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Abstract: In this work, the synthesis of a series of the functionalized inorganic/organic composite
anion exchange membranes (AEMs) was carried out by employing the varying amount of inorganic
filler consist of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride (TMSP-TMA+Cl−)
into the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) matrix for acid recovery via
diffusion dialysis (DD) process. Fourier transform infrared (FTIR) spectroscopy clearly demonstrated
the fabrication of the functionalized inorganic/organic composite AEMs and the subsequent mem-
brane characteristic measurements such as ion exchange capacity (IEC), linear swelling ratio (LSR),
and water uptake (WR) gave us the optimum loading condition of the filler without undesirable filler
particle aggregation. These composite AEMs exhibited IEC of 2.18 to 2.29 meq/g, LSR of 13.33 to
18.52%, and WR of 46.11 to 81.66% with sufficient thermal, chemical, and mechanical stability. The
diffusion dialysis (DD) test for acid recovery from artificial acid wastewater of HCl/FeCl2 showed
high acid DD coefficient (UH

+) (0.022 to 0.025 m/h) and high separation factor (S) (139-260) com-
pared with the commercial membrane. Furthermore, the developed AEMs was acceptably stable
(weight loss < 20%) in the acid wastewater at 60 ◦C as an accelerated severe condition for 2 weeks.
These results clearly indicated that the developed AEMs have sufficient potential for acid recovery
application by DD process.

Keywords: separation factor; inorganic filler; composite AEM; acid recovery; ion exchange capacity;
diffusion dialysis

1. Introduction

Water pollution is going to be a severe risk to our environment and the availability
of clean water assets with the continuous increase in urbanization and industrialization.
Industries such as steel processing, mining, ion exchange resin regeneration, metallurgi-
cal and electroplating discharge acidic wastewater without any pretreatment [1–3]. This
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polluted water possesses a huge quantity of metal salts and acids that largely exceed the
safety level which surrenders to polluting the environment and also deteriorate the equip-
ment [1,2,4–6]. Solvent extraction, neutralization, crystallization, thermal decomposition,
and coagulation-flocculation are the commonly employed methods for treating acidic
wastewater. The heating and addition of alkaline solution are required by all these methods
and approaches, which demands high energy expenditure and significantly further pollutes
the environment by the discharge of chemicals/salts [7–9].

Membrane technology compared to other separation technologies by employing anion
exchange membranes (AEMs) is favorable for waste acid recovery via diffusion dialysis
(DD) process. It is an emanating technology for acid recovery, which is established on
the difference in diffusivity between salts and acids [10]. Especially, the AEM-based DD
process is attracting remarkable attention currently to recover acid from the acid drainage
because of its easy installation protocol, lower energy consumption, and less operating
cost [11]. Moreover, it is a thermodynamically good technology as it involves a decline in
over-all Gibbs free energy and increase in entropy of the system [12]. It has been largely
used in the recovery of sulphuric acid [13], hydrochloric acid [14], nitric acid [15], and a
mixed acid [16,17]. In this process, metal ions, proton, and counter ions transfer informally
from their higher concentration compartment to the lower concentration compartment
because of the mass transfer concentration gradient across the ion exchange membranes
(IEM) [12,18,19]. The AEMs with fixed cationic groups ease the transport of anions through
the membranes by adsorbing their counter-ions with lower charge number and smaller
hydration radius and some divalent or high-valence metal ions would be eliminated
because of their relatively larger hydrated radius in order to balance the charges [7,14,20].
Therefore, generally, the clear transparent acid was obtained in the lower concentration
side and the purity of recovered acid was further increased [7,20]. The separation of acid
from salts is possible through a positively charged AEMs, which permits the selective
migration of anions across the membrane while remaining impenetrable to cations rather
than protons mature to their small size and weak positive charge [12].

The AEM has received extraordinary interest as an important part of DD process [18,21].
It must exhibit reasonable water uptake, good thermo-mechanical stability, excellent chem-
ical resistance, and high anion permeability and selectivity along with a low price for
DD process [22]. Usually, they were prepared by bonding ion-exchange groups with a
polymeric material [23,24]. On the properties of the AEM, the polymeric material has
an important effect as stability and selectivity are dependent on the hydrophobicity and
mechanical strength. To achieve mandatory IEC for the AEM, advanced well-connected
ion-conducting channels are also required which will increase the DD performance as IEC
represents a crucial role in the selectivity of ions [25,26]. The lower selectivity between pro-
ton (H+) and other cations is resulted by bonding of ion-exchange group to the polymeric
material. Moreover, the AEMs with higher IEC represented higher swelling degree and
modest mechanical stability. To date, several polymeric materials namely polysulfone [27],
poly(tetrafluoroethylene) [28], polyvinyl alcohol (PVA) [29], chitosan [30], polybenzim-
idazole [31], and bromo-methylated poly (phenylene oxide) (BPPO) [32–34], etc. were
utilized for the development of the AEMs. Herein, poly (2,6-dimethyl-1,4-phenylene oxide)
(PPO) was largely utilized as polymeric material for the preparation of AEMs due to excel-
lent membrane forming ability and mechanical properties. Bromination of PPO provides
brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO) that acts as a precursor for
AEMs. Due to the presence of a highly reactive –CH2Br group, BPPO contains outstanding
membrane formation and functionalizable properties [26,35].

Inorganic filler such as N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chlo-
ride is crucial for the development of the functionalized inorganic/organic composite AEMs
by incorporating into the quaternized poly (2,6-dimethyl-1,4-phenylene oxide) (QPPO) ma-
trix. It is functionalized inorganic filler that will enhance the conductivity of the prepared
functionalized inorganic/organic composite AEMs. It was our first attempt to employ it
as an inorganic filler to prepare the functionalized inorganic/organic composite AEMs
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for acid recovery application according to the best of our knowledge. The low acidity of
trimethylamine (PKa = 9.81) permits the higher permeability of anions because they are dis-
sociated from the functional groups [18,36]. The prepared functionalized inorganic/organic
composite AEMs will contain a trimethylamine group responsible for higher permeability
of anions, leading to higher acid recovery efficiency of the prepared composite AEMs.

Previously, we reported the synthesis of polymeric AEMs by introducing different ion-
exchange groups into the polymeric material for adsorption [37], diffusion dialysis [26,36],
electrodialysis [33,34,38], and alkaline fuel cell [39] applications. Herein, we reported the
fabrication of a series of the functionalized inorganic/organic composite AEMs by incor-
porating the varying amount of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium
chloride into the QPPO matrix via the solution casting method. FTIR test confirmed the
successful synthesis of the composite AEMs. They were characterized in terms of water
uptake, ion exchange capacity, linear swelling ratio, morphology, acidic, mechanical, and
thermal stability. They were used for acid recovery by using the simulated mixture of
HCl/FeCl2 as a model feed solution via DD process at ambient temperature. The acid
recovery efficiency of the composite AEMs was compared with commercial membrane
DF-120B and already reported AEMs in literature at ambient temperature.

2. Experimental
2.1. Materials

Sodium carbonate (Na2 CO3 ), hydrochloric acid (HCl), trimethylamine, N -
(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride (TMSP-TMA+Cl−), N-Methyl-
2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), ferrous chloride (FeCl2. 4H2O), sodium
sulfate (Na2SO4), and potassium permanganate (KMnO4) were purchased from Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China and used as received. Tianwei Membrane
Co. Ltd. Shandong of China kindly supplied the brominated poly (2, 6-dimethyl-1, 4-
phenyleneoxide) (BPPO). Throughout this research, deionized water was utilized.

2.2. Preparation of the Quaternized poly (2,6-dimethyl-1,4-phenylene Oxide) Membrane

Quaternization of PPO was performed as described (Figure 1) [38,40]. In a typical
method, 0.8 g of BPPO was dissolved into N-Methyl-2-pyrrolidone (NMP) solvent to get a
homogeneous solution. After that, the measured amount of trimethylamine (0.125 g) was
added to the prepared BPPO solution. The resultant mixture was stirred at 40 ◦C for 16 h
and then casted onto the hot glass plate at 60 ◦C for 24 h. The attained membrane was
washed and stored in deionized (DI) water.

Moreover, the QPPO powder was also attained by precipitating the mixture of BPPO and
trimethylamine after stirring at 40 ◦C for 16 h into ethanol for the preparation of functionalized
inorganic/organic composite AEMs. It was dried in a vacuum oven at 40 ◦C for 2 days. The
attained QPPO powder was utilized for the preparation of composite AEMs.

2.3. Preparation of the Functionalized Inorganic/Organic Composite AEMs

We utilized solution casting method to synthesize the functionalized inorganic/organic
composite AEMs as reported in our previous research [26,36,37,39]. Initially, the quat-
ernized poly (2,6-dimethyl-1,4-phenylene oxide) (QPPO) was dissolved into dimethyl
sulfoxide (DMSO). Then 0.025, 0.05, 0.075, and 0.10 g of N-(trimethoxysilylpropyl)-N,N,N-
trimethylammonium chloride was added into solution of QPPO. The mixture was stirred
for 5 h and then casted onto the glass plate and heated (solvent evaporation) for one day at
60 ◦C. The prepared functionalized inorganic/organic composite AEMs were designed as
QPPO-2.5, QPPO-5, QPPO-7.5, and QPPO-10, respectively, where 2.5, 5, 7.5, and 10 refer
to the weight percentage (%) of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium
chloride into the QPPO. They were peeled off from the glass plates and cleaned with
distilled water prior to study and characterization.
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Figure 1. Fabrication of the quaternized poly (2,6-dimethyl-1,4-phenylene oxide) (QPPO) anion exchange membrane (AEM).

2.4. Characterizations
2.4.1. Instrumentations

FTIR analysis of the prepared functionalized inorganic/organic composite AEMs
was carried out by employing FTIR spectrometer (Vector 22, Bruker, MA, USA) having
a resolution of 2 cm−1 and a total spectral range of 4000–400 cm−1. Mechanical stability
of hydrates membranes was measured by employing Q800 dynamic mechanical analyzer
(DMA, TA Instruments, Kyoto, Japan) at a stretch rate of 0.5 N/min. Mechanical stability of
the composite AEMs was investigated in wet state. Thermal stability of the prepared com-
posite AEMs was investigated by employing a Shimadzu TGA-50H analyzer (Shimadzu
Corporation, Kyoto, Japan) within the temperature range of 25 ◦C to 800 ◦C under nitrogen
flow, with a heating rate of 10 ◦C/min. The detailed morphology of the prepared composite
AEMs was investigated through a field emission scanning electron microscope (FE-SEM,
Sirion200, FEI Company, Hillsboro, OR, USA). The samples of surfaces and cross-sections
of the composite AEMs were taken in a dry state.

2.4.2. Water Uptake and Linear Swelling Ratio

Water uptake (WR) was measured to study hydrophilicity of the IEMs. It has a crucial
effect on the DD performance of AEMs. A suitable range of water uptake is essential for
DD application. The functionalized inorganic/organic composite AEMs were oven-dried
and then accurately weighed to determine dry weight. They were soaked into deionized
water at 25 ◦C for 24 h. The wet weight was noted after the removal of surface water with
absorbing paper. It was estimated from the difference in weight before and after complete
drying the composite AEMs by using the following relationship:

WR =
WWET − WDRY

WDRY
× 100% (1)
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where WDRY and WWET are the weights of dry and wet functionalized inorganic/organic
composite AEMs, respectively.

The dimensional stability of the prepared composite AEMs has a significant influence
on the DD application. To achieve higher DD efficiency, proper dimensional stability is
required. For the functionalized inorganic/organic composite AEMs, linear swelling ratio
(LSR) was investigated by soaking into deionized water at 25 ◦C. For it, they were cut into
(2 × 2) cm2 pieces. It was measured by using below equation [41]:

LSR =
LWET − LDRY

LDRY
× 100% (2)

where LDRY and LWET are the lengths of dry and wet functionalized inorganic/organic
composite AEMs, respectively.

2.4.3. Ion Exchange Capacity

Ion exchange capacity (IEC) denotes the number of exchangeable ionic groups (equiv-
alents) available per dry weight of IEM [34]. The classical Mohr method was used to
calculate IEC of the prepared functionalized inorganic/organic composite AEMs as re-
ported in our previous work [26,36,39]. For calculation of IEC, the prepared functionalized
inorganic/organic composite AEMs were initially converted into the chloride ion (Cl−)
form by soaking into 1.0 M NaCl solution for 2 days. To discharge excess quantity of NaCl,
they were cleaned with distilled water very carefully. They were then soaked for 2 days
into 0.5 M Na2SO4 solution. The titration method was employed to estimate liberated
quantity of Cl− ions. It was carried out by using 0.05 (M) AgNO3 as a titrant and K2CrO4
as an indicator. It was measured by using below relationship:

IEC =
VC
m

(3)

where m, V, and C represent the dry mass of the functionalized inorganic/organic com-
posite AEMs, titer volume during titration, and the concentration of AgNO3 solution,
respectively.

Depending on the water uptake and IEC, the numbers of bound water molecules per
ionic group (λ) were calculated by the following equation:

λ =
WWET − WDRY × 1000

IEC × WDRY × 18
(4)

2.4.4. Acidic Stability Test

The acidic stability of AEMs was used to determine their life time in DD application.
The acidic stability of the prepared functionalized inorganic/organic composite AEMs was
revealed in terms of weight loss by soaking into the mixture of feed solution (the mixture
of HCl/FeCl2) at 60 ◦C for two weeks.

2.4.5. Diffusion Dialysis Test

Herein, the DD test was used to measure the acid recovery capability of the pre-
pared composite AEMs as reported in literature [26,36,42]. In this research, we used a
two-compartment cell (Figure 2). Both compartments were separated by utilizing the
functionalized inorganic/organic composite AEM with an effective area of 5.7 cm2, as
shown in Figure 2. Before the DD test, the prepared composite AEMs were conditioned
very carefully for 5 h into the feed solution (0.81 M HCl + 0.18 M FeCl2). Then, they
were washed with distilled water. During this test, one compartment of the cell was filled
up with 100 mL feed solution, whereas the other side with 100 mL distilled water. Both
sides were stirred vigorously in order to minimize the concentration polarization. This
test for each composite AEM was carried out for one hour. Lastly, both solutions (feed
and permeate) were taken from different compartments. The concentration of H+ in both
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compartments was determined by titration with Na2CO3 aqueous solution, whereas FeCl2
concentration was determined by titration with KMnO4 aqueous solution.
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The below relationship was used to measure the DD coefficients (U) for the composite
AEMs [26]:

U =
M

At∆C
(5)

where A is the effective membrane area (m2), M is the amount of component transported
in (mol), ∆C is the logarithm average concentration between the two chambers (mol/m3), t
is the time (h), and ∆C was measured by employing below relationship [26]:

∆C =
C0

f − (Ct
f − Ct

d)

ln[C0
f /(Ct

f − Ct
d)]

(6)
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where C0
f and Ct

f are feed concentrations at time 0 and t, respectively, and Ct
d is the dialysate.

The DD coefficient of acid (UH ) and metal (UFe ) can be measured based on
Equations (5) and (6). The separation factor (S) is the ratio of DD coefficients (U) of the two
species in the solution and can be measured by using the below relationship [36]:

S =
UH
UFe

(7)

3. Results and Discussions
3.1. FTIR

In this research, FTIR test was used to demonstrate the quaternization of PPO and
the fabrication of the functionalized inorganic/organic composite AEMs. FTIR spectra of
pure BPPO membrane, QPPO membrane, and the prepared inorganic/organic composite
AEMs QPPO-2.5 to QPPO-10 are represented in Figure 3. The peak at 750 cm−1 was due
to C-Br stretching vibration in the pristine BPPO membrane [36,43]. The symmetrical and
asymmetrical stretching of C–O are at 1200 and 1306 cm–1, and those of phenyl groups at
1470 and 1600 cm–1, respectively [36,44]. The bands at 1446 cm–1 were attributed to –CH
stretching (V and δ) [36]. The peak at 750 cm−1 due to C-Br was disappeared in the spectra
of QPPO membrane and the composite AEMs, indicating the successful quaternization
of PPO [42,45]. In the QPPO and the prepared composite AEMs, the peak at 915 cm−1

was associated with C-N stretching vibration. It was absent in spectra of the pure BPPO
membrane. The peak at 2940 cm−1 becomes broader due to the linkage of methyl group
(-CH3) containing trimethylamine to the BPPO polymeric material via quaternization reac-
tion and introduction of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride
into the QPPO. It demonstrated the successful fabrication of QPPO membrane and the
composite AEMs.
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3.2. Morphology Test

Morphology of IEMs has a crucial influence on the transport properties. For the
prepared functionalized inorganic/organic composite AEMs, the structural features were
investigated by using a Field emission scanning electron microscope (FE-SEM, Sirion200,
FEI Company, Hillsboro, OR, USA). Figure 4 represents SEM micrographs of surfaces
and cross-sections of the prepared composite AEMs. Results represent that there were
no obvious particles into the surfaces as well as cross-sections of the prepared composite
AEMs when the concentration of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium
chloride was in the range of 2.5 to 5.0% into the QPPO, indicating the good dispersion
of it. Nevertheless, its excessive incorporation into the QPPO matrix showed particle
aggregation. From Figure 4, it was noted that when the amount of inorganic filler into
the QPPO was enhanced higher than 5% (7.5 or 10%). Then, the particle agglomeration
occurred which results in the decline in the selectivity of the composite AEMs because of
the voids formed between the polymeric material and the inorganic phase. With increasing
the amount of N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride to 10% into
the QPPO, the aggregation of particles occurred which results in a decrease in acid recovery
efficiency of the composite AEM QPPO-10. Therefore, its suitable amount should be
selected to achieve higher DD performance.
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3.3. Ion Exchange Capacity

Ion exchange capacity is a crucial property of IEMs utilized in electrochemical pro-
cesses. It provides useful information about the charge density of IEMs and it is also a
significant parameter that governs conductivity and transport properties of IEMs [40]. It
depends on the amount of ion exchange groups connected to the polymeric material and is
one of the significant properties of AEM due to the direct relevance of anion permeabil-
ity [18]. For the prepared QPPO membrane and the composite AEMs, the classical Mohr’s
method was employed to determine it, and attained results are denoted in Figure 5a. Its
value for QPPO membrane was found to be 2.15 meq/g. For the prepared composite
AEMs QPPO-2.5 to QPPO-10, it was found to be 2.18 to 2.29 meq/g. It was found to be
increased with increasing the amount of inorganic filler into the QPPO from 2.5% to 7.5%
whereas decreased with further increasing its amount into the QPPO (up to 7.5%). Thus,
the prepared composite AEMs were highly charged which are useful for DD applications.
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3.4. Water Uptake and Linear Swelling Ratio

Water uptake has a significant influence on the electrochemical application of IEMs,
especially on DD process. For the AEM, it is of great significance as a bridge to balance
ion permeability and mechanical properties [18]. It is well established that it plays an
important role in the migration of ions, and moderate water uptake is required for high
anion permeability [18]. Figure 5b shows water uptake of QPPO membrane as well as
the prepared composite AEMs as a function of the amount of inorganic filler into the
QPPO. It was found to be 37.25% for the QPPO membrane at ambient temperature. For
the prepared composite AEMs QPPO-2.5 to QPPO-10, it was found to be increased from
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69.54% to 81.67% with increasing the amount of inorganic filler from 2.5% to 7.5% into
the QPPO whereas decreased with further increasing its amount (up to 7.5%) into QPPO
due to the aggregation of structure of the polymeric AEMs. It was due to existence of
same functional group (–N(CH3)+Cl−) into QPPO as well as of N-(trimethoxysilylpropyl)-
N,N,N-trimethylammonium chloride.

To investigate the influence of IEC on water uptake of the prepared composite AEMs,
the number of water molecules absorbed by each ion-conducting group (λ) was measured
and is given in Table 1. From here, it was noted that the number of water molecules
absorbed by each ion-conducting group increased with increasing the amount of inorganic
filler from 2.5% to 7.5% into QPPPO matrix from QPPO-2.5 to QPPO-7.5 because water
uptake and IEC were also increased. It was decreased with a further increasing amount of
inorganic filler (up to 7.5) into QPPO matrix due to a decrease in water uptake and IEC.

Table 1. Tensile strength, elongation at break, hydration number and thickness of QPPO, and the
prepared functionalized inorganic/organic composite AEMs QPPO-2.5 to QPPO-10.

Membranes TS (MPa) Eb (%) λ Thickness (µm)

QPPO 19 ± 0.95 10 ± 0.50 10.40 ± 0.52 62 ± 3.10

QPPO-2.5 48 ± 2.40 27 ± 1.35 17.72 ± 0.87 67 ± 3.35

QPPO-5 39 ± 1.95 41 ± 2.10 18.11 ± 0.91 61 ± 3.10

QPPO-7.5 32 ± 1.60 56 ± 2.80 19.80 ± 1.00 73 ± 3.65

QPPO-10 22 ± 1.10 14 ± 0.70 11.50 ± 0.58 59 ± 2.95

For DD application, linear swelling ratio (dimensional stability) of IEMs is a crucial
parameter. A higher swelling ratio results in the excessive permeation of ferrous ion
(Fe2+) through the AEMs which leads to a lower separation factor. Figure 5c indicates a
linear swelling ratio of QPPO membrane and the prepared composited AEMs at ambient
temperature. The value of the linear swelling ratio for QPPO membrane was 11.50%.
For the prepared composite AEMs QPPO-2.5 to QPPO-10, its value was increased from
14.29–18.52% by increasing the quantity of inorganic filler into the QPPO. It was ideal for
AEM employed for acid recovery via DD process. Higher dimensional stability of the
prepared composite AEMs was based on BPPO polymeric material. Therefore, the prepared
functionalized inorganic/organic composite AEMs exhibited good swelling resistance.
Hence, it is mandatory for their long time running during acid recovery application.

3.5. Mechanical and Thermal Stability

For a long time running in acid recovery application, the higher mechanical stability of
AEMs is also crucial. Mechanical stability of QPPO membrane and the prepared composite
AEMs was determined in wet state by using a dynamic mechanical analyzer (DMA).
Tensile strength (TS) represents resistance to mechanical force of the membranes, whereas
elongation at break (Eb) indicates the flexibility of the IEMs. Table 1 shows the values
of tensile strength (TS) and elongation at break (Eb) of the QPPO membrane as well as
composite AEMs. The value of TS for QPPO membrane was 19 MPa and Eb was 10%.
For the prepared composite AEMs, the value of TS was in the range of 22 to 48 MPa,
whereas Eb was in the range of 14% to 56%. Results show that the prepared composite
AEM QPPO-7.5 showed higher flexibility among the prepared composite AEMs due to the
higher value of Eb. From Table 1, it was noted that the value TS followed the same order
as IEC and water uptake of the prepared composite AEMs with increasing the amount of
inorganic filler into the QPPO. The value of Eb of the prepared composite AEMs in the
range of 14% to 56% was lower than previously reported AEMs [46]. On the contrary, the
value TS of the prepared composite AEMs in the range of 22 to 48 MPa was higher than
previously reported work [47], indicating that the prepared composite AEMs exhibited
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higher mechanical stability necessary for DD application. Similar results are reported in
the literature that BPPO-based IEMs showed higher mechanical stability [48,49].

Generally, BPPO-based IEMs exhibited excellent thermal stability as reported in lit-
erature [48,50]. It is associated with the hydrophobic nature of BPPO polymeric material.
Thermal stability is a significant parameter of IEMs. Thermal stability of the QPPO mem-
brane and prepared composite AEMs was investigated by thermogravimetric analyzer
(TGA) under a constant nitrogen flow at a constant heating rate of 10 ◦C/min within the
temperature range from 30 to 800 ◦C. Figure 6 represents TGA thermographs of the QPPO
and composite AEMs. It was noted that the weight loss took place in three consecutive
stages for the QPPO membrane and prepared composite AEMs. The first weight loss stage
was observed below 130 ◦C. It was associated with the evaporation of residual water and
solvent [26,40]. The second weight loss was noted in the range of 180 to 240 ◦C. It was due
to the degradation quaternary ammonium group into the polymeric material [32,33]. The
final weight loss was found around 470 ◦C. It was due to the degradation of polymeric
material [39,51]. Moreover, we also received the same results from differential thermo-
gravimetric analysis (DrTGA) graphs (Figure 6 onset) as confirmed in the above discussion.
The first weight loss was associated with water loss from the membrane matrix, whereas
the second weight loss was due to degradation of quaternary ammonium groups into
the polymer matrix. The final weight loss was attributed to degradation of the polymeric
material. It was concluded that the prepared composite AEM QPPO-2.5 showed higher
thermal stability, whereas QPPPO-7.5 exhibited the lowest thermal stability among the
prepared composite membranes. Thermal stability of the composite AEMs decreased from
membrane QPPO-2.5 to QPPO-7.5. Overall, the prepared composite AEMs showed good
thermal stability mandatory for DD process.
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3.6. Acid Recovery Performance

Figure 7a shows the acid recovery performance of the prepared functionalized in-
organic/organic composite AEMs at room temperature. The acid recovery performance
was evaluated in batch mode via DD process. This test was performed by utilizing the
simulated mixture of HCl/FeCl2 as a model feed. At room temperature, the value of DD
coefficient of acid (UH

+) was found to be 20 to 25.6 (10−3 m/h) for the prepared composite
AEMs. Results indicate that the value of DD coefficient of acid (UH

+) was higher than
commercial membranes DF-120B (UH

+ = 4×10−3 m/h) [26,42]. From the attained results,
it was observed that the value of DD coefficient of acid was found to be increased from
20 to 25.6 (10−3 m/h) with increasing the amount of inorganic filler from 0.025 to 0.75 g
into the QPPO. Figure 8 provides an interesting comparison of the fabricated composite
AEMs with the membranes reported in the literature. From here, we conclude that the
prepared composite AEMs are outstanding candidates for acid recovery via DD process.
It was due to an increase in water uptake and IEC of the fabricated composite AEMs
with increasing the amount of inorganic filler into the QPPO. It results in the increase in
migration of hydrogen ion (H+) through the prepared composite AEMs, which leads to
an increase in the value of DD coefficient of acid. Contrary, with increasing the amount of
inorganic filler into the QPPO (up to 7.5%), the value of DD coefficient of acid was found to
be decreased from 25.6 to 22.4 (10−3 m/h). It was due to a decline in hydrophilicity of the
prepared composite AEM. From here, we concluded that the prepared composite AEMs
exhibited higher acid recovery when the amount of inorganic filler into the QPPO was 7.5%.
After this amount, the value of DD coefficient of acid (UH

+) was decreased. It denotes
that the prepared composite AEMs exhibited outstanding potential for acid recovery via
DD process.
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The separation factor (S) is defined as the ratio of UH
+ to UFe

2+. Figure 7b depicts the
separation factor of the fabricated functionalized inorganic/organic composite AEMs at
ambient temperature. The obtained value of separation factor was increased from 139 to
260 with increasing the amount of inorganic filler from 2.5% to 7.5% into the QPPO, which
surpassed the evaluated commercial membrane DF-120B (24.3) [32,42]. With increasing
the amount of inorganic filler, water uptake, linear swelling ratio (dimensional stability),
and IEC were increased. The increase in swelling ratio (Figure 5c) was not higher due
to the usage of BPPO as polymeric material which made the prepared composite AEMs
suitable for the DD application. A higher increase in swelling leads to lower selectivity
of membranes. The obtained higher value of separation factor (139 to 260) was due to
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the lower swelling of the prepared composite AEMs. It showed that the attained value of
swelling (14.29 to 18.52%) has no negative effect on the selectivity of the composite AEMs.
With increasing IEC, more ion-exchange groups were available into the prepared composite
AEMs. Therefore, the increase in IEC was crucial for higher acid recovery performance.
On the contrary, the hydrophilicity of the prepared composite AEMs was decreased with
further increasing the amount of inorganic filler (up to 7.5%) into the QPPO, which results
in the decrease in the value of the separation factor. Hence, the appropriate quantity of
inorganic filler was required to attain higher acid recovery performance of composite AEMs
via DD process.
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3.7. Acid Stability

The acid stability was investigated in terms of weight loss of the prepared inor-
ganic/organic composite AEMs by soaking into the mixture of HCl/FeCl2 feed solution at
60 ◦C for 2 weeks. Figure 9 represents the weight loss of the prepared composite AEMs
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measured after 2 weeks. Results represent that the weight loss was increased from 11% to
18% for the composite AEMs QPPO-2.5 to QPPO-10. The weight loss was increased with
increasing the amount of inorganic filler from membrane QPPO-2.5 to QPPO-10. The maxi-
mum weight loss was only 18% after 2 weeks. The color of membranes was unchanged.
From this, we conclude that the prepared composite AEMs represented excellent acid
stability. Therefore, they are useful for acid recovery via DD process for a long time.
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4. Conclusions

In this article, a series of functionalized inorganic/organic composite AEMs were fab-
ricated via the solution casting method. The successful fabrication of composite AEMs was
demonstrated by employing FTIR spectroscopy. They showed extraordinary mechanical,
thermal, acid stability. The effect of the amount of inorganic filler on the physico-chemical
properties was revealed in detail. They represented IEC of 2.18 to 2.29 meq/g, water
uptake of 46.11% to 81.66%, and linear swelling ratio of 13.33% to 18.52%. For the prepared
composite AEMs, the DD coefficient of acid (UH

+) was in the range of 0.022 to 0.025 m/h,
whereas the separation factor (S) was in the range of 139 to 260 at ambient temperature.
It demonstrated that the prepared functionalized inorganic/organic composite AEMs are
outstanding candidates for acid recovery application at room temperature.
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Abbreviations

Codes Full names
AEM Anion exchange membrane
BPPO Brominated poly(2,6-dimethyl-1,4-phenylene oxide)
DD Diffusion dialysis
TMSP-TMA+Cl− N-(trimethoxysilylpropyl)-N,N,N-trimethylammonium chloride
IEC Ion exchange capacity
IEM Ion exchange membrane
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