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Mixed metal oxide nanocomposites (rare earth-based) have become irreplaceable and tend to display
great functioning in all kinds of arenas like as photocatalytic, electrochemical, and biological. NiO-
CGSO [NiO-Ce0.8Gd0.2O2-d–Ce0.8Sm0.2O2-d] nanomaterial was produced by the wet-chemical route for
numerous purposes. The development of (FCC) face-centered cubic structure confirmed and there was
no derivative phase was observed by XRD. Metal-Oxygen bond was revealed by FTIR analysis. The mor-
phology and elemental composition of the sample were carried out using SEM with EDAX. The optical
bandgap of prepared nanocomposite was studied using UV–Vis spectroscopy. Electrochemical behaviour
was observed at conditions, voltage (1.3 V), and the frequency (42 Hz–5 kHz). Photocatalytic and antibac-
terial behavior of prepared NiO-CGSO nanocomposites also investigated. It was found that this novel
composite catalyst decomposed 92% of toxic pollutants from wastewater. Further, NiO-CGSO composites
showed superior antibacterial performance against aeromonas hydrophila, E. coli, and S. epidermis bacte-
rial pathogens.
1. Introduction

Metal oxide nanocomposites (NCs) have extensive appliances
for instance photocatalysis, chemical, biosensors, and anti-
resistant bacteria and therapeutic agents [1]. In the value of eco-
logical remediation, metal oxide based composites have broad
and develop into competent material on account of their lesser
bandgap, inexpensive, non-toxicity, thermal, and chemical stability
[2]. Rare-earth doped composites were intentioned as feasible
anodes for IT-SOFCs. They display typical assorted electronic-
ionic conductivity [3,4]. It was originated to facilitate composites
that could demonstrate exceptional high electron-transfer, con-
duction, and noxious dyes degradation properties, consecutively,
which could sustain to achieve superior power output [5–8].
From literature, it can realize that several organic and inorganic
nanoparticles including CuO, NiO, MgO, CeO2, NiO have been
widely utilized in biomedical and other purposes [9–12]. Nanoma-
terials attracted many young scientists as a result of their apprecia-
ble chemical stability, magnetic behaviour, and biocompatibility.
The nanomaterials are also eminent in the antibacterial, antifungal,
antioxidant, and anticancer activities [13,14].

In the meantime, the photocatalytic semiconductor has
prompted scientific awareness owing to their prevalent purposes
for the decrease of infectivity from the water and air. It is mostly
utilized for H2 production, odor control, and stimulation of bacteria
and tumor cells. The pollutants released straight to the atmosphere
need to be photo degraded not including the creation of added mis-
use and byproducts into H2O and carbon dioxide [15]. It is an emi-
nent authenticity that water effluence is an enormous confront for
the existing and forthcoming generations. In the framework, dyes
participate decisive function in the effluence of water bodies and
are extremely noxious, which is frequently developed in several
manufactories. As dyes show a composite structure, it is compli-
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cated to humiliate in nature. As a result, diverse semiconductor
photocatalysis procedures have been implemented to humiliate
the unrefined pollution integrated into the water resources [16].
Among many metal oxide nanoparticles (NPs), NiO NPs are widely
applied on account of their large bandgap, chemical stability,
non-toxicity, and electrochemical activity [8,17]. Such impending
properties correlated with the NiO NPs in dissimilar fields like
therapeutic, magnetic hyperthermia, sensing, and other applica-
tions [9,17–19].

Different techniques have been executed for nanocomposites
(NCs) production such as ultra-sonic process, ball milling, micro-
wave, mechanical alloying, sol–gel and chemical-precipitation,
etc [21–23]. From above all well-framed methods, the co-
precipitation technique is utilized as a valuable scheme for the
synthesis of nanoparticles, due to a pleasant route. It targets a swift
and harmonized method of reaction as an alternative of formulat-
ing from exterior resources. This technique is extra operative for
capitulating homogeneity, awfully untainted model, miniature
particle size, lesser time, and less exterior energy [25–28]. In this
current work, Gd and Sm doped ceria material was inspected
methodically using C-TAB surfactant. Cerium has so many applica-
tions and especially involved in catalysis and shown excellent fea-
tures as reported earlier [29]. Also, rare-earth nanostructures have
various applications as reported by many researchers [31–35].

In the present work, for the first time, novel NiO-CGSO nanohy-
brids were synthesized using a wet chemical method in the pres-
ence of CTAB surfactant. Synthesized nanohybrids were
investigated to determine structural, morphological, antibacterial
and electrochemical performance. Further, the study is broadened
to inspect the removal of toxic pollutants through the photocat-
alytic process.
2. Experimental method

2.1. Materials

In this experimental study (NiO-CGSO NC), the aqueous solu-
tions prepared and materials as similar to our earlier report
[37,37].
Stirring at RT for 2 hrs

Resultant precipitate (yellow color) of star

Precipitate dried at 50-100oC for 

Heat treatment at 300o, 450o, 600o and 7

Ni(NO3)2.6H2O +(Ce (NO3)3).6H2O + (Gd (NO3)36H2

Fig. 1. Flowchart of NiO-C
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2.2. Method

The flowchart of the procedure for the fabrication of NiO-CGSO
NC is revealed in Fig. 1.

2.3. Reactions involved in mechanism: Stepwise

Step by step reactions entailed in the fabrication of NiO-CGSO
NC during the experiment can be shown below:

Reaction mechanism for NiO-CGSO

ið Þ 7:6NaOH !H2O 7:6NaþðaqÞ þ 7:6OH�
ðaqÞ

iið Þ NiðNO3Þ2 !H2ONi2þ aqð Þ þ 2NO3
�
ðaqÞ

iiið Þ 1:6CeðNO3Þ3:6H2OðaqÞ !H2O 1:6Ce3þðaqÞ þ 4:8NO3
�
ðaqÞ þ 6H2OðaqÞ

ivð Þ 0:2GdðNO3Þ3 !H2O 0:2Gd3þ
aqð Þ þ 0:6NO3

�
ðaqÞ

vð Þ 0:2SmðNO3Þ3 !H2O 0:2Sm3þ
aqð Þ þ 0:6NO3

�
ðaqÞ

við Þ 1:6Ce3þ aqð Þ þ Ni2þ aqð Þ þ 0:2Gd3þ
aqð Þ þ 0:2Sm3þ

aqð Þ þ 7:6OH�
aqð Þ

þ xH2O aqð Þ !stirring
1:6Ce OHð Þ4:xH2O sð Þ
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þ 0:2Sm OHð Þ3:xH2O sð Þ !500�100
�
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viiið Þ 1:6Ce OHð Þ4 þ Ni OHð Þ2 þ 0:2Gd OHð Þ3 þ 0:2Sm OHð Þ3
� !300;450;600and750

�
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GSO NC preparation.
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Overall balanced equation:

7:6NaOHþ 1:6CeðNO3Þ3:6H2O aqð Þ þ NiðNO3Þ2 þ 0:2GdðNO3Þ3
þ 0:2SmðNO3Þ3 !H2ONiO� Ce0:8Gd0:2O2�d � Ce0:8Sm0:2O2�d sð Þ

þ 7:6NaNO3 aqð Þ þ xH2O gð Þ "
2.4. Characterization

To characterize the synthesized composite powders, the phase
of the samples was investigated by XRD operating the Shimadzu
XRD 6000 X-ray diffractometer Ka radiations (k = 1.5418 Ǻ). FTIR
spectra were recorded using the JASCO 460 Plus spectrometer over
the range from 4000 to 400 cm�1. For this analysis, a small amount
of Y2O3 samples was blended with KBr and then pressed into pel-
lets for the measurement. The changes in surface morphology of
the products were monitored by a scanning electron microscopy
(JEOL Model JSM-6360 SEM) operated at 15 kV. Thermal behavior
was examined on a Perkin Elmer TGA 7 under N2 atmosphere at
10 �C/min of heating rate. The UV–vis absorption spectrum was
obtained from the Agilent 8453 diode array UV–Vis spectropho-
tometer. The bulk conductivity was projected via impedance anal-
ysis. The photocatalytic behavior of the composite was studied
under natural light irradiation, and the antimicrobial behavior of
the composite was studied by the agar well diffusion method.
Fig. 2. TGA pattern of the precursor material.

Table 1
Weight loss regions of the forerunner material.

Phase/
Region

Temperature
(�C)

Weight failure Explanation

I 100 1–2% Water molecule thrashing
II 250 5–6% Phase arrangement of NiO
III Among 250 to

700
Over 6% carbon/nitrogen-based

compounds decomposition
IV Approximately

700
Steadiness in
Weight loss

Phase-pure nanocomposite
configuration

Table 2
Change in weight reduction recorded from the TGA of precursor material.

Sample Primary weight (mg) at 25 �C Final weight (mg)

NiO-CGSO 10.83 8.70
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3. Results and discussion

3.1. Thermal properties

The prepared forerunner material (Hydroxides of Ni, Ce, Gd, and
Sm) by a prelude mass of 8–12 mg was positioned (Pt crucible) and
proceed for examination and the output was shown in Fig. 2.

From the above curve, it was assumed that the loss of weight
starts to show from the earlier phase itself. The NC thermal decom-
position can be allocated into 4 split sections as explained in the
earlier reports [5,38] and also the loss of weight modification
detected for the forerunner material attained from the TGA data
displayed in Tables 1 and 2 respectively.

3.2. Morphological and structural studies

3.2.1. Crystallinity
The XRD of the NiO-CGSO NC discloses the design of FCC (fluo-

rite cubic) well crystalline single-phase as shown in Fig. 3 [40–41].
There are no contamination peaks or any other secondary phase
was examined in the XRD pattern of NiO-CGSO NC and the crystal-
lographic planes viewed at (1 1 1), (2 0 0), (2 2 0), (3 1 1), (2 2 2), (4
0 0), (3 3 1), (4 2 0) and (4 2 2) as per JCPDS No: 81-0792 are des-
ignated in CeO2 phase [42]. The crystallographic planes observed at
(1 1 1), (2 0 0) and (2 2 0) as per JCPDS No: 75-0197 are designated
in the NiO phase [43].

The structural parameters of the samples were computed (from
the XRD data) as reported earlier [20,25,44] and the obtained val-
ues shown in Table 3.

3.2.2. FTIR studies
FTIR spectrum of NIO-CGSO NC was exposed in Fig. 4. The sig-

nificant peaks noticed from the FTIR spectrum ascribed for distin-
guishing peaks have been listed in Table 4.

3.2.3. Morphological studies
The SEM characterization and EDAX analysis of images acquired

on NiO-CGSO NC calcined at 750 �C are presented in Fig. 5. SEM
at 700 �C Total weight loss (mg) Total Weight loss (%)

2.13 22%

Fig. 3. The obtained XRD pattern of NiO-CGSO NC.



Table 3
The structural parameters of NiO- NC.

Lattice parameter CeO2 phase (JCPDS No. 81–0792) Doped CeO2 phase of NiO-CGSO NiO phase (JCPDS No. 75–0792) NiO phase of NiO-CGSO

Crystallite structure Cubic (FCC) Cubic (FCC) Cubic (FCC) Cubic (FCC)
Lattice parameter ‘a’ (Å) 5.412 5.412 4.170 4.161
Lattice volume (Å3) 158.516 158.516 72.511 72.043
Speculative density (g/cc) 7.2110 8.139 6.8430 6.885
Crystallite size (nm) 20.8 — 20.8 —

Fig. 4. FTIR spectrum obtained on NiO-CGSO NC.

Table 4
FTIR consignments of the prepared sample.

Material Obligation of distinctive peaks (Cm�1)

Ce-O Ni-O Carbon dioxide d (H-O–H) bending OH stretching

Reference Peaks 1383.2 Near 400 2360.5 1600.7 3400.8
NiO-CGSO 1384 410 2359 1599 3435
Ref. [46] [45] [47] [46] [45]

Fig. 5. (a) EDAX, (b) TEM, and (c) SEM data obtained on NiO-CGSO nanocomposite.
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Table 5
The calculated conductivity values of NiO-CGSO
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photographs (Fig. 5c) and TEM images (Fig. 5b) were displayed in
Fig. 5.

TEM and SEM pictures obtained on NiO-CGSO NC reveal the
clear spherical shaped particles and the size was shown in the
range of 30 to 60 nm. It is also observed that the minority
microparticles showed owing to cluster [25,25]. The supplement
of the CTAB (surfactant) prohibited the chance of remarkable clus-
ter to achieve well NC. EDAX disclosed the occurrence of the ele-
mental composition obtained from the NiO-CGSO NC as Ni
(13.4%), Ce (49.4%), Gd (5.8%), Sm (4.2%), and O (27.2%). There are
no contamination peaks observed in EDAX spectra and also sug-
gested the purity of the composite.

3.2.4. Optical studies
The optical studies of NiO-CGSO NC were deliberated by UV–

Visible spectroscopy. The spectrum was recorded in the region
Fig. 6. Corresponding circuit (2RQR) employed for fitting data.

Fig. 7. (a–e) Impedance curves of NiO-C
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from 200 to 800 nm wavelength at RT. The energy bandgap of
the NC can be determined from the Eg measurements via tauc’s
relation formula. The nanocomposite exhibits a strong absorbance
peak (350 nm) wavelength. The analyzed bandgap of NiO-CGSO
composite was initiated to be 3.54 eV [27–28].
3.3. Electrochemical behavior

The circular compacts of prepared the NC, diameter (10 mm),
thickness (2 mm), and pressure (1.2 ton) using hydraulic pressure
pelletizer. To achieve a more densified state, the sintering temper-
ature was applied at 750 �C for 3 h to diminish pours.
GSO NC at different temperatures.

NC at diverse temperatures.

Temperature (K) Conductivity (S/cm)

310 7.8151 � 10-06

573 7.3273 � 10-06

673 1.2710 � 10-04

773 4.3843 � 10-04

873 1.2501 � 10-03



Table 6
The calculated activation energies for NiO-CGSO NC.

Material Temperature (�C) 1000/T (K�1) logrT (Scm-1K) slope Activation energy (eV)

NiO-CGSO 400 1.492 �3.895 �2.887 0.249
500 1.298 �3.358
600 1.149 �2.903

Fig. 8. Schematic mechanisms of CR dye degradation of NiO-CGSO NC.

Fig. 9. Absorbance spectrum of NiO-CGSO NC for CR under nature sunlight
irradiation.
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At various temperatures (RT, 300, 400, 500, and 600 �C), ac
impedance measurements were taken with the standard condi-
tions. Data fitting for the measures was completed with the ZVIEW
software by applying the following equivalent circuit (2RQR) and it
is represented in Fig. 6. The plots obtained from the sample at
diverse temperatures showed in Fig. 7(a–e).

From the data, it is observed that NiO-CGSO NC exhibited the
optimum value of conductivity at high temperatures and the data
shown in Table 5. Petrovsky et al reported innovative nanomate-
rial; Sm-doped ZrO2 for application in ITSOFC [30–43].

The Arrhenius linear fit relationship is employed to estimate the
activation energy of the prepared composite. When the conductiv-
ity enhances the activation energy also increased and the obtained
values are shown in Table 6.
3.4. Photocatalytic performance

The photocatalytic nature of the NC was analyzed from the pho-
todegradation performance of CR dye beneath the natural light
irradiation process and as shown in Fig. 8. The CR degradation effi-
ciency compared with earlier reports is shown in Table 8.

The CR dye activity of NiO-CGSO NC was evaluated under natu-
ral light irradiation. The absorption spectrum of CR is an illustra-
tion (Fig. 9) and the distinguishing absorption of CR (664 nm)
diminishes hurriedly through enhanced coverage time. This speci-
fies to facilitate the solute dye concentration declines promptly
and virtually disappears in 120 min.

The degradation percentage is 92 at 120 min. The photodegra-
dation of CR dye obeys pseudo-first-order kinetics. From the kinet-
Table 8
Antibacterial activity of NiO-CGSO NC at diverse concentrations.

Tested bacteria Gram reaction ZOI (mm)

20 mg/mL 40 mg/mL 60 mg

S. epidermis �ve 12 15 17
E. coli �ve 14 16 19
Aeromonas hydrophila �ve 10 12 15
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ics study, NiO-CGSO NC reveals an excellent CR dye action and the
kinetic constant (k) is 0.0056 min�1.

From Table 7, NiO-CGSO nanohybrids show importantly higher
catalytic activity under natural light irradiation than the existing
commercial catalyst.
3.5. Antibacterial behavior

The antimicrobial nature was assessed alongside gram-negative
such as Aeromonas hydrophila, E. coli, and S.epidermis bacterial
pathogens using NiO-CGSO NC (Fig. 10). Table 8 illustrates the
Zone of inhibition (ZOI) of NiO-CGSO alongside pathogenic
bacteria.

From Table 8, chemical precipitated NiO-CGSO NC show an
exceptional antimicrobial activity against foodborne pathogens
and also analogous with the customary antibiotics (Streptomycin).

Photolytic production of reactive oxygen species (ROS) on the
surface of NiO-CGSO NC. NiO-CGSO NC is due to the formation of
hydroxyl, superoxide radicals, and H2O2 (ROS) by the Fenton reac-
tion leading to lipid peroxidation, DNA injure and protein decay
can exterminate bacteria without destructive nonbacterial cells.

There are additional probable steps engaged in the antimicro-
bial activity. NiO-CGSO NC impedes the bacteria cell membrane
and connects with mesosome (cellular inhalation, DNA reproduc-
tion, cell partition). These intracellular functional alterations are
commenced by the oxidative stress manipulated by ROS foremost
Positive control (Streptomycin) Negative control

/mL 80 mg/mL

21 28 –
22 25
20 30 –



Fig. 10. Plate photos of antibacterial activity of NiO-CGSO NC.

Fig. 11. Antibacterial activity mechanism of NiO-CGSO NC.

Table 7
Photocatalytic performance (CR dye) of NiO-CGSO NC related to metal oxide nanocomposites.

Photocatalyst Preparation technique Concentration Degradation percentage
(%)

Reaction time
(min)

Source Ref.

Mg-TiO2-P25/PMS Sonochemical 50 mg 95 120 150 W tungsten halogen
lamp

[44]
Mg-TiO2- P25/PDS 75
Fe-CeO2(P) Modified auto combustion 1 g/L 87 180 100 W tungsten visible lamp [45]
CeO2 82
Fe-CeO2(Sg) 48
MnFe2O4/ZnO Hydrothermal 50 mg 54.4 90 Visible light [46]
ZnO/TA/ MnFe2O4 70.2
MnFe2O4/TA/ZnO 84.2
g-C3N4/RGO/

Bi2Fe4O9

Hydrothermal 10 mg 87.65 60 LED-30 W [47]

ZnMnO3/Fe3O4 Co-precipitation 0.1 g 98.17 60 5 W white LED [48]
SnS2-CdO Cost-effective chemical

route
6 mg 92.86 210 350 W Xenon arc lamp [49]

Ag/1.0 Mn3O4 Sol-gel method 3 mg 78 120 40 W UV–Vis light
irradiation

[50]

NiO-CGSO Wet chemical route 5 mg 92 120 Sun light irradiation Present
work

K. Kannan, D. Radhika, A.S Nesaraj et al. Materials Science for Energy Technologies 3 (2020) 853–861
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Table 9
Antibacterial activity for NiO-CGSO NC with previous reports against E. coli.

Materials ZOI (mm) Ref.

NiO.CeO2.ZnO 11 [53]
Ag2O.CeO2.ZnO 12 [54]
CdO–NiO–ZnO 16 [17]
NiO-CGSO 22 Present work
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to cell termination as demonstrated in Fig. 11. Only a few works of
literature describe the electrostatic appeal mechanism.

Gd3+ and Sm3+ are released owing to the communication of NiO-
CGSO with the microbial cell membrane. The negatively charged
cell wall and positively stimulating Gd3+ and Sm3+ are mutually
fascinated and they root denaturation of proteins, which outcome
in thrashing of replica capacity of the DNA thus reasoning the ter-
mination of the pathogen (Table 9).

(i) Nio� CGSOþ ht! e� þ hþ

(ii) hþ þ H2O ! �OH þ Hþ

(iii) e� þ O2 ! O�
2

(iv) O�
2 þ Hþ ! HO�

2

(v) HO2� þ Hþ þ e� ! H2O2

The rough surface texture was responsible for mechanical
injure to the cell membranes. It is comprehensible that NiO-
CGSO NC has irregular crumples at the exterior surface (SEM and
TEM images), which influences the antimicrobial efficacy. The
higher concentrations of NiO-CGSO NC are deleterious to both
the clients and microbes, but still, concentrations (nano-level)
are appropriate for the annihilation of microbes [55,52].

4. Conclusion

In this work, NiO-CGSO NC was effectively extended via a wet
chemical route, i.e., co-precipitation route. TGA and XRD patterns
exposed the methodology to obtain phase pure materials. The pre-
pared composite structure was validated via XRD and FTIR analy-
sis. Using SEM and EDAX, morphology, and elemental analysis of
the sample were examined. The conductivity data of the sample
exposed that the sample projected in this paper might be appropri-
ate for anode appliance in SOFC systems. The antibacterial and
photocatalytic performance of prepared nanocomposite was inves-
tigated and it has shown excellent results, which are further useful
to apply in different fields.
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