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Abstract: Cadmium, Cd(II) pollution of soils is a serious environmental and agricultural issue, posing
a threat to crop production, environmental quality, food safety, and human health. Therefore, immobi-
lization of Cd(II) in soils is crucial. Biochar-based materials are receiving significant attention as Cd(II)
immobilizers, due to their multifunctional surface properties. The remediation/immobilization mech-
anisms involved are, mainly, surface complexation, chemical reduction, precipitation, ion exchange,
π–π interactions, hydrogen bonding, and adsorption. These mechanisms are mostly dependent
on biochar surface pore size, oxygen-containing functional groups, pyrolysis temperature used in
biochar preparation, biochar feedstock, and soil characteristics. So far, various pristine and modified
biochar substrates have been used to remediate heavy metal-contaminated soils. Therefore, in this
review paper, we briefly summarize the chemical forms, release sources, and maximum permissible
limits of Cd(II) in soil. We also summarize recent scientific findings on the performance of biochar
substrates in Cd(II)-contaminated soils to minimize Cd(II) mobility, bioavailability, and potential
accumulation in crops. Finally, we identify challenges associated with the use of biochar and suggest
areas for future research. The review presents an overview of the knowledge of biochar as a promising
amendment for the decontamination of Cd(II)-polluted soils.

Keywords: soil pollution; Cd(II); soil remediation; immobilization; adsorption; biochar-based materials

1. Introduction

In recent decades, different types of pollutants in the soil may exert harmful effects
on human health and the overall ecosystem [1–3]. Among these pollutants, potentially
toxic elements (PTEs) have raised significant concern due to their toxicity, mobility, and
non-biodegradable nature [4,5]. These PTEs include antimony (Sb), arsenic (As), barium
(Ba), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), selenium (Se),
silver (Ag), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), and zinc (Zn)
and are reported to pose threats to agricultural production, food security, food safety, and
human health [6–10]. Among the PTEs, Cd (II) is considered a pollutant responsible for
ecological and human health hazards [11].

Cd(II) is one of the most highly mobile and potentially harmful heavy metals in the
soil. Even though it is not an essential element for plant growth, it is still taken up by
crop roots and translocated to other plant parts [12–15]. Rice grains readily accumulate
Cd(II) and are hence a considerable source of Cd(II) in the human diet compared to other
crops [12,16,17]. Acute and chronic symptoms of Cd toxicity include adverse effects on the
pulmonary, cardiovascular, and musculoskeletal systems as well as carcinogenicity and
kidney damage [18].
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Various conventional remediation technologies are adopted to remove Cd from con-
taminated soils. These technologies/mechanisms include immobilization, precipitation,
ion exchange, use of organic amendments such as compost, electrokinetic, soil washing,
use of various nanomaterials, advanced oxidation, adsorption, bioremediation, and com-
bined applications of amendments and technologies [19–22]. However, there are some
constraints associated with the use of conventional methods. Similarly, reverse osmosis
and membranes, which have their main applications in the removal of excess cations and
anions, are not very efficient in the removal of organic compounds and solvents, including
phenols, pesticides, and benzene [23]. Other methods also have specific limitations by
generating secondary pollution, which may have more deleterious effects on the overall
environment than the original contamination. The conventional remediation technologies
also require sophisticated instruments and have high operating costs. Hence, there is
a need to shift from conventional to eco-safe and green nanoremediation technologies
such as carbon-based nanomaterials. Adsorption has been identified as a highly efficient
approach for Cd(II) removal from contaminated soils due to its unique characteristics, such
as to low cost, in situ use, simple operation, absence of secondary pollutants, and high
selectivity [24,25].

Biochar, a carbon-based solid adsorbent prepared by pyrolysis of various types of
feedstocks in the absence of oxygen, has gained interest as an innovative, green, and
sustainable tool in agriculture, environment preservation, and energy production, due to its
specific physicochemical attributes. These include high specific surface area, high surface
activity, porous structure, oxygen-containing functional groups, and high ion exchange
capacity [26–31]. Research on biochar in agriculture is ongoing since the discovery of
terra preta soil in the Amazon basin by James Orton in 1870 [32,33]. However, in recent
decades, biochar has attracted particular interest for environmental pollution remediation
and soil management, with benefits including improvement of soil quality and fertility,
immobilization of metal ions, degradation of organic pollutants, carbon sequestration, and
many others [34–37].

A number of studies have been published on feedstock-specific biochar, e.g., wheat
straw, rice straw, corn stalk, bamboo hardwood, etc., and on how efficient they are in Cd(II)
immobilization; however, a comprehensive review on the performance of pristine and
modified biochar against Cd(II) soil pollution has not yet been compiled. Therefore, in
the current review, we aimed to briefly summarize the literature findings on the use of
pristine and modified biochar in the efficient restoration of soil contaminated with Cd(II),
its chemical forms, release sources, and maximum permissible limits of Cd(II) in soil. Our
final aim was to identify challenges connected with biochar use and suggest areas for
future research.

2. Literature Search

The content of this review article is outlined in Figure 1. The published studies
reviewed here were the ones that provided clear experimental results. Most papers delt with
the removal of metal ions from water and soil systems using various kinds of adsorbents,
such as clay minerals [38], carbon-based adsorbents [39], biochar-based materials [40],
nanoscale zero-valent iron (nZVI) [41], and graphene oxides materials [42]. Regarding
the remediation of Cd-contaminated soils using biochar and biochar-based materials, the
published literature in that area is quite novel. To find the most recent and relevant studies,
we searched the Web of Science core collection database, Scopus, and Google Scholar. As
expected, this resulted in numerous hits in terms of research and review papers published
since 2020. The details of the review papers are briefly summarized in Table 1. It is crucial
to state that most of these review papers reported the removal of heavy metal ions and
organic pollutants as a whole from soil and water system by pristine and modified biochar.
However, in this review paper, we restricted our criteria to Cd remediation in soil by
biochar-based materials.
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Figure 1. Summary of the main content of this review article.

Table 1. Summary of review papers published since 2020 on the preparation, characterization, and
potential application of biochar and biochar-based materials for the restoration of soil polluted with
metal ions.

Material Summary of Review Paper Content Ref.

Biochar-supported metal nanoparticles
This paper reviewed the synthesis, characterization, environmental

applications, and underlying mechanisms in the removal of contaminants
from soil and water by biochar-supported metal nanoparticles.

[26]

Preservative-treated wood biochar
In this paper, the authors discussed the synthesis of biochar from

preservative-treated wood, with particular focus on feedstock, synthesis
method, characterization, application in pollutant removal, and ecotoxicity.

[43]

Biochar This review paper discussed the molecular interaction mechanisms between
biochar and potentially toxic elements such as those in soil systems. [44]

Biochar-based composites

This paper reviewed the role of biochar-based composites with metal oxides,
surface agents, and nanoparticles in the remediation of contaminated soil.

Future research directions to verify the underlying mechanisms involved in
biochar composite–soil microbial interactions and remediation of heavy metals.

[45]

Biochar and Biochar-based materials This paper discussed the potential applications of biochar and its composite
materials for the removal of organic and inorganic contaminants from soil and water. [34]

3. Cadmium (Cd) in the Soil Environment
3.1. Chemical Forms of Cd in Soil

The ecological influence of Cd is associated with its forms in the soil [46], which
cause toxicity to plants and living organisms. Different forms of Cd are present in various
environmental compartments, such as soils, water, atmosphere, aquatic ecosystems, and
sediments. This review paper deals with the different cadmium forms in soil. To understand
the ecological toxicity of Cd pollution in soils, it is crucial to understand its forms in
relation to their bioavailability, mobility, uptake, and accumulation by plants and living
organisms. Cd in the soil system can be present in different physico-chemical forms,
varying in charge. Dissolved Cd in soil solution can be present as free, hydrated cations
or as species complexes with organic or inorganic ligands. Experimental results showed
that Cd is present as inorganic cationic species (chemical forms in which Cd is present
in soil solution), such as free Cd(II), but a significant amount of Cd is also present as
organic and inorganic neutral species, e.g., Cd(OH)2 [47], particularly in farm soils with
elevated pH [48–50]. The most common types present are Cd(II), hydroxide Cd(OH)2, and
carbonate (CdCO3) solids, which dominate at elevated pH, while Cd(II) and aqueous Cd
sulfates are dominant at low pH. Stable solid Cd(s) is produced when sulfide is present in
reducing conditions. Cd also forms precipitates with P, As, Cr, and other anions, although
the solubility of these compounds varies depending on the pH and other chemical factors.
Plants tend to prefer free Cd(II), while CdCl+ is taken up more slowly, and Cd humate is
not adsorbed by plants [51].



Agronomy 2022, 12, 877 4 of 14

3.2. Sources of Cd in Soil

Substantial environmental concentrations of Cd typically originate from anthropogenic
activities. Cd can be released into the soil environment with the leaching and runoff of non-
ferrous metals from various industries. Irrigation of farmland with water contaminated
by industrial effluents can also cause Cd pollution. In addition, atmospheric deposition of
Cd-containing dust released from metallurgical activities, as well as fossil fuel combustion,
can affect distant farmland, but the impact of these sources is difficult to quantify [52].
Phosphorus-based fertilizers are also a significant cause of Cd accumulation in agricul-
tural soils [53]. Phosphate fertilizers are primarily manufactured by chemically treating
phosphate rocks that contain a substantial amount of Cd(II) [14].

3.3. Permissible Limits of Cd

The critical levels of metal ions in soil associated with health hazards can be measured
using a model that integrates all related exposure pathways into one metric, such as the
acceptable daily intake (ADI) in µg/kg/day [54]. It has been found that the average daily
intake of Cd is 25–75 µg/day [55], which is higher than the tolerance level of 10–53 µg/day
indicated by the FAO/WHO [56]. This intake is directly related to the accumulation of
Cd in crops. Some crops, such as rice, can accumulate significant levels of Cd (more than
1000 µg/kg), while wheat accumulates 0.032 mg/kg [57] when grown in Cd-polluted soil.
The average daily Cd intake from food in European and North American countries is
15–25 µg, but this can vary greatly depending on age and dietary habits. The average daily
intake in Japan is 40–50 µg, but it can be much higher in cadmium-polluted areas. Cd is
absorbed through the gastrointestinal tract at a rate of 5% in humans, but nutritional factors
may increase this up to 15% in cases of iron deficiency. As a result, the average amount of
Cd ingested through food is estimated to be about 1 µg/day [58,59].

4. Biochar and Cd (II) Immobilization in Soil: Recent Progress

Pristine biochar prepared from various feedstocks and surface-modified biochar
treated with different metals, metal oxides, and other additives have received tremen-
dous attention in studies on the immobilization of soil Cd(II) to reduce its uptake and
accumulation in plants, as illustrated in Figure 2 [60–64]. The application of biochar to
soil could also influence the soil physicochemical characteristics, such as organic matter
content, microbial communities, redox potential, and pH [65]. Recent innovations in the
use of biochar for Cd removal from the soil are briefly discussed. The main influencing
parameters are summarized in Table 2.

Figure 2. Uptake, accumulation and immobilization of Cd in soil by biochar-based materials.
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4.1. Description and Main Findings of Experiments with Pristine Biochar in Cd-Contaminated Soil

To date, various feedstock-based pristine biochar under various temperatures (300–800 ◦C)
are prepared and used to immobilize Cd(II) in the soil. In a recent study examining the
effect of pristine biochar on Cd immobilization in soil, wheat straw biochar was prepared
by anoxic pyrolysis at 450 ◦C and applied at a rate of 0 and 5% (w/w) to remediate
Cd-contaminated soil. Two different vegetables, green peppers (Capsicum annuum) and
eggplant (Solanum melongena) were selected as the test crops. It was shown that biochar
application (5% w/w) reduced the Cd concentration in green pepper by 6.8–11.5% and in
eggplant by 15.1–15.4% [66]. In another study, rice straw-derived biochar was prepared
at various temperatures (300, 400, 500, 600, and 700 ◦C) in a CO2 atmosphere and applied
to critically evaluate the biochar negative surface charge effect on Cd(II) removal from
Cd-contaminated soil cultivated with wheat (Triticum aestivum). The results showed that
when the biochar preparation temperature increased from 300 to 700 ◦C, the negative
charge on the surface of the biochar decreased, and Cd(II) fixation increased. Ash content,
pH, oxygen-based functional groups, polar groups, and hydrogen bonds were all found
to influence the negative surface charge of biochar in that study [67]. Similarly, Xiao and
co-workers critically evaluated the effect of biochar application rate (0, 1, 2.5, and 5%) on
Cd content in a legume–grass mixture and concluded that increasing the proportion of
legumes in the legume–grass mixture did not reduce Cd(II) adsorption by the biochar. The
amount of biochar added had complementary effects on nutrient uptake in the plant species
mixtures [68]. In a study assessing the influence of biochar particle size and dosage on
Cd(II) sorption through batch tests in sandy soil, wood-derived biochar with two different
sizes was used, i.e., macro-size (particle size 0.5–1.0 mm) and nano-size as-prepared biochar,
separated by sieving and ball milling. The maximum Cd sorption in sandy soil was 328.9
and 1062.4 mg/kg with 2% (w/w) of macro- and nano-size biochar, respectively, which
was 58.6% and 412.2% higher than in control soil. Ball milling created nano-biochar that
was more successful in Cd(II) amelioration in the contaminated environment [69]. A field
experiment was conducted to test the biochar application rates of 0, 10, 20, 30, and 40 t/ha
on cadmium availability and its accumulation in rice (Oryza sativa). The results revealed that
biochar at 40 t/ha effectively decreased the Cd content in the soil, increased the available
Cd(II) in micro aggregates, and reduced Cd(II) transport in rice [70]. In conclusion, pristine
biochar has a limited impact on the remediation of Cd-contaminated soils due to diverse
mechanisms on the surface of biochar, and the use of modified-biochar, with high surface
area and diverse functional groups, is preferred for remediation purposes. The details of
various modified biochars for Cd immobilization are discussed below.

4.2. Description and Main Findings of Experiments with Metal-Modified Biochar in
Cd-Contaminated Soil

The application of metal-modified biochar to immobilize soil Cd is an environmentally
sustainable and cost-effective technique. Recently, Moradi and coworkers investigated
the effects of raw biochar and iron (Fe)-modified biochar made from common reed on
Cd fractionation, mobility, and microbial communities in calcareous soil. The treatments
were based on two factors: type of biochar (control, pristine biochar, Fe-modified biochar)
and amount of Cd in the soil (0, 15, and 30 mg/kg). The treatments were incorporated
into the soil and left for 90 days. The results showed that Fe-modified biochar could
immobilize Cd(II) and boost soil microbial attributes [71]. A 2-year field test in a wheat–rice
rotation system was conducted to evaluate the influence of Fe-modified biochar on the
extractability and availability of Cd along with As in soil and its effects on crop performance.
The application rate of Fe-modified biochar was 1.5 and 3.0 t/ha, and as well as using
manure compost and a control for comparison. It was found that Fe-modified biochar at
1.5 t/ha achieved successful immobilization, justifying its use as a pollutant remediation
amendment [72]. In another study, magnetic biochar-based adsorbents with Fe3O4 particles
were prepared through thermal pyrolysis and applied to remediate multi-contaminated
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soil. The findings indicated that the application of the as-prepared adsorbent to a multi-
contaminated soil slurry concurrently removed 20–30% of As, Cd, and Pb within 24 h [73].

Sulfur-engineered biochar can intensify the benefits of biochar and elemental sulfur
in Cd(II) removal from soil. In this context, the effect of pristine wheat straw biochar and
sulfur-modified biochar on Cd(II) amelioration mechanisms was investigated. Scanning
electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS) characterization
proved that sulfur was fully incorporated onto the surface of biochar, while X-ray photo-
electron spectroscopy (XPS) characterization revealed substantial differences in the Cd(II)
amelioration mechanisms of pristine biochar and sulfur-modified biochar. Cd(II) sorption
onto the surface of pristine biochar was primarily due to the formation of Cd(OH)2 and
CdCO3 precipitates and the interactions with carbonyl and carboxyl groups, while sorption
onto the surface of sulfur-modified biochar was primarily due to the formation of CdS and
CdHS+ precipitates and the interactions with organic sulfide groups [74]. To fill a research
gap about the effect of sulfur-modified biochar on Cd(II) phytoavailability in paddy soils,
Rajendran et al. conducted a pot experiment on Cd(II) mobility and transition in a soil–rice
system treated using sulfur-modified biochar and sulfur–iron (S–Fe)-modified biochar.
According to the sequential extraction results, both biochars facilitated the conversion of
exchangeable Cd(II) to Fe–Mn oxide, organic, and residual bound forms, consequently
reducing Cd(II) availability in the paddy soil [75].

4.3. Description and Main Findings of Experiments with Metal Oxide-Modified Biochar in
Cd-Contaminated Soil

Studies using metal oxide-modified biochar have made significant progress in reducing
Cd(II) pollution in farm soils and wastewater in recent years. In one study, magnesium
oxide (MgO)-loaded biochar was successfully synthesized as a potential adsorbent by
co-pyrolysis of corn straw and MgCl26H2O at 600 ◦C and used to immobilize heavy-metal
ions of Cd/Pb in contaminated environmental components. According to the experimental
findings, MgO-loaded biochar had remarkably high Cd(II) sorption potential compared
with the original biochar. The adsorption kinetics and isotherm of Cd(II) were well defined
by pseudo-second-order and Langmuir/Langmuir–Freundlich models. The underlying
reaction mechanisms were hydrolysis of MgO, ionization of Mg(OH)2, and precipitation of
Cd(II) and OH on MgO-laden biochar composites, while oxygen-containing groups also
triggered Cd(II) immobilization [76]. In another study, the use of a MgO–biochar–chitosan
composite, modified with MgCl2 and chitosan, as an adsorptive material in the stabilization
of Cd(II) in aqueous and soil systems was investigated. The results of soil incubation tests
showed that the application of this biochar product at 2% was highly efficient in Cd(II)
stabilization in comparison with the control, reducing the amount of bioavailable Cd by
22.3%. It also decreased the acid-extractable Cd(II) content by 24.8% and increased the
residual Cd(II) content by 22.2%; synergy between surface complexation and precipitation
mechanisms was shown to make a vital contribution to the sorption of Cd(II) [77].

The efficacy of potassium hydroxide (KOH)-modified rice straw-derived biochar
and pristine rice straw-derived biochar in reducing Cd(II) solubility and bioavailability
in Cd(II)-polluted soil was investigated. Cd(II)-polluted soil was treated with 15 and
30 g/kg of biochars for 60 days. Both biochars markedly decreased Cd(II) leaching in the
toxicity characteristic leaching procedure (TCLP) and NH4NO3-extractable Cd(II) in the
amended soil in comparison with untreated soil. The reduction in Cd(II) solubility and
bioaccessibility was attributed to a notable increase in the soil pH and subsequent surface
complex formation. The viability of KOH-modified biochar in the stabilization of soil Cd(II)
and Pb(II) and the influence of pyrolysis temperature and alkaline concentrations used
in biochar modification were examined in another study. Time-of-flight secondary ion
mass spectroscopy (TOF-SIMS), Tessier sequential extraction, and X-ray diffraction (XRD)
techniques were used to investigate the stabilization mechanisms of the alkaline-enhanced
biochar. The results showed that rice husk biochar pyrolyzed at low temperature (300 ◦C)
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and activated with moderate alkaline concentrations (1 M or 3 M KOH) provided the best
stabilization [78].

4.4. Description and Main Findings of Experiments of Biochar Combined with Other Amendments
in Cd-Contaminated Soil

Other than metal-modified and metal oxide-modified biochars, a variety of facile
combinations were used for the immobilization of Cd(II) in soil. In this regard, Sporobolus
alterniflora (saltmarsh cordgrass)-derived biochar was applied at rates of 0, 2.5, 5, and
10%, for the immobilization of Cd(II). The test crop was pak choi (Brassica chinensis). It
was found that soil minerals facilitated Cd(II) immobilization by biochar, decreased Cd
bioavailability and enhanced its recalcitrance [79]. The use of biochar in combination
with plant growth-promoting (PGP) bacteria in the bioremediation of Cd-polluted soil has
been widely reported. A novel Cd-immobilizing PGP bacterial strain TZ5 was isolated.
SEM–EDS and Fourier transform infrared (FTIR) analyses revealed changes in surface
morphology and functional groups of TZ5 cells after exposure to Cd(II). The strain TZ5 was
then successfully loaded onto biochar for use as a biochemical composite material (BCM).
In a pot experiment, the percentage of acetic acid-extractable Cd(II) in BCM treatments was
found to be 11.34% lower than in the control. Compared with the control, BCM increased
the dry weight of ryegrass by 77.78% and decreased the Cd(II) concentration of ryegrass
by 48.49% [80]. In a similar study, a 75-day pot experiment was conducted to examine the
complex effects and possible mechanisms of maize biochar and of the heavy-metal-tolerant
strain Pseudomonas sp. NT-2 on the stabilization of mixed Cd- and Cu-polluted soil. It was
found that the incorporation of NT-2-biochar greatly increased the remaining proportions
of Cd and Cu in the soil, reducing the proportion of exchangeable and carbonate-bound
species and thus decreasing the plant and human bioavailability of the metal in the soil, as
measured by diethylenetriamine pentaacetic acid (DTPA) chelation and simulated human
gastric solution (UBM) extraction [81].

For remediation of heavy metal-contaminated soil, biochar in combination with com-
post has been commonly used. A study on the effects of sole biochar, compost, and a
combination of biochar and compost on heavy metals availability, soil physicochemical
properties, and enzyme activities was conducted. The results found that both amendments
reduced the availability of Cd and Zn in the soil, but only marginally activated As and Cu.
The biochar and compost products used as a single amendment and in combination also
had important effects on the physicochemical properties, metal availability, and enzyme
activities in heavy-metal-polluted soil [82]. Xu et al. performed batch experiments to
determine the efficacy of biochar pyrolyzed from kitchen waste, corn straw, and peanut
hulls on the immobilization of Cd and Pb in polluted soil planted with Swamp cabbage
(Ipomoea aquatica Forsk.). Analyses using a combination of toxicological and physiological
tests showed that kitchen waste, corn straw, and peanut hull biochars all improved soil
pH and reduced extractable Pb and Cd by 22.61–71.01%, 18.54–64.35%, and 3.28–60.25%,
respectively. At an application rate of 60.00 mg/kg soil, all biochars reduced Cd and Pb
accumulation in roots, stems, and leaves by 45.43–97.68%, 59.13–96.64%, and 63.90–99.28%,
respectively [83].

4.5. Cd(II) Removal Mechanisms

Cereal crops, especially rice, wheat, and maize, are the most common sources of Cd in
human diets. As a result, reducing Cd transfer from soil to cereal grain is a critical task to
protect food safety [84]. During the past decade, great progress has been made in identifying
the mechanisms by which biochar can reduce soil Cd transport to cereal crops. Multiple
equipment and techniques, such as XPS, XRD, FTIR, and SEM–EDS, were used in one
study to explore the interaction mechanisms between Cd and biochar [85]. Further analysis
showed that mineral precipitation, surface complexation, and cation–π interactions were
the main mechanisms of Cd sorption on biochar in soil [86]. The mechanisms of biochar
fixation of Cd are depicted in Figure 3. Among these, immobilization by electrostatic
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attraction between molecules and ions is the main mechanism explaining the physical
adsorption. There are also complex mechanisms, such as agglomeration and sedimentation
of biochar colloidal particles after the immobilization of heavy metals in soil [87,88]. The
underlying mechanisms in heavy-metal (Cd) fixation by biochar mostly depend on biochar
surface pore size, oxygen-containing functional groups, the pyrolysis temperature used in
biochar preparation, feedstock, and soil characteristics [67,86,89].

Figure 3. Underlying mechanisms in soil cadmium (Cd) fixation by biochar [68].

Table 2. Efficiency of the remediation of cadmium (Cd(II))-contaminated soils by pristine biochar
and modified biochar in different studies. NR = not relevant.

Feedstock Used
for Biochar

Surface Modifier
for Raw Biochar Test Crop Dose Removal Efficiency Ref.

Wheat straw
biochar Pristine Green pepper

and eggplant 0 and 5% (w/w)

0–5% (w/w) = 6.8–11.5%
(green pepper)

0–5% (w/w) = 15.1–15.4%
(eggplant)

[66]

Corn stalk Manganese (Mn) Wheat 1, 2 and 3% (w/w)

Among all the Mn-modified
biochar treatments, 1%, 2%,

and 3% treatments of
MBC2-500-5:1, showed the

potential to convert the mild
acid-soluble fraction Cd to
the reducible, oxidizable,

residual fraction Cd, thereby
controlling the migration,

transformation, and
enrichment of Cd in the soil.

[90]

Rice straw Pristine Legume–grass
mixture 0, 1, 2.5, and 5%

Biochar addition did not
reduce Cd uptake when
increased the amount of

legumes in the
legume–grass mixture

[68]

Sporobolus
alterniflora-derived

biochar
Pristine Pak choi 0, 2.5, 5, and 10% in pots

Biochar facilitated Cd
immobilization in soil,
which decreased Cd
bioavailability and

enhanced Cd recalcitrance.

[79]
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Table 2. Cont.

Feedstock Used
for Biochar

Surface Modifier
for Raw Biochar Test Crop Dose Removal Efficiency Ref.

Coconut shell Bacillus sp. TZ5 Perennial ryegrass
5 g in 100 mL

suspension + 100 mL
bacteria suspension

The application of
biochemical composite

material (BCM) significantly
decreased the Cd

concentration of ryegrass by
48.49% in soil, thus

providing a practical
approach for bioremediation

of Cd-contaminated soil.

[80]

Wheat straw
Bare wheat

straw-derived
biochar

Rice 0, 10, 20, 30, and 40 t/ha

Biochar at 40 t/ha decreased
the available Cd (49.4 and

51.7) significantly, compared
with 0 t/ha

[70]

Wheat straw Phosphoric acid
(H3PO4) Quinoa 1 and 2% (w/w)

H3PO4-treated biochar
effectively alleviated Cd

toxicity in quinoa by
reducing Cd(II)

accumulation and
regulating Cd-induced
oxidative stress by the

antioxidant
enzymatic system.

[91]

Wheat straw Pristine Paddy rice field 0, 10, 20 and 40 t/ha

Biochar at 40 t/ha altered
the chemical properties of

soil and reduced the
mobility of Cd along with

Pb in paddy soil.

[92]

Cattle carcass
biochar

Carbonate-bearing
hydroxyapatite

(CHAP)

NR
(Sorption test) 0.1 g sample

Cattle-derived biochar from
cattle carcasses containing a

substantial amount of
naturally occurring mineral
form of carbonate-bearing

hydroxyapatite (CHAP)
allowed a 97.% reduction in

Cd in soil.

[93]

Bamboo hardwood
Sulfur-modified

and S–Fe-modified
biochar

Rice 1%

Addition of S–Fe-modified
biochar to Cd-contaminated

paddy soil reduced Cd(II)
accumulation in rice grain

by 0.018 mg kg−1.

[75]

Rice straw biochar Zinc oxide (ZnO) Rice seedlings
0, 50, 75, and 100 mg/L
of ZnO, alone or with
1.0% (w/w) biochar

Cd content in shoots was
reduced by 30% and in roots

by 31% at a dose of 100
mg/L ZnO; Cd content in

shoots was reduced by 39%
and in roots by 38% at a

dose of 100 mg/L
ZnO + biochar.

[94]

Ferromanganese
binary oxide–corn

straw–biochar
composite (FMBC)

KMNO4 and
Fe(NO3)3

NR
(Adsorption
experiment)

0.5, 1, 2, and 4% wt/wt
FMBC and biochar

The adsorption capacity of
FMBC was the highest

(6.72 mg g−1) when
compared to those of pristine

biochar (4.85 mg g−1) and
control (2.28 mg g−1).

[95]
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Table 2. Cont.

Feedstock Used
for Biochar

Surface Modifier
for Raw Biochar Test Crop Dose Removal Efficiency Ref.

Sugar cane bagasse Pristine
NR

(Adsorption
experiment)

0, 2, and 4% (wt/wt).

A 2% biochar application
reduced Cd(II)

contamination in
saline–sodic soils, but

increasing the biochar rate
from 2 to 4% decreased

Cd adsorption.

[96]

Bamboo hardwood
Sulfur-modified

and S–Fe-
modified biochar

NR
(Incubation
experiment)

1% (wt/wt).

Treatments with BC, S–BC,
and SF–BC significantly

reduced the exchangeable
Cd by 12.54%, 29.71%, and

18.53%, respectively.

[97]

Rice straw Pristine Pak choi 0, 2.5 and 5% (wt/wt).

Rice straw-derived biochar
at a dose of 5% showed
potential to reduce the

bioavailability of Cd(II) in
soil by 16.64%, and

increased pak choi yield.

[98]

Fe–Mn
oxide-modified BC
composite(FMBC)

Fe and Mn Indica rice 0.5–2.0% (wt/wt).

A 2% FMBC application
reduced Cd(II)

accumulation in rice grain
by 66.7–74.1% and

improved grain quality.

[99]

5. Concluding Remarks and Future Work

In this review, available knowledge on Cd(II) forms in the soil environment, their
release sources, and maximum permissible limits in soils were summarized. The recent
scientific literature on the use of biochar and biochar-based materials for the efficient
removal of Cd (II) to reduce its mobility and bioavailability in the soil system was also
reviewed. The literature findings indicated that the diverse functional groups and actives
sites on the surface of modified biochar, a large specific surface area, and a porous structure
could improve the potential of modified biochar for the immobilization of Cd(II) in soil
as compared to pristine biochar. The Cd(II) immobilization mechanisms appear to be
hybrid, including adsorption, precipitation, reduction, ion exchange, surface complexes
formation, hydrogen bonding, π–π interactions, and pore filling. However, the challenges
reported below associated with biochar application in soil were identified as areas for
future research.

Many studies described the use of pristine, metal-modified, and metal oxide-modified
biochar for the removal of Cd(II) pollution from aqueous solutions, but few studies ad-
dressed the removal of Cd(II) pollution from agricultural soils. Thus, this area requires
more research.

Based on the literature, the most promising mechanism for Cd(II) removal from soil
by biochar appears to be immobilization, but biochar addition is less effective in field
conditions than in laboratory studies. Further research in natural environments, such as
farm fields, is needed to gain in-depth insights into Cd(II) immobilization mechanisms
in soil.

Many studies described the positive effects of biochar in soil remediation, but little
is known about the adverse effects of biochar addition. Therefore, the adverse effects of
biochar in the soil system should be addressed in future research.
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