Proton Pump Inhibitors and the Risk of Early Aseptic Loosening in Hip and Knee Arthroplasty

Iskandar Tamimi, PhD1,2,3, Pablo Carnero, MD4, David Bautista, MD5, David Gonzalez, MD1, Pablo Rodrigo, MD1, María Jose. Bravo, MD6, Abel Gómez, MD2, Faleh Tamimi, PhD7, and David García de Quevedo, MD1

Abstract

Introduction: The use of proton pump inhibitors (PPIs) has been associated with a higher risk of osteoporotic fractures and non-unions rates. However, the relation between the use of PPIs and the development of aseptic loosening in arthroplasty procedures has not been studied. The objective of this study is to analyze the relation between the use of PPIs, and the risk of early aseptic loosening in total knee arthroplasty (TKA) and total hip arthroplasty (THA). Materials and methods: A nested case-control study was conducted on patients who were subjected THA or TKA in our center between 2010 and 2014. Cases were patients subjected to revision surgery due to early aseptic loosening during the study period. Cases were matched with controls who did not require any type of revision surgery by type of joint replacement (THA/TKA), gender, age (+/- 2 years), and follow-up time (±6 months). Odds Ratios were adjusted to potential confounders. Results: The crude and adjusted ORs (95% CI) of undergoing revision surgery for aseptic loosening following primary total knee arthroplasty or total hip arthroplasty, were 6.25 (2.04–19.23) and 6.10 (1.71–21.73), respectively, for any use PPIs compared with non-users. Crude and adjusted ORs, were 11.6 (2.93–45.88) and 17.1 (2.41–121.66), respectively, for patients with a Proportion of Days Covered (PDC) for PPIs <.5 (Table 2). In addition, the crude and adjusted ORs of undergoing revision surgery, were 5.05 (1.59–16.02) and 5.01 (1.36–18.44), respectively, for patients with a PDC for PPIs ≥.5. Discussion: These results suggest that PPIs should be used with caution in patients with TKA and THA, and that the use of these drugs should not be prolonged unless there was a justifiable indication. Conclusions: The use of PPIs and was associated with a higher risk of early aseptic loosening in patients subjected to THA and TKA.

Keywords
aseptic loosening, proton pump inhibitors, hip, knee, arthroplasty, revision surgery, adult joint replacement

Submitted March 26, 2022. Revised March 26, 2022. Accepted March 31, 2022

Introduction

Aseptic loosening is the failure of the bond between a prosthetic implant and bone in the absence of infection. It is the most common cause of revision surgery in total knee arthroplasty (TKA) and total hip arthroplasty (THA), representing about 35% and 55.2% of the cases, respectively. These are complex procedures which are frequently associated...
significant morbidity, high economic cost, and poorer clinical results compared with primary arthroplasties.3,5

The amount of wear debris released from the joint articu
tar surface following an arthroplasty procedure is a
major factor influencing the survival of the implants.6
However, the process of aseptic loosening involves other
physical, biologic,7,8 genetic, surgical-, and prosthesis-
related factors.9 At the center of this process is the acti-
vation of receptor activator of nuclear factor xB (RANK)/
RANK ligand (RANKL) axis.10,11 The activation of RANK
leads to an increase in osteoclastic activity at the bone-
implant interface, which eventually leads to osteolysis.12

On the other hand, proton pump inhibitors (PPIs) are widely
prescribed among patients suffering ulcers, other gastrointes-
tinal (GI) diseases, and as GI-bleeding prophylaxis in patients
taking non-steroidal anti-inflammatory drugs (NSAIDs). Re-
cent reports estimate that approximately the use of PPIs in the
general population in developed countries ranges from 4.0% to
15.5%.13,14 However, there is growing concern related to the
potential adverse side effects of PPIs on bone. Research has
shown that that PPIs could impair fracture healing in rats, by
the reduction of bone morphogenetic protein (BMP)-2, BMP-
4, and cysteine-rich protein (CYR61).15 Various reports have
shown an association between the use of PPIs and an increase
in the fracture risk in the general population.16,17 Moreover, a
recent study reported higher non-unions rates in patients with
femoral and tibial shaft fractures who were treated with PPIs
for prolonged periods.18 Another study observed a decrease in
titanium-bone interface osseointegration in rats treated with
omeprazole.19 Moreover, the use of PPIs has been associated
with higher non-unions following cervical spine fusion pro-
cedures.20 However, the relation between the use of PPIs and
the development of aseptic loosening in TKA and THA has not
been studied yet. Accordingly, the objective of this study is to
analyze the relation between the use of PPIs, and the risk of
aseptic loosening in THA and TKA.

Materials and Methods

Data Source

We designed a nested case-control study on patients how
underwent THA or TKA in our center between 2010 and
2014. Hospital records were reviewed using our institu-
tional database. Approval from the ethical committee of
the Hospital Regional Universitario de Málaga was ob-
tained in order to conduct this study. The guidelines of the
World Medical Association21 Declaration of Helsinki for
research involving Human Subjects were followed.

Case Definition

Patients subjected to revision surgery of a primary TKA or
THA because of aseptic loosening between 2010 and 2014
were considered as eligible cases. All the patients sub-
ject to THA were operated through a Hardinge’s ap-
proach. Cases underwent THA using uncemented femoral
stems and acetabular components (CORAIL/PINNACLE
hip system®, DePuy Orthopaedics, USA). A ceramic-
highly crosslinked-polyethylene–bearing surface was
used in all cases. On the other hand, we only included
patients who were implanted hybrid, (i.e., cemented tibial
component and an uncemented femoral component) cru-
ciate retaining (CR) or posterior stabilized (PS), TKAs
(Triathlon® total knee system, Stryker Orthopaedics,
USA). Aseptic loosening was diagnosed by a combination
of clinical symptoms (i.e., persistent groin or knee pain),
and imaging (i.e., presence of osteolysis and subsidence on
plain x-rays and a positive bone gammagraphy). Aseptic
loosening was also confirmed intraoperatively. Infection
was ruled-out by 2 intraoperative negative cultures. In-
dividuals known to have a history of prosthetic infections,
metal allergies, haemophilia, peri-prosthetic fractures,
patellar instability, recurrent total hip dislocations, broken
prosthetic components, incomplete medical history, or
subjected to an inadequate surgical technique were ex-
cluded from this study. Individuals with a history of al-
coholism, and malignant tumors were also excluded, as
well as patients treated with beta-blockers, anticonvul-
sants, corticosteroids, or anti-osteoporosis drugs.

The following variables were withdrawn from our
database: Data Body Mass Index (BMI), Charlson’s Co-
morbidity Score (CCS), smoking status (none, current),
and history of diabetes mellitus (DM). Cases were fol-
lowed from the time of primary surgery (i.e., index date) to
the time of the revision surgery.

Control Definition

We defined controls as subjects who underwent TKA or
THA during the study period, who were not subjected to
any type of revision procedure. The same exclusion criteria
were applied on controls. Cases were matched with con-
trols in a 1:4 ratio by sex, age (+/− 2 years), follow-up time
(+/−6 months) and type of primary surgery (THA/TKA). All
the selected controls for the matching process were alive at
the end of the study period. Controls’ follow-up time
extended from the index date to the review of the data (i.e.,
between January 2016 and April 2016).

Exposure Assessment

We reviewed the use of PPI (i.e., omeprazole, lansopra-
zole, and pantoprazole) at the time of the primary joint
replacement in cases and controls. Patients who did not
receive PPIs after surgery were considered non-users.
Adherence was assessed using the Proportion of Days
Covered (PDC) during the follow-up period. The PDC is
determined by dividing the total number of days the patient took a certain medication on total follow-up time. Accordingly, patients were divided into three different groups (i.e., non-users, PDC < .50, and PDC ≥ .50).

Statistical Analysis

Data were analyzed with SPSS 20.0 software (SPSS Inc, Chicago, IL, USA). Mean values were expressed with their corresponding standard deviations. The distribution of continuous variables was tested using the Shapiro–Wilk test. Odds ratios were presented with 95% coefficient intervals. Differences between continuous variables were analyzed using Mann Whitney U test or students-t test. Differences between binary variables were analyzed using the Chi square test. Results were considered significant when two-tailed P values were < .05. A binary logistic regression analysis was performed to assess the effect of PPIs on the risk of suffering aseptic loosening. Accordingly, odds ratios for prosthetic revision surgery were adjusted for the following potential confounders: BMI, CCS, and smoking status.

Results

A total of 2105 patients were subjected to primary hip or knee replacements during the study period, from which 107 subjects required revision surgery. After the application of the inclusion and exclusion criteria, we managed to match 29 cases with 116 controls (Figures 1 and 2). The demographic features of the study groups are presented in Table 1.

The mean age of cases and control was 69.1 ± 6.4 and 69.3 ± 6.3, respectively. The male:female ratio was 61:1 in both groups. Charlson’s comorbidity score in cases and controls was 3.9 ± 1.7 and 3.2 ± 1.4, respectively. Sixty-nine percent of the cases underwent TKR, and 31% were subjected to THR, these percentages were the same in the control group. The mean follow-up time from the index date was 35.8 ± 16.1 months in cases and 36.2 ± 4.8 months in controls. No significant demographical differences were found between the two groups (Table 1). The overall use of PPIs was of 25 (86.2%) in cases and 58 (50.0%) in controls. Omeprazole was the most used PPI in both

Figure 1. Flowchart describing case selection.
groups [21 (84.0%) in cases vs. 52 (89.6%) in controls] followed by pantoprazole [3 (12.0%) in cases vs. 2 (3.4%) in controls] and lansoprazole [1 (4.0%) in cases vs. 3 (5.1%) in controls] (Table 1).

The crude and adjusted ORs (95% CI) of undergoing revision surgery for aseptic loosening following primary TKR or THR, were 6.25 (2.04–19.23) and 6.10 (1.71–21.73), respectively, for any use PPIs compared with non-users (Table 2). Crude and adjusted ORs were 11.6 (2.93–45.88) and 17.1 (2.41–121.66), respectively for patients with a PDC for PPIs <.5 (Table 2). In addition, the crude and adjusted ORs of undergoing revision surgery were 5.05 (1.59–16.02) and 5.01 (1.36–18.44), respectively, for patients with a PDC for PPIs ≥.5 (Table 2).

Discussion

This study provides the first clinical evidence suggesting that the use of PPIs could be associated with a higher risk of early aseptic loosening in THA and TKA. Two recent metaanalyses have estimated that the current 25-year survival rates for THA and TKA are around 58% and 82%, respectively.22,23 Early implant failures are considered those that fail within the first 5 years postoperatively.24 In this study, the overall early failure rate was 5.1%, from which 40.2% were secondary to aseptic loosening. Fehring et al24 reported that in TKA, 38% of the early failures were because of infection, 27% because of instability, 13% because of osseointegration failure,
7% because of excessive wear, and 22% because of patellar issues.

**The Osseointegration Process**

Osseointegration is the direct anchorage of a metallic implant into bone tissue.\(^{25}\) This process consists of three stages: the initial tissue response to the implant, peri-implant bone formation, and peri-implant bone remodeling.\(^{26}\) The initial tissue response commences after the insertion of the metallic implant into the bone bed. This initial trauma generates an inflammatory response and the release of growth factors and cytokines forming an extracellular matrix and hematoma.\(^{27,28}\) Platelets present within the blood clot then begin a cascade of aggregation resulting in a fibrin matrix that acts as a scaffold for the migration, proliferation, and differentiation of white blood cells and mesenchymal cells to the bone-implant gap.\(^{29}\) During the bone formation phase, angiogenesis takes place and mesenchymal cells differentiate into osteoblasts forming a layer of woven bone.\(^{29}\) Trabecular bone is then formed around acting as a bridge-like architecture resulting in an active fixation of the implant.\(^{29}\) Peri-implant bone remodeling takes place through the osteoclastic resorption of woven bone and the formation of lamellar bone. Osteoclasts adhere to the mineralized matrix and deposit bone directly on the implant surface. The lamellar bone provides additional fixation to the implant through biological bonding.\(^{30}\) After 3 months, the bone implant gap is formed of a mixture of woven and lamellar bone. However, the osseointegration process may take more than a year to be complete.\(^{26}\) Accordingly, the long-term survival of an arthroplasty would depend on an adequate osseointegration at the bone-implant interface.\(^{31}\)

The failure of the osteogenic process during osseointegration may be due to a decrease in the number or activity of the osteogenic cells, an increased osteoclastic activity, micro-motion at the bone-implant interface, and due to an imbalance between the factors regulating bone formation and resorption.\(^{26}\)

### Table 1. Demographic features of cases and controls.

<table>
<thead>
<tr>
<th></th>
<th>Cases (n=29)</th>
<th>Controls (n=116)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>69.1 ± 6.4</td>
<td>69.3 ± 6.3</td>
<td>.895</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>18 (62.1)</td>
<td>72 (62.1)</td>
<td></td>
</tr>
<tr>
<td>Charlson’s score</td>
<td>3.9 ± 1.7</td>
<td>3.2 ± 1.4</td>
<td>.167</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6 (20.7)</td>
<td>25 (21.6)</td>
<td>.991</td>
</tr>
<tr>
<td>Joint replacement</td>
<td>20 (69.0)</td>
<td>80 (69.0)</td>
<td>1.000</td>
</tr>
<tr>
<td>TKR</td>
<td>9 (31.0)</td>
<td>36 (31.0)</td>
<td></td>
</tr>
<tr>
<td>THR</td>
<td>21 (72.4)</td>
<td>61 (52.6)</td>
<td>.062</td>
</tr>
<tr>
<td>Left</td>
<td>8 (27.6)</td>
<td>55 (47.4)</td>
<td></td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>29.8 ± 5.5</td>
<td>32.6 ± 4.8</td>
<td>.361</td>
</tr>
<tr>
<td>Smokers No</td>
<td>26 (89.7)</td>
<td>110 (94.8)</td>
<td>.384</td>
</tr>
<tr>
<td>Yes</td>
<td>3 (10.3)</td>
<td>6 (5.2)</td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td>35.8 ± 16.1</td>
<td>36.2 ± 4.8</td>
<td>.417</td>
</tr>
<tr>
<td>Use of PPIs</td>
<td>25 (86.2)</td>
<td>58 (50.0)</td>
<td>.001*</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>21 (84.0)</td>
<td>52 (89.6)</td>
<td></td>
</tr>
<tr>
<td>Pantoprazole</td>
<td>3 (12.0)</td>
<td>2 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Lansoprazole</td>
<td>1 (4.0)</td>
<td>3 (5.1)</td>
<td></td>
</tr>
</tbody>
</table>

**Proton Pump Inhibitors and Bone**

The results of this study suggest that PPIs could increase the risk of aseptic loosening following hip and knee arthroplasties. This negative effect was observed in patients with a PDC ≥.5 and in those with a PDC <.5. These results suggest that PPIs could potentially interfere with the early and late stages of bone remodeling.\(^{26}\) Recent research has shown a significant reduction in the number of osteoclasts in tibial bone defects in rats exposed to omeprazole.\(^{19}\) This could be probably attributed to a decrease in the expression of certain genes associated with osteoclastic activity such as c-myc, c-src, TRAP, and CATK.\(^{19}\) PPIs are also known
to increase the expression of osteocalcin and the osteoprotegerin/RANKL ratio and therefore down regulate osteoclastic activity. Moreover, the local administration of omeprazole delays the resorption of bone graft materials in animal models through the inhibition of osteoclastic activity. Osteoclast plays a central role in the osseointegration process, especially during the peri-implant osteogenesis and bone remodeling phases. Therefore, PPIs-induced osteoclastic down regulation during these phases could potentially interfere with the osseointegration process. However, bisphosphonates, and beta-blockers which are also known to inhibit osteoclastic activity, have been found to increase the implant survival in patients subjected to lower extremity arthroplasties. This paradox suggests that other potential bone metabolic pathways could be involved in the PPI-mediated inhibition of the osseointegration process.

Previous research has shown that the gastric acid suppression induced by PPIs results in hypochlorhydria and consequently reduced serum calcium levels. Moreover, PPIs could also cause a reduction in vitamin D levels. Another study reported that the use of PPIs could induce G-cells in the stomach to oversecrete gastrin, which has been related with hyperparathyroidism. Animal studies have shown that chickens treated with omeprazole developed hypergastrinemia and hypertrophy of the parathyroid glands, resulting in a reduction of their bone mineral density. A clinical study performed on patients with gastric ulcers who were treated with PPIs revealed that the parathyroid hormone levels (PTH) increased by 28%. Other studies have reported that PPIs could decrease the expression of bone growth factors such as BMP-2 and BMP-4. In a study performed on human osteoblasts in vitro, PPIs significantly increased osteoblast viability, suggesting that impaired osteoblast function is not the cause of the higher fracture risk in patients treated with PPIs.

The contradicting results on the effects of PPIs on bone do not help to explain their effects on bone fracture and osseointegration. However, the higher rates of THA and TKA aseptic loosening in users of PPIs observed in this study could be probably attributed to a combination of the following factors: inhibition of osteoclast-mediated-peri-implant remodeling, decreased bone formation by BMP-2 and BMP-4 down regulation, and higher bone resorption mediated by increased PTH secretion. Nevertheless, these results suggest that PPIs should be used with caution in patients with TKA and THA, as higher rates of aseptic loosening were observed in patients with both low and high adherence. These results could guide future research on the effects of PPIs on patients undergoing joint replacement surgery.

**Strengths and Limitations**

This nested case-control study was the first specifically designed to assess the association between aseptic loosening in THA and TKA and use of PPIs. Moreover, our analyses of odds ratios were adjusted to several confounders that may affect the results of our study such as body mass index, smoking status, side, and Charlson’s comorbidity index. However, our study is also subjected to several limitations. This study cannot establish a causality relation between PPIs and the risk of aseptic loosening because of its observational and retrospective design. Moreover, THA loosening may be caused by different factors compared to TKA loosening; for example, diabetes and weight have been found to have an influence of THA survival but not on the risk of aseptic loosening in TKA. However, to overcome this potential bias, cases were matched by the joint replacement type. In addition, the sample size was relatively small, and the regression analysis did not include other variables that could be related with aseptic loosening such as diet, the level of physical activity, or the use of non-steroidal anti-inflammatory drugs. However, the effect of PPIs on the aseptic loosening rates was already clear in the crude analysis before adjustment to several potential confounders. Nevertheless, despite being less exposed to PPIs patients with PDC <.5 had higher adjusted ORs for aseptic loosening than those with a PDC ≥.5. This notably higher rates in the PDC <.5 group are probably because of the smaller sample size in this subgroup.

Our strict inclusion and exclusion criteria, the matching process, and the binary logistic regression analyses ensure the comparability of the groups.

**Conclusions**

The use of PPIs was associated with a higher risk if aseptic loosening in THA and TKA. These results suggest that PPIs should be used with caution in patients with TKA and THA, as higher rates of aseptic loosening were observed in patients with both low and high adherence. These results could guide future research on the effects of PPIs on patients undergoing joint replacement surgery.

**Declaration of Conflicting Interests**

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

**Funding**

The author(s) received no financial support for the research, authorship, and/or publication of this article.

**ORCID iD**

Iskandar Tamimi, PhD  https://orcid.org/0000-0003-4196-5151

**References**

1. Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty...


4. Gehrke T, Sers C, Morawietz L, et al. Receptor activator of nuclear factor-κB ligand is expressed in resident and in- ...


