2 reduction.
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1. Introduction

The fundamental problem regarding the conventional burning of fuels is the higher over-potential
needed for the conversion of CO2. Sustainability and mitigation of the potential contribution to climate
change are two key factors that can be gained from the carbon-neutral process of electrochemical carbon
dioxide (CO2) reduction to fuels. The products from CO2 electrochemical reduction reactions such as
methanol (15.6 MJ/L) and ethanol (24 MJ/L) have energy densities much higher than those of the most
advanced battery technologies, making them ideal prototypes for the storage of intermittent renewable
energy. Hence, it is an extremely enviable goal to change CO2 into fuel precursors such as methanol,
ethylene, CO, or formic acid using renewable sources of energy (i.e., solar, geothermal, wind, etc.)
as the energy input for the process, thereby presenting a convenient way to recycle CO2 into fuels.
The stability and poor product selectivity of the catalysts are some of the problems associated with it.
Thus, multi-dimensional approaches have been employed to design new catalysts by synthesizing
two-dimensional (2D) materials [1–9].

In modern years, a new variety of 2D material, i.e., MXene, has garnered more attention due to its
good electronic conductivity, good chemical stability, and abundant active catalytic sites. Recently, a few
studies have shown the potential application of MXenes in electrochemical CO2 reduction to fuels. Diverse
metal oxide nanoparticles, such as CuO, TiO2, CdO, MgO, ZnO, and WO3, etc., have been suggested for
notable applications in carbon dioxide fuel-cell conversion. Compared to the others, zinc oxide has (ZnO,
n-type semiconductor, optical bandgap: 3.37 eV) [10] high optical transmittance and low electrical resistivity.
ZnO and Fe can be used in the fields of gas sensors, optoelectronics, photovoltaic cells, and fuel cells [11,12].
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Considering these properties and its high conductivity and ionic nature in the visible region, it could have
wide applications in CO2 to fuel conversion and methanol sensors, etc. The morphology and structure of
materials mainly depend upon the synthesis conditions and opted parameters. To date, several techniques
have been used for the synthesis of ZnO nanostructures, such as non-aqueous sol-gel [13], chemical
bath deposition [14], combustion [15], co-precipitation [16], electrodeposition [17], microwave-assisted
synthesis [18], and microwave-assisted chemical bath deposition [19]. Among these, the hydrothermal
method has eminent advantages including high sample purity, low cost, and easy fabrication. Additionally,
it has further benefits such as providing a superior surface area, having a controllable particle size, being a
low temperature method, creating particles with a narrow particle size distribution, and having a high purity,
but it also needs more resources compared to physical methods like melt mixing, laser ablation, electric
arc deposition, chemical bath deposition, and ion implantation, etc. ZnO and Fe have electrochemical
properties, and the catalytic activity of MXene is good. Previous studies have investigated the synthesis
of nanocomposites containing MXene as well as another metal oxide/sulfide combination. However,
only a few studies have considered ZnO, Fe, and MXene based composites. Li et al. investigated CO2

capture and conversion into hydrocarbon fuels (electrochemical reduction) by metal carbides (MXenes) [20].
Geng et al. reported the oxygen vacancies in ZnO nanosheets with an enhanced conversion of CO2 to
CO via electrochemical reduction [21]. Handoko et al. studied the reduction of CO2 to CH4 by MXenes
(as promising electrocatalysts) [22]. Chitosan-coated Cu2O nanoparticles (as a catalyst) used for the electro-
reduction of CO2 to methanol were reported by Basumallick et al. [23]. Hirunsit et al. studied copper based
alloys for converting CO2 to methane and methanol (electrochemical reduction) [24]. Basumallick et al.
inspected the electrocatalytic reduction of CO2 by a ZnO–Cu nanocomposite catalyst [25]. Huan et al.
noted the electrochemical reduction of CO2 to CO using Fe-N-C materials as a catalyst [26]. Based on
these studies, in this work, a composite of ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-MXene was
synthesized by a hydrothermal method.

2. Results and Discussion

2.1. Structural Investigation

The XRD pattern of the ZnO-Fe-MXene nanocomposite (Figure 1a) revealed the formation of a
hexagonal well crystallized single-phase material. There were no contamination peaks or secondary
phase detected in the XRD pattern of ZnO-Fe-MXene nanocomposite, and the crystallographic planes
monitored at (1 0 0), (0 0 2), (1 0 1), and (1 1 0) as per JCPDS No: 65-2908 were indicated as being
in ZnO phase. The crystallographic planes observed at (0 0 2), (1 0 3), and (1 0 5) as per JCPDS No:
52-0875 were indicated as being in the MXene phase [12]. Small diffraction peaks beside ZnO (1 0 0)
and ZnO (1 0 1) were also detected. These may be from the impurities or residual organic compounds
remaining in the product. In this paper, iron was doped in the zinc oxide with MXene, and there
were two valence states of iron. In the literature, the iron in zinc oxide is trivalent, and the radii of
Fe3+ (0.078 nm) and Zn2+ (0.074 nm) are close, so the changes in the lattice constant, crystallite size,
dislocation density, and lattice strain are small, and the ZnO material does not undergo significant
lattice distortion. Figure 1a shows the XRD pattern of the iron-doped zinc oxide. Compared with
that of ZnO (hexagonal), the structure of zinc oxide after Fe doping is a hexagonal structure, and the
doping does not change the symmetry of the crystal structure. Pure, Fe doped ZnO nanoparticles
showed crystallite sizes of 27.89 and 18.42 nm, as shown in Table 1. The reason for the decrease in the
crystallite size is that the Fe atoms do not shift onto the replacement sites, resulting in crystallinity loss
within the hexagonal crystal structure and diminishing the crystallite size, which is also responsible for
the enlargement of the peaks. The pointed peaks demonstrate the hexagonal crystalline nature of the
synthesized hybrids. From the XRD of the hybrids, it is apparent that the peaks are expanded and
have lower intensities owing to the occurrence of etched MXene with Fe doped ZnO nanoparticles.
All of the foremost peaks of ZnO and MXene are present in all composite materials, and this is a clear
confirmation of the efficient creation of the hybrid composites [27].
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Figure 1. (a) XRD pattern; (b) FTIR spectra of the ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-
MXene nanocomposites.

Table 1. Lattice parameters obtained from the ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-
MXene nanocomposites.

Sample Phase Lattice Constant
(nm)

Crystallite Size (nm)
D = kλ/β Cosθ

Dislocation Density
(δ) × 1015 (Lines/m2)

δ = 1/D2

Strain (ε)
10−3

ZnO Hexagonal a = 0.3231
c = 0.5164 27.89 1.29 1.243

MXene Hexagonal a = 0.3072
c = 0.1851 20.57 2.36 1.685

ZnO-Fe Hexagonal a = 0.3224
c = 0.5172 18.42 2.95 1.882

ZnO-MXene

ZnO
(hexagonal)

a = 0.3220
c = 0.5180 7.9 16.0 4.348

MXene
(hexagonal)

a = 0.3068
c = 0.1853 17.9 3.12 1.931

ZnO-Fe-MXene

ZnO-Fe
(hexagonal)

a = 0.3228
c = 0.5160 10.20 9.61 3.398

MXene
(hexagonal)

a = 0.3063
c = 0.1860 24.16 1.71 1.435

2.2. FTIR Studies

The FTIR spectrum obtained for the ZnO-Fe-MXene nanocomposite is shown in Figure 1b.
The FTIR studies validated the bending and stretching vibrations of saturated hydrocarbons (−CH),
hydrogen bonds (−OH), and carbonyls (−CO), respectively. A strong broad peak observed in the range
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1362–3443 cm−1 could be due to the bending and stretching vibrations of O–H groups. Carbonyl group
(CO3

2−) bending vibration is detected at 1125 and 2922 cm−1. The Zn–O and Ti–O modes of stretching
correspond to peaks at 545–600 cm−1 [28,29].

2.3. Morphological Analysis

The SEM photographs obtained for the ZnO-Fe, ZnO-MXene, and ZnO-Fe-MXene nanocomposites
are shown in Figure 2a–c. From the micrograph (Figure 2a–c), it is observable that the surface of
the hydrothermally prepared ZnO-Fe-MXene nanocomposite is smooth with a flower-like structure.
The average grain size of the powder was found to be around 100 nm. The doping of Fe and MXene
does appear to have a noteworthy effect on the morphology of ZnO; titanium carbides can be isolated
on the surface of ZnO, which might have controlled the growth to minute grains.
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Figure 2. SEM images of the (a) ZnO-Fe, (b) ZnO-MXene, and (c) ZnO-Fe-MXene nanocomposites.

The EDAX spectra obtained for the hydrothermally prepared ZnO-Fe, ZnO-MXene, and ZnO-Fe-
MXene nanocomposites are shown in Figure 3a–c. The chemical composition data derived for the
samples from the EDS analysis (wt %) are indicated as Zn (28.72%), Fe (3.55%), Ti (21.38%), Al (1.65%),
C (18.26%), and O (26.44%), as shown in Figure 3. A small amount of TiC was still present, as indicated
by the MAX phase and also authenticated by the occurrence of O and a small amount of F, Cl dealing
with EDAX results. From the data, it was found that the elements were present as per the requirements,
and the EDAX validated the effective incorporation of MXene into the ZnO nanostructure.
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2.4. Electrochemical Properties of the ZnO-Fe-MXene Nanocomposite

To investigate the CO2 reducing behaviour of the ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-
MXene nanocomposites (Figure S1), CV was conducted in the −1.0 to +0.4 V vs. E (V vs. Ag/AgCl)
potential range for ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-MXene nanocomposite electrodes
in N2 and CO2 saturated in 0.5M NaOH (Figure 4a). The smaller reduction redox peak at -0.99 V was
identified as ambient CO2 produced from surface reduction. Nevertheless, in the case of ZnO-Fe-MXene,
when the electrode was checked in N2 conditions, no peak was observed. It is interesting to note
that when the ZnO-Fe-MXene electrode is analyzed under CO2 producing circumstances, the current
density increases up to −18 mAcm−2 (−1.0 V), and the onset potential moves in the direction of
positive potential (−0.04 V). In comparison to the electrode when checked under N2 (Figure 4b),
the current density is −0.02 mAcm−2 (−1.0 V) while the onset potential is −0.85 V, proving the improved
electrochemical reducing (eCR) activity of ZnO-Fe-MXene electrocatalysts. The difference in the current
obtained in presence of N2 and CO2 shows that bicarbonate is not participating in the reduction process.
Similarly, CV analysis for ZnO, MXene, ZnO-Fe, and ZnO-MXene was also conducted under CO2

conditions as illustrated in Figure 4. In order to determine whether MXene affected the catalytic activity
of the ZnO-Fe catalyst, the CV of the catalyst was executed in a CO2 saturated 0.1 M NaOH electrolyte
and showed a large capacitive current with an increase in the cathodic current to −0.7 V, likely due
to either H+ and/or CO2 reduction. The results imply that the eCR activity of the ZnO-Fe-MXene
nanocomposite based electrode in the direction of CO2 reduction is very high (Table 2) compared with
that found with the pure ZnO, MXene, ZnO-Fe, and ZnO-MXene samples [30–32].
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Figure 4. Cyclic voltammetry (CV) studies of the (a) ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-
MXene nanocomposites in a CO2 saturated aqueous solution of 0.5 M NaOH at a scan rate of 50 mV/s;
and (b) ZnO-Fe-MXene nanocomposite under CO2 and N2 conditions. (c) Linear sweep voltammogram
studies of the ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-MXene nanocomposites at a scan rate of
50 mV/s.

Table 2. Current density of prepared nanomaterials at a scan rate of 50 mV/s under CO2 conditions.

Materials Current Density (mAcm−2)

ZnO 3.439
MXene 6.64
ZnO-Fe 7.13

ZnO-MXene 10.21
ZnO-Fe-MXene 18.745

The LSV showed superior produced reduction currents for the ZnO-Fe-MXene nanocomposite
(Figure 4c). Clearly, the total current densities (reaction rates) are significantly increased in the case
of the CO2 saturated electrolyte, indicating a noteworthy role of the CO2 reduction reaction in the
overall reduction processes and, thus, the high activity of the ZnO-Fe-MXene nanocomposite in CO2

conversion [33–38].
The EIS is one more outstanding method for investigating the CO2 conversion activity of prepared

composites [39]. The potentiostatic mode (three-electrode system) in a 0.5 M NaOH solution with an
alternating GCE in the frequency range 0.2–100,000 Hz, a peak potential of 0.46 V, and an amplitude of
10 mV is used for the EIS. In electrochemical studies, two noteworthy factors are the (a) solution resistance
and (b) resistance between the working and reference electrodes. The Nyquist plots (Figure 5a,b) of all
the prepared composites, illustrating a semicircle impedance curve (high-frequency region), are related
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to the discrete frequency, and those in the low-frequency region with a slope of 45◦ corresponded to a
straight line, conveying the Warburg diffusion impedance. The semicircle (high-frequency region) is
also related to the partial reduction of methanol to formic acid [40–42]. The charge transfer resistance
at the electrode–electrolyte boundary or the chunking properties of the rough electrode responsible
for the faradic process of the ionic exchange is represented by the semicircle’s diameter. The small
semicircle diameter implies amplified reaction kinetics, and the low charge transfer resistance suggests
an astonishing interfacial structural change, which most likely results from the Ti-based framework
(high electrical conductivity). Amongst the dissimilar nanocomposites, the ZnO-Fe-MXene composite
is the most proficient, which has the lowest resistance to approaching ion and electron transfer, the most
movement of reactants toward active sites, a low activation energy, and speedy reaction kinetics [43–47].

The comparison of the EIS spectra of the ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-MXene
nanocomposites demonstrates that the charge transfer resistances in ZnO, MXene, ZnO-Fe, and ZnO-
MXene are an order of magnitude higher than that in the ZnO-Fe-MXene nanocomposite in identical
conditions. These outcomes show that the conductivity of the composite advances the charge transfer
to CO2. Particularly, the charge transfer resistance on ZnO-Fe-MXene is additionally decreased when
the electrode is utilized for the eCR reaction. This suggests that the surface of the electrode is not
only reducing the CO2 throughout the reaction but also stops it from departing during structural
reorganization [48,49].
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Figure 6 shows the CV analysis for the tested catalysts before and after 1000 cycles of the oxidation
test. It can be observed that ZnO-Fe-MXene kept around 88% of its initial CO oxidation current after 1000
cycles, which revealed that it was more stable than ZnO MXene (79%) and MXene (73%). Meanwhile,
ZnO and ZnO-Fe gave the lowest stability condition with 66% and 61%, respectively. The superior
stability for the ZnO-Fe-MXene nanocomposite is attributed to its inimitable adsorption affinity for
CO, which allows the intermediates/products of the reactions to reach oxygenated species, besides the
prominent physicochemical merits of MXene, like its high surface area, great conductivity, abundance of
active sites, and high electron density. The electrochemical performance of the prepared nanocomposites
(catalysts) are compared with previously reported various 2D metal oxides based catalysts (Table 3).
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Table 3. Comparison of the electrochemical reducing (eCR) performance of various 2D metal oxide
based catalysts.

Materials Method of Preparation Electrolyte Current Density
(mAcm−2)

Ref.

Cu@Sn In situ electrodeposition 0.5 M NaHCO3 16.52 [50]

CuxO-Sn nanowire Facile surface modification 0.1 MK HCO3 4.5 [51]

SnO2/graphene Facile hydrothermal 0.1 M NaHCO3 10.2 [52]

SnO2/RGO nanosheets One pot hydrothermal reaction 0.5 M NaHCO3 13.9 [53]

AgSn/SnOx Galvanic displacement method 0.5 M NaHCO3 16.0 [54]

Cu, S co-doped SnO2 Facile hydrothermal 0.5 M NaHCO3 5.5 [55]

Zn electrode Commercial foil 0.1 M KHCO3 4.1 [56]

Nanoscale Zn Anodization 0.5 M NaCl 15.0 [57]

B-doped graphene Modified hummer’s 0.1 M KHCO3 2.0 [58]

N-doped graphene High temperature pyrolysis 0.5 M KHCO3 7.5 [59]

g-C3N4/MWCNTs Scalable preparation approach 0.1 M KHCO3 0.92 [60]

InSn alloy/carbon paper Electrodeposition 0.1 M KHCO3 15.0 [61]

ZnO-Fe-MXene Hydrothermal route 0.5 M NaOH 18.745 Present study

2.5. Comparison of the Electrochemical Reduction Performance of the ZnO, MXene, ZnO-Fe, ZnO-MXene,
and ZnO-Fe-MXene Nanocomposite Catalysts

The eCR performances of the ZnO-Fe-MXene hybrids are compared with those of various 2D
metal oxide based catalysts. The eCR performance of the ZnO-Fe-MXene hybrid is peculiarly higher
than the eCR performance of the ZnO, MXene, ZnO-Fe, and ZnO-MXene electrodes at a variety
of functional potentials under similar experimental circumstances. These outcomes suggest that
the composite might modify both the geometric and electronic structures of the catalytically active
sites. The modification of the ZnO-Fe-MXene catalyst electronic structure is directly communicated
to transitional binding (CO−%), which can manipulate the pathway reaction for formate creation
(Figure 7). In addition, the geometric structure is altered, owing to the fact that oxidation treatment
can influence the local atomic distribution at the active site, supporting the stability of CO−%
intermediates [62–64]. Thus, there is a dependable connection between various electronic and
morphology effects in ZnO-Fe-MXene electrodes.
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The subsequent structure–property connections from the eCR activity of the composite electrocatalysts:
1. Fe metal suppresses the production of H2 in favor of HCOO− creation, particularly at higher

overpotential. This result is magnified when the ZnO-Fe electrodes are utilized for eCR.
2. The result for the ZnO/Fe with MXene composite where ZnO is assisting the enhanced adsorption

of CO2 and reduction activity while Fe is aiding the charge transfer reaction means that the synergy of
the electronic and geometric effects is vital for the superior activity of the eCR.

3. The function of MXene is pretty important, and this outcome suggests that a shift in attention would
be appropriate, considering the operation of electrocatalysts based on ZnO-Fe for the eCR, where ZnO-Fe
can form a composite with MXene similar to 2D materials to achieve better eCR activity. Furthermore,
the configuration of ZnCO3 on the surface of the ZnO-Fe-MXene composite could enhance the mechanism
of CO2 adsorption, which might pave a path towards the enhanced refinement of the eCR electrocatalysts.

4. The superior eCR activity of the ZnO-Fe-MXene electrode relative to that of the ZnO, MXene,
ZnO-Fe, and ZnO-MXene electrodes could be attributable to the metal oxide/metal with MXene hybrid
structure benefiting from the synergistic electronic and geometric effects of the multi-metallic centers.

3. Experimental

3.1. Materials

Zn (CH3COO)2.2H2O, Fe (NO3)2.9H2O, Ti3AlC2, NaOH, and ethanol were attained from Sigma
Aldrich, Germany.

3.2. Preparation of ZnO Nanoparticles

In a distinctive process, 0.22 g of Zn (CH3COO)2.2H2O was dissolved in 20 mL of de-ionized
(DI) water and stirred well by using a magnetic stirrer. Then, 1 M of NaOH was mixed with constant
stirring for 2 h at 353 K. The mixture was transferred to a 100 mL Teflon-lined stainless-steel autoclave
(TLSSA), which was sealed and maintained at 453 K for 12 h. After the reaction, the autoclave was then
naturally cooled down to room temperature (RT). The attained precipitate was cleaned off and washed
a number of times with DI water and ethanol, correspondingly, and dried at 353 K for approximately
3 h in a hot air oven, before being calcinated in a muffle furnace at 673 K for 2 h.

3.3. Preparation of ZnO-Fe Nanoparticles

In 40 mL of DI water, 0.22 g of Zn (CH3COO)2.2H2O and 0.05 g of Fe (NO3)2.9H2O were dissolved,
and the solution was stirred well using a magnetic stirrer. Then, 2 M NaOH was mixed in by constant
stirring for 2 h at 353 K. The mixture was transferred to a 100 mL TLSSA, which was sealed and kept
at 453 K for 12 h. After the reaction, the TLSSA was then naturally cooled down to RT. The attained
precipitate was filtered off and washed a number of times with DI water and ethanol, correspondingly,
and dried at 353 K for approximately 3 h in a hot air oven, then calcinated in a muffle furnace at 673 K
for 2 h.

3.4. Preparation of ZnO-Mxene Composite

In ethanol, 0.2 g of Ti3C2 MXene was dispersed by ultrasonication (20 min) followed by the
addition of 0.22 g of Zn (CH3COO)2.2H2O and 2M NaOH into the above solution, and the mixture was
stirred well with magnetic stirring for 2 h at 353 K. The mixture was transferred to a 100 mL TLSSA,
which was sealed and kept at 453 K for 12 h. After the reaction, the TLSSA was then naturally cooled
down to RT. The attained precipitate was filtered off and washed a number of times with DI water and
ethanol, correspondingly, and dried at 353 K for approximately 3 h in a hot air oven, then calcinated in
a muffle furnace at 673 K for 2 h.
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3.5. Preparation of the ZnO-Fe-MXene Nanocomposite

In ethanol, 0.2 g of Ti3C2 MXene was dispersed by ultrasonication (20 min), followed by the
addition of 0.22 g of Zn (CH3COO)2.2H2O, 0.05 g of Fe (NO3)2.9H2O, and 2M NaOH into the above
solution, which was then stirred well with magnetic stirring for 2 h at 353 K. The mixture was transferred
to a 100 mL TLSSA, which was sealed and maintained at 453 K for 12 h. After the reaction, the TLSSA
was then naturally cooled down to RT. The attained precipitate was filtered off and washed a number
of times with DI water and ethanol, correspondingly, and dried at 353 K for approximately 3 h in a hot
air oven, then calcinated in a muffle furnace at 673 K for 2 h.

3.6. Characterization

An X-ray diffractometer (X‘Pert-Pro MPD, PANalytical Co., Almelo, Netherlands) was utilized for
the powder XRD analysis of the prepared ZnO, MXene, ZnO-Fe, ZnO-MXene, and ZnO-Fe-MXene
nanocomposites. The Fourier transform infrared spectroscopy (FTIR; Perkin Elmer, Frontier, USA
FT-IR spectrometer) spectra of the prepared nanocomposites were traced in the range of 4000–400 cm−1.
The morphological properties of the products were observed with a scanning electron microscope
(SEM; Nova Nano SEM 450) equipped with an EDAX (Nova Nano SEM 450).

3.7. Electrochemical Reduction of CO2

Electrochemical experiments were executed with a Gamry electrochemical analyzer (reference
3000, Gamry Co., USA), using a standard 3-electrode system at RT. A platinum wire, Ag/AgCl, and a
glassy carbon electrode (GCE) with a diameter of 5 mm were used as counter, reference, and working
electrodes, respectively. Two milligrams of prepared nanomaterials (catalyst) were dispersed in a
solution, which was a mixture of 200 µL of water and 5 µL of 5% Nafion solution, employing the
ultra-sonication technique for one hour to produce black ink with homogeneity. For the sample filling,
the GCE was well-polished with 0.05 µm aluminum oxide powder and cleaned meticulously with
distilled water. Then, 5 µL of ink was placed on the surface of the GCE and dehydrated beneath
an infrared lamp for 10 min to attain a catalyst sheet. For the electrochemical measurements for
CO-stripping, the CO was fizzed into a 0.5 M NaOH solution for 15 min. Cyclic voltammetry (CV;
reference 3000, Gamry Co., USA) and electrochemical impedance spectroscopy (EIS; reference 3000,
Gamry Co., USA) were used. CV was conducted at −1.0 to +0.4 V vs. E (V vs. Ag/AgCl) under
CO2 and N2 conditions, with the sweep rate of 50–200 mVs−1. ZnO, MXene, ZnO-Fe, ZnO-MXene,
and ZnO-Fe-MXene nanocomposite linear sweep voltammetry (LSV) was conducted at −2.0 to +0.3 V
vs. E (V vs. Ag/AgCl). EIS data were acquired in a frequency range of 0.2–100,000 Hz with amplitude
of 10 mV.

4. Conclusions

A ZnO-Fe-MXene nanocomposite has been fabricated by the hydrothermal route and was studied for
its structural, morphological, and electrochemical properties. XRD verified the ZnO-Fe-MXene (hexagonal,
hexagonal) arrangement with an average crystallite size for ZnO-Fe-MXene of 17 nm. Morphological
study proved the configuration of the nanoparticles by SEM. The ZnO-Fe-MXene nanocomposite showed
the best properties for electron–proton coupling transport during the CO2 reduction reaction due to
the MXene layer. Finally, a CO2 reduction reaction was performed with a hydrothermally prepared
ZnO-Fe-MXene nanocomposite. The prepared ZnO-Fe-MXene nanocomposite is a well-organized
material that can be employed for performing the oxidation of methanol to formic acid in direct methanol
fuel cells. The higher eCR performance of ZnO-Fe-MXene implies that these composites can be utilized
industrially and could pave a path toward scalable eCR systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/5/549/s1,
Figure S1: CV studies of ZnO, MXene, ZnO-Fe, and ZnO-MXene nanocomposites under CO2 and N2 conditions.

http://www.mdpi.com/2073-4344/10/5/549/s1
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