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Abstract: Developing a mathematical model has become an inevitable need in studies of all disciplines.
With advancements in technology, there is an emerging need to develop complex mathematical
models. System identification is a popular way of constructing mathematical models of highly
complex processes when an analytical model is not feasible. One of the many model architectures
of system identification is to utilize a Local Model Network (LMN). Hierarchical Local Model
Tree (HILOMOT) is an iterative LMN training algorithm that uses the axis-oblique split method
to divide the input space hierarchically. The split positions of the local models directly influence
the accuracy of the entire model. However, finding the best split positions of the local models
presents a nonlinear optimization problem. This paper presents an optimized HILOMOT algorithm
with enhanced Expectation-Maximization (EM) and Particle Swarm Optimization (PSO) algorithms
which includes the normalization parameter and utilizes the reduced-parameter vector. Finally, the
performance of the improved HILOMOT algorithm is compared with the existing algorithm by
modeling the NO, emission model of a gas turbine and multiple nonlinear test functions of different
orders and structures.

Keywords: system identification; nonlinear systems; nonlinear systems identification; optimization;
expectation maximization; particle swarm optimization; local model network; HILOMOT

1. Introduction

With modern advancements in engineering there is an emerging need to develop
well-formulated models. Models have significance in all disciplines of studies. Models
help to understand the behavior of a system when it is not feasible to run experiments on
a real system. This knowledge can be further employed for numerous purposes, such as
simulation, prediction, controller design, fault detection etc. However, modern automated
systems are incredibly involved and recondite; hence, the complexity of systems is escalat-
ing progressively with time. Thus, finding an analytical model can become tedious or hectic.
In such cases, an experimental modeling approach also known as system identification is
employed. System identification approximates a relationship between the system’s input
and output based on its input and output data. System identification can be classified into
linear system identification and nonlinear system identification based on the type of system.
Since most practical systems demonstrate nonlinear characteristics, a noteworthy effort is
concentrated towards modeling nonlinear systems.

Linear models can approximately represent systems that exhibit weak nonlinearities [1].
Instances where linear models are applied can be found in [2-8]. However, the perfor-
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mance of these models is substantially reduced when a system features strong nonlineari-
ties [1,9,10]. Although some works have achieved curtailment of these effects by linearizing
a nonlinear system about a point of interest, the effectiveness of these models degrades for
processes with a wide range of operation and strong nonlinearities [11]. The opportunity
cost between the nonlinear model and the linear model is accuracy and complexity [1] (p. 1).

On the other hand, nonlinear identification is employed for highly nonlinear sys-
tems. Nonlinear systems modeling presents many challenges due to their diversity in
structure, which requires the modeling algorithm to be universal to represent a wide
range of systems [12]. Several architectures such as block-oriented [13-18], Volterra se-
ries [19], and polynomial Nonlinear Auto-regressive Network with Exogenous Inputs
(NARXs) [20-23] can be found in the literature. Although these models have demonstrated
effectiveness in numerous diverse scenarios, they have limitations. Notably, the nonlinear
structures of these models are rigid to some extent, thus requiring prior knowledge about
the system structure. Furthermore, black-box models, for instance, wavelet [24,25], neural
networks [26-30], and support vector machines [31-33], have also been employed, which
lack interpretability and suffer from the curse of dimensionality [34]. Furthermore, due to
the lack of transparency of the models, they are not very useful for model-based control
system design. A comprehensive study on nonlinear system identification can be found
in [35,36].

Another approach to identify and model intricate nonlinear systems is the Multi-Model
Framework (MMF) [37-41]. MMF has appeared in variety of contexts, such as regime-based
multi-model [42], Piece-Wise Continuous (PWC) systems [43], Local Radial Basis Function
Networks (LRBFNSs) [44], Takagi-Sugeno (T-S) fuzzy local model [45], and Local Model
Networks (LMNs) [46]. Despite constructing input-dependent and less accurate models [47]
(p- 29), MMF has been exploited to model systems in several disciplines [48-56]. MMF
dissolves the entire input space into smaller sub-regions, defined by validity functions,
which hold the local models [57]. These local models can have various structures [57];
however, local linear models are essential for controller design because they allow for the
transfer of the mature linear control theory to the nonlinear paradigm [58]. Furthermore,
with local linear models, there is a fair compromise between the number of required local
models and the complexity of the local models [59].

The advantage of the MMF approach relies on the possibility of incorporating specific
knowledge about a system by decomposing the entire input space into multiple sub-regions
that hold the local models. The local models depict the dynamic of the process in each of
these regions. Hence, partitioning the sub-regions is an essential step in determining the
model’s efficacy [57].

HILOMOT [59] is an iterative algorithm that uses axis-oblique splitting to hierarchi-
cally split the entire input premise. HILOMOT, which is the advancement of the popular
LOLIMOT [44] algorithm, is inspired by the Hinging Hyper-plane Trees algorithm [60,61],
which is the improvement of the Hinging Hyper-planes algorithm [62-64]. The flexibility
of the HILOMOT algorithm is the consequence of the axis-oblique split achieved by using
the arbitrarily oriented sigmoid functions instead of the orthogonal Gaussian functions.
However, this flexibility comes at the cost of an expensive nonlinear optimization which is
required to find the optimal partition in relation to the lowest training error.

HILOMOT uses the Nested Optimization (NeO) [59] algorithm to optimize the axis-
oblique splits. The nested optimization algorithm also normalizes the parameter vector by
its norm to eradicate the impact of optimization on the steepness of transition. Furthermore,
the Nested Optimization algorithm was further improved in [65] by providing an analytical
gradient and considering a reduced-parameter vector. However, there is no literature to
prove it superiority in terms of convergence and not getting stuck in local optima compared
to the other popular algorithms. Hence, finding a better optimization algorithm can
further improve the HILOMOT algorithm. The Expectation-Maximization (EM) algorithm,
which has a good convergence [66,67], has been used to optimize the local model network
in [68] and to optimize the hierarchical decomposition of the logistic discriminant function
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in [69]. Furthermore, Particle Swarm Optimization (PSO) algorithm, which can locate
global optimum, has been used to optimize the hierarchical decomposition of the logistic
discriminant function in [70]. However, these works did not consider the undesired effect
of split-parameter optimization on the steepness of the transition between the validity
functions. Furthermore, these works also optimized the full parameter vector, which results
in an over-determined problem and may produce a sub-optimal solution.

This paper proposes an improved HILOMOT algorithm with enhanced EM and PSO
algorithms which incorporates a normalizing constant to eradicate the effect of optimization
on the steepness of transition and uses a reduced-parameter vector to increase the flexibility
of the optimization algorithm. The comparison of the performance of the HILOMOT
algorithm with the enhanced EM and PSO algorithms is obtained by modeling a practical
system and several nonlinear test functions of different orders and structures. Moreover,
to highlight the motivation and facilitate the understanding of the partitioning process
and thus the optimization process, a brief overview of the partitioning strategies and the
HILOMOT algorithm is presented in the following sections.

This paper is arranged as follows: A brief summary of the partitioning strategies
is presented in Section 2. Thereafter, the HILOMOT algorithm is presented in Section 3.
Subsequently, Section 4 discusses the optimization algorithms. Then, the result and findings
of the research are presented in Section 5. Finally, Section 6 concludes the paper by
interpreting the results, discussing the limitations of the research, and presenting the scopes
of future research.

2. Partition Strategies

LMN is an effective architecture to model nonlinear systems. The objective of a local
model network is to dissolve an entire input space of a system into smaller sub-regions
that hold the local models that depict the system’s behavior in those regions. Consequently,
the aggregation of these local models forms the global model of the system.

Figure 1 illustrates a basic LMN network. Each neuron in the LMN represents a local
model, which is defined by the validity function, ¢;, and holds a Local Linear Model (LLM)
(#;)- Since LMN is also a kind of neuro-fuzzy model, the LLM is regarded as the rule conse-
quent, and the validity function is regarded as the rule premise [59]. LMNs vary in the way
the input space is split. A variety of popular partition strategies have appeared in the litera-
ture over time. However, every strategy has its associated advantages and disadvantages.
The partitioning strategies can be broadly classified into non-prior information-based or
prior information-based partitioning. The prior information-based partitioning can be fur-
ther classified into experimental-based and model-based partitioning, whereas the nonprior
information-based partitioning can be termed data-based partitioning [57]. This paper
focuses on the nonprior knowledge-based partitioning strategies.
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Figure 1. LMN structure with M neurons for n inputs [65].

2.1. Grid-Based and Clustering-Based Partitioning

Grid-based partitioning [45] has the advantage of being simple with good interpretabil-
ity. However, this approach is severely influenced by the curse of dimensionality. Further-
more, distributing the system complexity uniformly over the input space is also not desired
as the complexity of a system is not necessarily spread uniformly over the input space [59].
Input space clustering in [71,72] overcame the two major drawbacks of the grid-based
strategies. Nonetheless, the major problem of these strategies is that they ignore the process
complexity and distribute the complexity according to the data distribution. Hence, only a
few validity functions may be placed due to a lack of data where a highly complex process
would require a lot of them [59]. On the other hand, product space clustering uses the
GK [73] or GG [68] clustering algorithms and overcomes the weaknesses of input space
clustering algorithms. These are the most prevalent partitioning methods for LMNs [59].
Regardless, the major drawbacks of these technique are the lack of transparency of the
models [59] and the identification of the optimal number of clusters required to represent
the system which makes the task from the controller design perspective very hectic [57].

2.2. Data-Based Partitioning

The data-based methods [74-76], such as the clustering strategies, also concentrate
on the data distribution methods. However, the idea of selecting the partition of unity
prior to choosing the model structure in these methods is seriously affected because,
after the structure selection, the a priori partition of unity no longer exists, thus ruining the
interpretation of fuzzy logic [59]. On the other hand, a computationally expensive yet more
promising method was presented in [77], where the placement of the validity functions is
guided by local error measures. Another idea presented in [12] is to generate a new validity
region by adding more data samples to a validity region until a predetermined accuracy
criterion is not violated. The advantage of most data-based methods includes being growing
algorithms, flexible, and less sensitive to the curse of dimensionality. Regardless, the major
drawbacks of these methods are the high computational effort that increases with data
samples and the sensitivity to outliers and noise [59].

2.3. Nonlinear Optimization-Based Partitioning

Optimizing all the parameters of a validity function is also a straightforward approach
to partitioning the input space. However, one major drawback is that this approach requires
fixing the model complexity in advance. Moreover, this approach is highly susceptible
to the curse of dimensionality due to the innumerable parameters for high-dimensional
problems and is also prone to local optima if gradient-based optimization algorithms are
used instead of global optimization algorithms [59].
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2.4. Heuristic Tree-Based Partitioning

The key idea of the heuristic tree construction algorithm, derived from the heuristic
tree search algorithm CART [78], is to hierarchically dissolve the input space to sub-regions
by axis-orthogonal splits. Furthermore, this idea has inspired the development of many
partitioning strategies [38,44,79]. The significant advantages of these algorithms are the easy
interpretability, low computational demand, and simplicity. Moreover, these algorithms
have a strict separation between the rule premise and the consequent spaces, allowing the
easy inclusion of prior knowledge about the system [80]. Furthermore, compared to the flat
structure, another advantage of the hierarchical model structure is that the partition of unity
is maintained automatically [59]. However, the major impediment lies in the constraints to
axis-orthogonal splits which degrade the efficacy of these algorithms at higher dimensions.
Nonetheless, recent applications of the LOLIMOT algorithm can be found in [81-85].

Axis-oblique splitting, on the other hand, performs outstandingly on higher-dimen-
sional problems. The mechanism is exactly like Multi-Layer Perceptron (MLP) networks
that function efficiently on higher-dimensional processes because they optimize the sigmoid
functions in the direction of nonlinearity. The objective of the axis-oblique splitting algo-
rithms is to retain the advantages and overcome the drawbacks of the MLP networks [59].
The flexibility of the HILOMOT algorithm is the consequence of utilizing the axis-oblique
splits. The next section provides a brief outline of the HILOMOT algorithm.

3. HILOMOT Algorithm

The HILOMOT algorithm is an iterative LMN training algorithm presented in [59].
Figure 2 depicts the algorithm flow chart for the HILOMOT algorithm. It is a heuristic tree
construction method, which hierarchically divides the input space into sub-regions defined
by the validity functions, ¢;. Each sub-region holds a Local Linear Model (LLM), #;, which
portrays the local behavior of the process. Each LLM is defined by:

¥i=x-wj, 1)

Here, w; is the parameter vector for the ith local model and vector x spans the local
model input space. The aggregation of the outputs of all the local models gives the overall
output of the system. Since LMN is also a kind of neuro-fuzzy model, the validity functions
are regarded as the rule premises and the LLMs are regarded as the rule consequents and
separating the input spaces for the rule space and the consequent space allows the oppor-
tunity to include prior knowledge about the system behavior, such as strong nonlinearity,
which is a significant feature of nonlinear systems identification [59].
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Figure 2. Algorithm flowchart for the HILOMOT algorithm.

The HILOMOT algorithm replaces the worst local model with new local models at
every iteration. Figure 3 demonstrates the hierarchical decomposition of the input space.
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Figure 3. (a) The model tree and (b) the corresponding hierarchical decomposition.

For this purpose, the HILOMOT algorithm exploits the sigmoid function as the split-
ting function, unlike the LOLIMOT algorithm, which employs the orthogonal Gaussian
functions. The benefit of using the sigmoid function is that it can be oriented in any di-
rection with flexibility [86]. At every iteration, the input space of the worst local model
is divided into two consequent sub-local models whose validity is defined by the new
sigmoid, ¥;, and its complementary sigmoid, ¢, respectively. Thus, at every iteration,
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the complexity of the model increases and thereby also improves the approximation of the
model. A sigmoid function is defined by:

0i(z) = ! @)

"1 4 e(votvrzit +Onzznz)

Here, the v is the parameter vector, and z span the rule premise. The parameter
vector influences the orientation of the split, and the split determines the accuracy of
the model. Hence, finding the best local models involves estimating the optimal local
model parameters, w, and estimating the optimal sigmoid parameter, v. The optimal
local model parameters can be calculated analytically by using the least square method,
whereas estimating the optimal sigmoid parameter vector requires an expensive nonlinear
optimization algorithm. However, as the parameter vector v also influences the steepness
of the sigmoid function, optimizing this parameter vector to optimize the split increases
the steepness, which results in the undesired sharp transition between the models. Thus,
to eradicate the effect of the parameter vector on the gradient of transition, a parameter, x,
is introduced which normalizes the parameter vector [59] and affects the sharpness of the

transition. It is defined as: 0

K=
[ol] - [|Ac] - o

®)
in [65]. Here, ||v]| is the norm of the vector v, ||Ac|| is the distance between the centers of
the sub-models, and ¢ is a smoothness parameter. The inclusion of the magnitude of the
parameter vector normalizes the parameter vector and thus no longer impacts the steepness
of the sigmoids. Therefore, finally, the equation of the sigmoid function is:

_ 1
B 1 + eK(00+0121+"'+0nzan) ’

¥(2) )

On the other hand, considering the complete parameter vector, v is redundant as only
the direction vector, v* = [v1, v, ..., Uz, influences the direction of the split. The distinc-
tion between the direction vector and the parameter vector is vy, where the ratio vo/|v*||
determines the perpendicular distance between the split position and the origin. Further-
more, the entire parameter vector decreases the efficiency of the optimizer as the optimizer
deals with an over-determined problem. Consequently, this causes the calculation to be-
come lengthy and results in a less optimal solution [65]. Thus, to avoid this problem, one
parameter of the parameter vector is kept constant during the optimization to increase
the flexibility of the optimization. Since vy is an offset and not associated with the input
vector, it is kept constant, thereby increasing the optimizer’s degrees of freedom by one
degree, and thus increasing the efficiency of the algorithm. Since the optimization of the
split orientation requires an expensive nonlinear optimization algorithm, the following
section presents the split optimization algorithms in detail.

4. Split Optimization Algorithms

The HILOMOT algorithm requires optimization of the sigmoid parameter vector in
every iteration to obtain the optimal split position of the validity functions. This presents
a nonlinear optimization problem. Nonlinear optimization algorithms can be broadly
classified as gradient-based and heuristic search-based algorithms. This paper presents the
enhanced EM algorithm which is a gradient-based algorithm and enhanced PSO algorithm
which is a heuristic search-based algorithm for the improvement of the HILOMOT training
algorithm. A brief description of the optimization algorithms is presented below.

4.1. Expectation—-Maximization (EM) Algorithm

The Expectation-Maximization (EM) algorithm is a method to heuristically improve
the estimate of maximum likelihood parameters of a model with unobserved hidden
variables. The optimal position or the validity of local models is unknown or hidden a
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priori during the training of LMN. Thus, the EM algorithm has been used to find the optimal
split positions of the validity functions, and its convergence has been proven in [68,69].
The goal of the EM algorithm is to find the best model parameters in each iteration that
would reduce the error of misclassification. The EM algorithm performs the Expectation
(E)-step and then a Maximization (M)-step in each iteration. In the E-step, the local model
parameters are calculated based on the current or initial estimate of the parameter vector,
v, using the LS algorithm. Then, in the M-step, the reduced parameter vector, v*, is
optimized to maximize the expectation of the model by reducing the misclassification error.
The following steps formulate the iterative algorithm:

e [Initialize vy and v*.

¢  Step 1: Calculate the validity functions.

e  Step 2: Calculate the local model parameters w; of the local models.

¢  Step 3: Optimize the reduced parameter vector v*.

*  Step 4: Repeat steps 1 to 4 until the stopping criteria are met.

4.2. Particle Swarm Optimization (PSO) Algorithm

PSO is one of the many nature-inspired meta-heuristic optimization algorithms, which
was first used to study social behavior of different species in nature to fulfill their needs.
However, further studies with PSO revealed its potential in solving different optimiza-
tion problems. PSO is a global optimization algorithm which solves the issue of local
optima of gradient descent algorithms at the cost of longer computational time. There
are numerous variants of PSO, however, the basic variant of PSO initializes a swarm of
particles (candidate solution) randomly, with a uniform distribution, over the entire search
space. The particles are maneuvered around the input space using a simple mathematical
formula. Each particle is assigned a velocity, which is determined by a few factors and
affected by a few performance parameters that require heuristic tuning. The factors affect-
ing the future velocity are its current velocity, a random component, the relevant particle’s
best attained position, and the best attained position of the swarm. On the other hand,
the parameters which greatly affect the performance of the algorithm are often termed
as the exploration—exploitation trade off parameters. The exploration parameters help
the particles to explore the complete search space in search of a global optimum, whereas
the exploitation parameters try to narrow down a search around a promising candidate,
to find the optimum precisely. The velocity equation is given by:

k

k k k k
=w X v;;+c1 X1 X (pi;— xj ;) + 02 X712 X (gj - ;) (5)

k+1
v

Here, vf jis the jth velocity component of the ith particle at the kth iteration, xf-‘ ;i the
jth position component of the ith particle at the kth iteration, pi-‘ jis the jth component of

best position attained by the ith particle at the kth iteration, gj.‘ is the jth component of the
best position attained in the swarm at the kth iteration, c; and c¢; acceleration parameters
influence the experience of the particles, w is the inertial parameter, and r; and r, are
the parameters adding randomness to the velocity. Finally, the position of the particles is
updated using the following equation:
xf.‘,;rl = xﬁj + vffj, (6)
PSO has been used to train an LMN in [70] due to its potential for finding the global
optimum. PSO can be used to find the optimal local model parameters, w;, along with
the reduced split position parameters, v*, however, this would unnecessarily increase the
search space and consequently slow down the optimization process as the local model
parameters can be estimated analytically. Hence, PSO is used only to find the optimal
reduced split parameter vector and the LS algorithm is used to analytically estimate the
local model parameters in each iteration. The termination criteria for the PSO algorithm are
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the maximum number of iterations or minimum change in error function. The complete
PSO algorithm comprises the following steps:

e Select appropriate values for Wiy, Wmax, €1, aNd Cy.

*  Initialize position and velocities of the entire swarm.

*  Evaluate the objective function and update p and g.

e  Step 1: Calculate w.

¢ Step 2: Calculate velocity of each particle .

*  Step 3: Update current position for each particle.

*  Step 4: Evaluate the objective function with current position.

*  Step 5: Update p and g if required.

*  Step 6: Repeat steps 1 to 6 until the termination criteria are met.

4.3. Nested Optimization

Nested optimization, which was introduced in [59] and improved in [65], was used to
train the HILOMOT algorithm. In this optimization algorithm, the loss function evaluation
includes the evaluation of the local model parameters using the least square algorithm.
A gradient descent algorithm is used to minimize the loss function, which is a function
of the reduced parameter vector, v*. In every iteration, as the objective loss function is
evaluated with the new reduced parameter vector, the new local model parameters are
also calculated.

5. Results and Validation

The accuracy of the model approximation determines the performance of the HILOT-
MOT training algorithm, which further reflects the performance of the optimization algo-
rithms. Hence, to analyze the performance of the optimization algorithms, several highly
nonlinear functions with different structures and orders are fitted, and their results are
compared. The “quality of solution” is chosen as the parameter to determine the perfor-
mance of the optimization techniques in optimizing the HILOMOT training algorithm.
Several aspects determine the quality of a solution, such as whether the solution reaches
the optimum and whether the solution is a global or local optimum. Normalized Root
Mean Squared Error (NRMSE), an excellent marker to determine the quality of solution, is
chosen as the parameter for comparison in this paper. The equation to compute NRMSE is
given by:

¥ ef(v*)
J(@") = —— @)

Table 1 lists the functions used in the evaluation process and Table 2 presents the results
obtained from the evaluation process to compare and determine the superior optimization
algorithm for enhancing the HILOMOT algorithm. The results were obtained using the
MATLAB toolbox LMN-Tool [87].

Table 1. Performance evaluation functions.

Symbol Function Reference
u3 —1.5u2+0.71u1 —5.105
fi y =1 [46]
y =
f2 1t —1.913+1.1312 — 2211, +5.0126 [46]
5
f3 y [59,88,89]

I RN LECIRET)
fa y = cos(4uq)sin(4uy) [46]
fs y = U=)+1000, - [90]
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Table 2. Training error.

Function NRMSE
Symbol PSO EM NeO
f1 0.017499 0.020576 0.018527
f2 0.057793 0.061598 0.083211
f3 0.011538 0.012598 0.013768
f4 0.119732 0.112734 0.113158
fs 0.054929 0.053244 0.055226

Underline and bold indicates the best solution and only bold indicates the second-best solution.

From the results, it is conclusive that the accuracy of the approximated models
achieved by different optimization algorithms is similar, with no significant differences.
However, it is worth mentioning that for none of the function approximations did the Nested
Optimization algorithm produce the best solution, and only for the functions fi, f1, and fs
did the Nested Optimization algorithm produce the second-best solution. On the other
hand, EM and Nested Optimization algorithms produced repeatable results, whereas
the PSO-produced results were not repeatable due to its random initialization. Table 3
presents the mean and standard deviation of ten optimization results of the PSO algorithm
for each function. The standard deviations reveal that the results are concentrated near the
mean and thus have a high confidence interval. The lowest optimization value for each
function has been used for comparison in Table 2.

Table 3. Mean and standard deviation of the results from PSO algorithm.

Function Mean Standard Deviation (10~%)
f 0.017527 1.6636
f2 0.057820 1.6927
f3 0.011559 1.1638
fa 0.119749 1.2787
f5 0.054952 1.4889

Furthermore, as HILOMOT iteratively increases the model’s accuracy, the model com-
plexity increases at every iteration. Hence, the performance of the optimization algorithms
is analyzed at different complexity levels. Moreover, as EM and nested algorithms are
gradient descent algorithms and there was a difference in the model error, the optimiza-
tion algorithms are further investigated for being susceptible to local optima. Therefore,
the comparison of iterative optimization of the HILOMOT algorithm is presented with the
help of an illustrative example. The function selected for demonstration is:

1
y =
0.1+ (1*2”1) + (1*2”2)

®)

Figure 4 demonstrates the process described by Equation (8), which is highly nonlinear
in a particular direction. According to Table 2, the PSO and EM algorithms produce the
best and second-best results, respectively, in modeling this process. The reason behind
this difference is further investigated and explained with the results demonstrated in
Figures 5-9.
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Figure 4. Function in Equation (8).
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Figure 5. Complete partition plots for the optimization techniques. (a) Complete partition with NA.

(b) Complete partition with EM algorithm. (c) Complete partition with PSO.
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Figure 5 demonstrates the complete partition plots for the individual optimization
techniques. The partition plots show that PSO and EM algorithms placed more partitions
in the direction of optimization than the Nested Optimization algorithm, consequently
resulting in better approximation. Thus, the partition plots corroborate the findings of
Table 2. Furthermore, Figures 6-8 illustrate the loss function contour plots and partition
plots after each iteration, and Figure 9 demonstrates the convergence of the HILOMOT
algorithm with the three different optimization algorithms. The partition plots depict
that the optimization algorithms found slightly different optimal splits despite having
the same initiation in iteration 1. Hence, these slight differences accumulate over the
iterations, resulting in the different partition plots and the overall approximation error.
Moreover, the results in Figure 9 and the contour plots in each iteration demonstrate that the
convergence rate in every iteration is similar with no significant differences, which further
indicates that the algorithms were not prone to getting stuck in local optima. Therefore,
finally, it can be concluded that the better approximation of EM and PSO algorithms
resulted from their ability to place more partitions in the direction of nonlinearity than the
Nested Optimization algorithms.

Finally, the HILOMOT algorithm is used to model the NO, emission process of a gas
turbine power plant using the different optimization algorithms. NO, emission, a principal
constituent of air pollution, is responsible for environmental problems such as acid rain,
smog, ozone layer depletion, and ultimately global warming [91]. Hence, significant
research is dedicated to building models for monitoring and controlling such emission
processes. A novel data set from static measurement data has been introduced in [92] for
Predictive Emission Monitoring System (PEMS) design. The paper discusses a handful of
modeling approaches that are appropriate for designing predictive monitoring systems;
however, these models do not provide significant insights for control engineers to design
control systems that can optimize such processes. In order to compare the performance of
the optimization algorithms, a model for the NO, emission as a function of the turbine inlet
temperature and compressor discharge pressure from the static measurement data was
trained using the HILOMOT algorithm with the three different optimization algorithms.
Table 4 presents the results of modeling a practical system for comparison between the
performance of the algorithms.

Table 4. Training error for gas turbine NO, emission model.

Normalized Root Mean Squared Error
PSO EM NeO
0.475962 0.479747 0.484005

Underline and bold indicates the best solution and only bold indicates the second-best solution.

The results demonstrates that PSO produced the best result and the Nested Optimiza-
tion algorithm produced the worst result in modeling the real system.

However, even though the paper does not explicitly compare the methods for compu-
tational speed due to their different operation mechanisms, it is worth mentioning that the
Nested Optimization algorithm was significantly faster than the other algorithms owing to
its analytical gradient.

6. Conclusions

This paper presents the improved HILOMOT LMN training algorithm with enhanced
EM and PSO optimization algorithms. The results are obtained by modeling several test
functions and a practical system. The results demonstrate that the HILOMOT algorithm
with the EM and PSO algorithms gave better solutions due to their ability to place more
partitions in the direction of nonlinearity than the Nested Optimization algorithm. Con-
sequently, despite being the faster algorithm, the Nested Optimization algorithm did not
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produce the best solution within the boundary of this work. Thus, the results indicate that
the PSO and EM algorithms improved the HILOMOT algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

LMN Local Model Network

MMF Multi-Model Framework

LRBEN Local Radial Basis Function Network

PWC Piece-Wise Continuous

NARX Nonlinear Autoregressive Network with Exogenous Inputs

HILOMOT Hierarchical Local Model Tree
LOLIMOT  Local Linear Model Tree

LLM Local Linear Model
GK Gustafson-Kessel
GG Gath-Geva
EM Expectation-Maximization
PSO Particle Swarm Optimization
NRMSE Normalized Root Mean Squared Error
NeO Nested Optimization
PEMS Predictive Emission Monitoring System
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