
Mathematics and Statistics 10(3): 615-623, 2022 http://www.hrpub.org 

DOI: 10.13189/ms.2022.100318 

Likelihood and Bayesian Inference in the Lomax 

Distribution under Progressive Censoring 

A. Baklizi
*
, A. Saadati Nik, A. Asgharzadeh 

1Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar 
2Department of Statistics, University of Mazandaran, Babolsar, Iran 

Received February 18, 2022; Revised April 27, 2022; Accepted May 23, 2022 

Cite This Paper in the following Citation Styles 

(a): [1] A. Baklizi, A. Saadati Nik, A. Asgharzadeh , "Likelihood and Bayesian Inference in the Lomax Distribution 

under Progressive Censoring," Mathematics and Statistics, Vol. 10, No. 3, pp. 615 - 623, 2022. DOI: 

10.13189/ms.2022.100318. 

(b): A. Baklizi, A. Saadati Nik, A. Asgharzadeh (2022). Likelihood and Bayesian Inference in the Lomax Distribution 

under Progressive Censoring. Mathematics and Statistics, 10(3), 615 - 623. DOI: 10.13189/ms.2022.100318. 

Copyright©2022 by authors, all rights reserved. Authors agree that this article remains permanently open access under the 
terms of the Creative Commons Attribution License 4.0 International License 

Abstract  The Lomax distribution has been used as a 

statistical model in several fields, especially for business 

failure data and reliability engineering. Accurate parameter 

estimation is very important because it is the base for most 

inferences from this model. In this paper, we shall study 

this problem in detail. We developed several points and 

interval estimators for the parameters of this model 

assuming the data are type II progressively censored. 

Specifically, we derive the maximum likelihood estimator 

and the associated Wald interval. Bayesian point and 

interval estimators were considered. Since they can’t be 

obtained in a closed form, we used a Markov chains Monte 

Carlo technique, the so called the Metropolis – Hastings 

algorithm to obtain approximate Bayes estimators and 

credible intervals. The asymptotic approximation of 

Lindley to the Bayes estimator is obtained for the present 

problem. Moreover, we obtained the least squares and the 

weighted least squares estimators for the parameters of the 

Lomax model. Simulation techniques were used to 

investigate and compare the performance of the various 

estimators and intervals developed in this paper. We found 

that the Lindley’s approximation to the Bayes estimator 

has the least mean squared error among all estimators and 

that the Bayes interval obtained using the Metropolis – 

Hastings to have better overall performance than the Wald 

intervals in terms of coverage probabilities and expected 

interval lengths. Therefore, Bayesian techniques are 

recommended for inference in this model. An example of 

real data on total rain volume is given to illustrate the 

application of the methods developed in this paper. 

Keywords  Bayesian Inference, Likelihood Inference, 

Lomax Distribution, Metropolis-Hastings Algorithm, 

Point Estimator, Progressive Censoring 

Mathematics Subject Classification: 62F10; 62F15; 62N01; 

62N02 

1. Introduction

The Lomax distribution was introduced by Lomax [22] 

as a model for business failure data. It provides an 

alternative model when the experimenter assumes that the 

population is heavy-tailed [8]. It is found to be useful in 

several areas including business, economics, actuarial 

science, queuing theory and internet traffic modeling. It 

belongs to the class of decreasing failure rate distributions 

as discussed by Chahkandi and Ganjali [9]. 

The Lomax distribution is related to several important 

distributions in the literature. With a suitable choice of 

parameters, it is a special case of the Pareto Type II 

distribution. Similarly, it can be shown to be a special case 

of the generalized Pareto distribution, the Beta prime 

distribution, and the q-exponential distribution among 

several other distributions, see [16]. The Lomax 

distribution has been extended in various ways in the 

literature. For example, some variants of the Lomax 

distribution may have more than the basic two parameters. 

For example, the beta exponentiated Lomax distribution 

contains five parameters [25]. There are many other 
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variants of the Lomax distribution including the 

Exponential Lomax [12], the Gamma Lomax [10], the 

Poisson Lomax [3], Weibull Lomax [30], Weighted Lomax 

[17]. There are several other variants that arise from time to 

time to provide suitable models for the phenomena under 

study.  

The applications and some properties of the Lomax 

distribution can be found in [4] and [16]. The pdf and cdf of 

the underlying life time distribution are given respectively 

by 

𝑓(𝑥, 𝜃, 𝛽) =
𝛽 𝜃

(1+𝛽𝑥)𝜃+1 ,   𝑥 > 0, 𝛽 > 0, 𝜃 > 0,    (1) 

𝐹(𝑥, 𝜃, 𝛽) = 1 −
1

(1+𝛽𝑥)𝜃 ,   𝑥 > 0, 𝛽 > 0, 𝜃 > 0.    (2) 

Various authors have considered inference for this 

distribution with progressively censored data in the 

literature. Cramer et al. [11] considered estimation based 

on competing risks data from Lomax distribution. 

Likelihood and Bayesian estimation of the scale parameter 

were considered by Asgharzadeh and Valiollahi [5]. 

Likelihood estimation using Newton-Raphson and the EM 

algorithm was considered by Helu et al. [15]. Likelihood 

and Bayesian point estimation of the stress-strength 

reliability in this model were considered by Al-Zahrani and 

Al-Sobhi [2]. A similar problem for the log-logistic 

distribution with adaptive progressively censored data was 

considered by Sewailem and Baklizi [26], while Sewailem 

and Baklizi [27] considered modified profile likelihood 

estimation of the scale parameter of the Lomax 

distribution. 

In this paper, we will extend the work of Helu et al. [15] 

on maximum likelihood estimation and the work of 

Al-Zahrani and Al-Sobhi [2] on Bayesian point estimation 

to include approximate Bayesian estimation based on the 

Lindley approximation and Metropolis-Hastings algorithm, 

least squares and weighted least squares estimators. We 

included a bias and mean squared error comparison of the 

various estimators as well. Furthermore, we considered 

likelihood and Bayesian interval estimation for the 

parameters of this distribution using the 

Metropolis-Hastings algorithm. The likelihood and 

Bayesian intervals were compared in terms of their 

coverage probabilities and expected lengths using a 

simulation study. 

The organization of the paper is as follows. In Section 2 

we will consider likelihood inference for the parameters. 

Least squares and weighted least squares estimators are 

derived in Section 3. Bayesian inference is considered in 

Section 4, while in Section 5 we describe a simulation 

study designed to investigate and compare the performance 

of the likelihood and Bayesian inference procedures. The 

results and findings are given in Section 6. An illustrative 

example based on a real data set is given in the final 

Section. 

2. Likelihood Inference with 
Progressive Censoring 

Censoring is used to reduce the time and cost of the life 

experiment. In a progressively type II censored sampling 

scheme with n units and m failures [6], a group of n 

independent and identical units are put on test. At the 𝑖𝑡ℎ 

observed failure time, a predetermined number 𝑅𝑖  of 

surviving units is randomly removed from the experiment. 

This manner will continue until the time of the last failure. 

This censoring scheme is denoted by (𝑅1, 𝑅2, … , 𝑅𝑚) 

where 𝑚 + ∑ 𝑅𝑖
𝑚
𝑖=1 = 𝑛 . Consider a progressive type II 

censoring plan (𝑅1, 𝑅2, … , 𝑅𝑚) for 𝑛 tested units with 𝑚 

failures. Let 𝑌1:𝑚:𝑛 ≤ 𝑌2:𝑚:𝑛 ≤ ⋯ ≤ 𝑌𝑚:𝑚:𝑛  be the 

progressive type II censored sample obtained from this 

plan and 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑚  represent the observed 

progressive type II censored sample. The likelihood 

function is given by [6] 

𝐿(𝜃, 𝛽) = 𝐶 ∏ 𝑓𝑚
𝑖=1 (𝑦𝑖 , 𝜃, 𝛽) (1 − 𝐹(𝑦𝑖 , 𝜃, 𝛽))𝑅𝑖 ,  (3) 

where 𝐶 = 𝑛(𝑛 − 1 − 𝑅1)(𝑛 − 2 − 𝑅1 − 𝑅2) … (𝑛 −
𝑚 + 1 − 𝑅1 … − 𝑅𝑚−1). For the Lomax distribution, it will 

be 

𝐿(𝜃, 𝛽) = 𝐶 ∏
𝛽𝜃

(1+𝛽𝑦𝑖)𝜃+1
𝑚
𝑖=1 (

1

(1+𝛽𝑦𝑖)𝜃)𝑅𝑖

= 𝐶𝛽𝑚  𝜃𝑚  ∏ (𝑚
𝑖=1 1 + 𝛽𝑦𝑖)

−(𝜃(𝑅𝑖+1)+1).
   (4) 

We derive the log-likelihood function as 

𝑙(𝜃, 𝛽) = ln𝐿(𝜃, 𝛽) = 𝑚ln𝜃 + 𝑚ln𝛽 − ∑ (𝑚
𝑖=1 𝜃(𝑅𝑖 +

1) + 1)ln(1 + 𝛽𝑦𝑖).                (5) 

The maximum likelihood estimators (MLEs) of 

parameters are obtained by solving the likelihood 

equations with respect to 𝜃 and 𝛽. We have 

𝜕𝑙(𝜃,𝛽)

𝜕𝜃
=

𝑚

𝜃
− ∑ (𝑚

𝑖=1 𝑅𝑖 + 1)ln(1 + 𝛽𝑦𝑖) = 0.   (6) 

From (6), the MLE of 𝜃, say �̂� is 

�̂� =
𝑚

∑ (𝑚
𝑖=1 𝑅𝑖 + 1)ln(1 + 𝛽𝑦𝑖)

. 

Substituting �̂� into (5), the MLE of 𝛽 is the solution of 

the equation 

ℎ(𝛽) =
𝜕𝑙(�̂� , 𝛽)

𝜕𝛽
=

𝑚

𝛽

−
𝑚

∑ (𝑚
𝑖=1 𝑅𝑖 + 1)ln(1 + 𝛽𝑦𝑖)

∑
(𝑅𝑖 + 1)𝑦𝑖

1 + 𝛽𝑦𝑖

𝑚

𝑖=1

− ∑
𝑦𝑖

1 + 𝛽𝑦𝑖

𝑚

𝑖=1

= 0. 

These equations can’t be solved analytically for the 

MLE �̂� and we have to apply some numerical technique to 

solve the likelihood equation and compute the estimate �̂�. 

It is easy to show that the MLE �̂� can be derived as a 

fixed-point solution of the equation 𝛬(𝛽) = 𝛽, where 
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𝛬(𝛽) =
𝑚

𝑚
∑ (𝑚

𝑖=1 𝑅𝑖 + 1)ln(1 + 𝛽𝑦𝑖)
∑

(𝑅𝑖 + 1)𝑦𝑖

1 + 𝛽𝑦𝑖

𝑚
𝑖=1 + ∑

𝑦𝑖

1 + 𝛽𝑦𝑖

𝑚
𝑖=1

. 

A simple iterative technique 𝜆(𝛽(𝑗)) = 𝛽(𝑗), where 𝛽(𝑗) 

is the jth iterative, can be used to solve 𝛬(𝛽) = 𝛽. The 

codes of R software (R Core Development Team) can also 

be used to solve 𝛬(𝛽) = 𝛽. 

To find the approximate confidence intervals for 𝑆(𝑡) 

for large 𝑚 , we need to find the observed Fisher 

Information matrix of parameters 𝜃 and 𝛽 therefore we 

find the matrix of minus the second partial derivatives of 

the log-likelihood function as follows: 

𝐽(𝜃, 𝛽) = [
−

𝜕𝑙(𝜃,𝛽)

𝜕𝜃2 −
𝜕𝑙(𝜃,𝛽)

𝜕𝜃𝜕𝛽

−
𝜕𝑙(𝜃,𝛽)

𝜕𝛽𝜕𝜃
−

𝜕𝑙(𝜃,𝛽)

𝜕𝛽2

],            (7) 

where 
𝜕𝑙(𝜃,𝛽)

𝜕𝜃2 = −
𝑚

𝜃2 , 
𝜕𝑙(𝜃,𝛽)

𝜕𝜃𝜕𝛽
= − ∑

(𝑅𝑖+1)𝑦𝑖

1+𝛽𝑦𝑖

𝑚
𝑖=1 , 

𝜕𝑙(𝜃,𝛽)

𝜕𝛽2 =

−
𝑚

𝛽2 + ∑
(𝜃(𝑅𝑖+1)+1)𝑦𝑖

2

(1+𝛽𝑦𝑖)2
𝑚
𝑖=1 . Then the observed Fisher 

information matrix is given by 𝐽(�̂� , �̂�)  is is the 

variance-covariance matrix of the MLE. Therefore the 

approximate confidence intervals for 𝜃 and 𝛽 are given 

respectively by 

 (�̂� − 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�), �̂� + 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�)),     (8) 

 (�̂� − 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�), �̂� + 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�)),     (9) 

where 𝑧𝑞  is the q-th percentile of the standard normal 

distribution. Since 𝜃 and 𝛽 are positive parameters and 

the lower bound of the above confidence intervals can be 

less than zero, the modified confidence intervals can be 

suggested as follows: 

 (max{0, �̂� − 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�)}, �̂� + 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�)),    (10) 

 (max{0, �̂� − 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�)}, �̂� + 𝑧𝛼/2√𝑉𝑎𝑟ˆ (�̂�)).  (11) 

To find an approximate confidence interval for 𝑆(𝑡), we 

need to use the multivariate delta method given in the 

following theorem [19]; 

Theorem 1: The Multivariate Delta Method 

Suppose that (√𝑛(𝑈𝑛 − 𝜉), √𝑛(𝑉𝑛 − 𝜏))
𝐿
→ 𝑁(𝟎, 𝚺) , 

where 𝑁(𝟎, 𝚺) denotes the bivariate normal distribution 

with mean (0, 0) and covariance matrix 𝚺. Let 𝑔 be a 

real valued function that admits a Taylor expansion at the 

point (𝜉, 𝜏) , then the distribution of √𝑛(𝑔(𝑈𝑛 , 𝑉𝑛) −

𝑔(𝜉, 𝜏))
𝐿
→ 𝑁(0, 𝜐) , where 𝜐 = 𝐺𝑡  Σ−1 𝐺  and 𝐺 =

(
𝜕𝑔(𝜉,𝜏)

𝜕𝜉
,

𝜕𝑔(𝜉,𝜏)

𝜕𝜏
). 

 

 

Proof: The proof can be found in [19]. 

Applying the multivariate delta method with 𝑈𝑛 = �̂� , 

𝑉𝑛 = �̂� , 𝜉 = 𝜃 , 𝜏 = 𝛽 , 𝚺 = 𝑱 , 𝑔(𝜉, 𝜏) = 𝑆(𝑡) , 

𝑔(𝑈𝑛 , 𝑉𝑛) = �̂�(𝑡) 𝑣 = 𝑣𝑎𝑟 (�̂�(𝑡)) , then the multivariate 

delta method gives 

υ = var(𝑆(𝑡)ˆ ) ≈ 𝐺𝑡  𝐽−1(𝜃, 𝛽) 𝐺 

where 𝐺 = (
𝜕𝑆(𝑡)

𝜕𝜃
,

𝜕𝑆(𝑡)

𝜕𝛽
) , 

𝜕𝑆(𝑡)

𝜕𝜃
= −(1 + 𝛽𝑥)−𝜃  ln(1 +

𝛽𝑥) and 
𝜕𝑆(𝑡)

𝜕𝛽
= −𝜃𝑥(1 + 𝛽𝑥)−𝜃−1. 

The approximate estimate of the variance of 𝑆(𝑡)ˆ  is 

obtained by replacing (𝜃, 𝛽) by their MLEs as follows; 

𝑉𝑎𝑟ˆ (𝑆(𝑡)ˆ ) ≈ [𝐺𝑡  𝐽−1(𝜃, 𝛽) 𝐺](�̂�,�̂�),        (12) 

Which can be used to find the approximate confidence 

interval for 𝑆(𝑡) given by 

 (𝑆(𝑡)ˆ − 𝑧𝛼/2√𝑉𝑎𝑟ˆ (𝑆(𝑡)ˆ ), 𝑆(𝑡)ˆ + 𝑧𝛼/2√𝑉𝑎𝑟ˆ (𝑆(𝑡)ˆ )). (13) 

3. Least Squares and Weighted Least 
Squares Methods 

Least squares (LS) and weighted least squares (WLS) 

methods were proposed by Swain et al. [29] to estimate 

the parameters of beta distribution. For the case of 

progressive censoring, we need the following theorem [1]; 

Theorem 2: Let 𝑌1:𝑚:𝑛, … , 𝑌𝑚:𝑚:𝑛  be a progressively 

type-II censored random sample of size 𝑚  from the a 

continuous distribution with pdf and cdf 𝑓(𝑥) and 𝐹(𝑥) 

respectively, then, we have 

𝐸[𝐹(𝑌𝑖:𝑚:𝑛)] = 1 − ∏ 𝑆𝑗

𝑚

𝑗=𝑚−𝑖+1

,     𝑖 = 1, … , 𝑚, 

𝑉𝑎𝑟[𝐹(𝑌𝑖:𝑚:𝑛)] = ( ∏ 𝑆𝑗

𝑚

𝑗=𝑚−𝑖+1

) ( ∏ 𝐿𝑗

𝑚

𝑗=𝑚−𝑖+1

− ∏ 𝑆𝑗

𝑚

𝑗=𝑚−𝑖+1

) ,    𝑖 = 1, … , 𝑚, 

where, for 𝑗 = 1, … , 𝑚, 

𝐴𝑗 = 𝑗 + ∑ 𝑅𝑞

𝑚

𝑞=𝑚−𝑗+1

,     𝑆𝑗 =
𝐴𝑗

1 + 𝐴𝑗
,     𝐷𝑗 =

1

(𝐴𝑗 + 1)(𝐴𝑗 + 2)
,

and  𝐿𝑗 = 𝑆𝑗 + 𝐷𝑗 . 

Proof: See [1] 

The LS estimates (LSEs) 𝜃𝐿𝑆 and �̂�
𝐿𝑆

 of 𝜃 and 𝛽 can 

be obtained by minimizing the following quantity with 

respect to 𝜃 and 𝛽. 
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𝜂1(𝜃, 𝛽) = ∑[

𝑚

𝑖=1

𝐹(𝑦𝑖:𝑚:𝑛, 𝜃, 𝛽) − 𝐸[𝐹(𝑌𝑖:𝑚:𝑛)]]2 

= ∑ [
1

(1 + 𝛽𝑦𝑖:𝑚:𝑛)𝜃
− ∏ 𝑆𝑗

𝑚

𝑗=𝑚−𝑖+1

]

2
𝑚

𝑖=1

. 

The WLS estimates (WLSEs) 𝜃𝑊𝐿𝑆  and �̂�
𝑊𝐿𝑆

 of 𝜃 

and 𝛽  can be obtained by minimizing 𝜂2(𝜃, 𝛽)  with 

respect to 𝜃 and 𝛽: 

𝜂2(𝜃, 𝛽) = ∑ 𝜔𝑖

𝑚

𝑖=1

[𝐹(𝑦𝑖:𝑚:𝑛, 𝜃, 𝛽) − 𝐸[𝐹(𝑌𝑖:𝑚:𝑛)]]2

= ∑ 𝜔𝑖

𝑚

𝑖=1

[
1

(1 + 𝛽𝑦𝑖:𝑚:𝑛)𝜃

− ∏ 𝑆𝑗

𝑚

𝑗=𝑚−𝑖+1

]

2

, 

where 𝜔𝑖 is the weight factor given by 

𝜔𝑖 =
1

𝑉𝑎𝑟[𝐹(𝑌𝑖:𝑚:𝑛)]
. 

The last two quantities can be minimized by solving the 

equations 𝜕𝜂1/𝜕𝜃 = 0 , 𝜕𝜂1/𝜕𝛽 = 0  and 𝜕𝜂2/𝜕𝜃 = 0 , 

𝜕𝜂2/𝜕𝛽 = 0, with respect to 𝜃 and 𝛽. 

4. Bayesian Inference 

For Bayesian inference, a joint prior for (𝜃, 𝛽)  is 

needed. By assuming independent gamma prior 

distributions for 𝜃 and 𝛽, we obtain the following joint 

prior for (𝜃, 𝛽): 

𝜋(𝜃, 𝛽) ∝ 𝜃𝑎1−1 𝛽𝑎2−1 𝑒−(𝑏1𝜃+𝑏2𝛽), 𝜃 > 0, 𝛽 > 0, 

where the hyper-parameters 𝑎1, 𝑏1, 𝑎2, 𝑏2  are positive 

constants. For 𝑎1 = 𝑏1 = 𝑎2 = 𝑏2 = 0 , the joint prior 

reduces to 

𝜋(𝜃, 𝛽) ∝
1

𝜃𝛽
,   𝜃 > 0, 𝛽 > 0, 

which is an improper joint prior. Independent gamma prior 

distributions were used by [2] and they obtained the Bayes 

estimators of the stress-strength 𝑅 = 𝑃𝑟(𝑌 < 𝑋)  for 

Lomax distribution under symmetric and asymmetric 

balanced loss functions. 

In this section, we shall investigate the Bayesian 

inference methods under above joint prior to assuming the 

squared error loss function (SELF). By combining the 

likelihood function and joint prior, the joint posterior 

density will be 

𝜋(𝜃, 𝛽|𝐲) ∝ 𝜃𝑚+𝑎1−1 𝛽𝑚+𝑎2−1 𝑒−(𝑏1𝜃+𝑏2𝛽)  ∏(

𝑚

𝑖=1

1 + 𝛽𝑦𝑖)−(𝜃(𝑅𝑖+1)+1), 

where 𝐲 = (𝑦1 , . . . , 𝑦𝑚). We have the following theorem whose proof can be found in most tests on Bayesian statistics. 

Theorem 3: The Bayes estimates of a function ℎ(𝜃, 𝛽) based on the SELF is given by the posterior expectation of this 

function 

ℎ(𝜃, 𝛽)ˆ
𝐵

= 𝔼(ℎ(𝜃, 𝛽)|𝐲) =
∫ ∫ ℎ

∞

0

∞

0
(𝜃, 𝛽)𝜋(𝜃, 𝛽|𝐲) 𝑑𝜃 𝑑𝛽

∫ ∫ 𝜋
∞

0

∞

0
(𝜃, 𝛽|𝐲) 𝑑𝜃 𝑑𝛽

. 

It is not possible to compute the Bayes estimator in (16) analytically, therefore we use the Lindley’s approximation and 

the Metropolis-Hastings algorithm, see Hamada et al. [14]. The Metropolis-Hasting algorithm is illustrated below; we will 

use it to obtain random observations from a target posterior distribution assuming lognormal candidate distributions for 

both parameters 𝜃 and 𝛽. 
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4.1. The Metropolis Algorithm 

 Initialize 𝑗 = 0, 𝜃(𝑗) = 0, 𝛽(𝑗) = 1, 

 Set 𝑗 = 1, 

 Draw 𝜃∗ and 𝛽∗ from a bivariate gamma candidate 

distribution with independent components, 

 Compute the acceptance probability 𝑟 =

min(1,
𝜋(𝜃∗, 𝛽∗)

𝜋(𝜃(𝑗−1), 𝛽(𝑗−1))

𝑓(𝜃(𝑗−1), 𝛽(𝑗−1))

𝑓(𝜃∗, 𝛽∗)
) , where 𝑓(𝑢, 𝑣) 

is the pdf of the gamma candidate distribution. 

 Draw 𝑢 from a uniform (0,1) distribution, 

 If 𝑢 ≤ 𝑟, set (𝜃(𝑗), 𝛽(𝑗)) = (𝜃∗,  𝛽∗). Otherwise, set 

(𝜃(𝑗), 𝛽(𝑗)) = (𝜃(𝑗−1), 𝛽(𝑗−1)), 

 Set 𝑗 = 𝑗 + 1, 

 8- Repeat steps 3 to 7 for 𝑁 = 11000 times, 

 Calculate the Bayes estimates of 𝜃  and 𝛽  using 

�̂�𝐵𝑀𝐻 =
1

𝑁−𝑀
∑ 𝜃(𝑖)𝑁

𝑖=𝑀+1  and �̂�
𝐵𝑀𝐻

=
1

𝑁−𝑀
∑ 𝛽(𝑖)𝑁

𝑖=𝑀+1 , where 𝑀 is the number of burn-in 

samples, 

 Substitute 𝜃(𝑖)  and 𝛽(𝑖)  in 𝑆(𝑡) = 1 −
1

(1+𝛽𝑡)𝜃 , to 

compute 𝑆(1)(𝑡), 𝑆(2)(𝑡), … , 𝑆(𝑁)(𝑡), 

 A Bayesian estimate of 𝑆(𝑡)  can be found as 

�̂�𝐵𝑀𝐻 (𝑡) =
∑ 𝑆(𝑖)𝑁

𝑖=𝑀+1 (𝑡)

𝑁−𝑀
, 

 Denote the ordered values of 𝜃(𝑀+1), 𝜃(𝑀+2), … , 𝜃(𝑁) 

and 𝛽(𝑀+1), 𝛽(𝑀+2), … , 𝛽(𝑁)  by 𝜃1, … , 𝜃𝑁−𝑀  and 

𝛽1, … , 𝛽𝑁−𝑀. The %100(1 − 𝛼) symmetric credible 

intervals of 𝜃  and 𝛽  calculated as 

(𝜃
((𝑁−𝑀)(

𝛼

2
))

, 𝜃
((𝑁−𝑀)(1−

𝛼

2
))

)  and 

(𝛽
((𝑁−𝑀)(

𝛼

2
))

, 𝛽
((𝑁−𝑀)(1−

𝛼

2
))

), 

 Order 𝑺(𝑴+𝟏)(𝒕), 𝑺(𝑴+𝟐)(𝒕), … , 𝑺(𝑵)(𝒕)  as 𝑺𝟏(𝒕) ≤
𝑺𝟐(𝒕) ≤ ⋯ ≤ 𝑺𝑵−𝑴(𝒕) . Then calculate the 

%𝟏𝟎𝟎(𝟏 − 𝜶) symmetric credible interval for 𝑺(𝒕) 

as (𝑺
((𝑵−𝑴)(

𝜶

𝟐
))

(𝒕), 𝑺
((𝑵−𝑴)(

𝟏−𝜶

𝟐
))

(𝒕)). 

4.2. Lindley's Approximation Approach 

The Lindley’s approximation was originally proposed 

by Lindley [20] to approximate the ratio of integral in the 

posterior expectation. This method has been used in the 

literature to approximate the Bayes estimator, see, for 

example, Lindley [21] and Press [23]. Based on Lindley’s 

approximation, the approximate Bayes estimates of 𝜃 and 

𝛽 under SELF are 

𝜃𝐵𝐿 = 𝜃 +
1

2
[2𝜌𝜃  𝜎𝜃𝜃 + 2𝜌𝛽  𝜎𝜃𝛽 + 

+𝜎𝜃𝜃(𝐿𝜃𝜃𝜃𝜎𝜃𝜃 + 2𝐿𝜃𝛽𝜃𝜎𝜃𝛽 + 𝐿𝛽𝛽𝜃𝜎𝛽𝛽) + 

+𝜎𝛽𝜃(𝐿𝜃𝜃𝛽𝜎𝜃𝜃 + 2𝐿𝜃𝛽𝛽𝜎𝜃𝛽 + 𝐿𝛽𝛽𝛽𝜎𝛽𝛽)], 

�̂�
𝐵𝐿

= �̂� +
1

2
[2𝜌𝜃  𝜎𝛽𝜃 + 2𝜌𝛽  𝜎𝛽𝛽 + 

+𝜎𝜃𝛽(𝐿𝜃𝜃𝜃𝜎𝜃𝜃 + 2𝐿𝜃𝛽𝜃𝜎𝜃𝛽 + 𝐿𝛽𝛽𝜃𝜎𝛽𝛽) + 

+𝜎𝛽𝛽(𝐿𝜃𝜃𝛽𝜎𝜃𝜃 + 2𝐿𝜃𝛽𝛽𝜎𝜃𝛽 + 𝐿𝛽𝛽𝛽𝜎𝛽𝛽)], 

respectively. Here 𝜃  and �̂�  are the MLEs of 𝜃  and 𝛽 , 

respectively. The details are described in the appendix 

given at the end of the paper. 

5. A Simulation Study 

A simulation study is designed to investigate the 

performance of the estimators and intervals. The sample 

size (𝑛), the number of failures (𝑚) and the censoring 

scheme 𝑅  are given in the following table. We also 

consider two sets of the true parameters values, (𝜃, 𝛽) =
(0.5,0.5) and (1.0,1.5). For each case we generated 3000 

progressively type II censored samples using the procedure 

described by [7]. For the Metropolis-Hastings algorithm 

we used 11000 iterations, we ignored the first 1000 

iterations as the Burn-in period and calculated the Bayes 

estimator and the Bayesian interval using the remaining 

10000 iterations. For computing Bayes estimates, we use 

the informative prior: 𝑎1 = 𝑎2 = 2 , 𝑏1 = 𝑏2 = 0.5 . We 

calculated the biases and mean squared errors of the 

estimators. We also calculated the average length and the 

coverage probability for each interval. 

Table 1.  Progressive Censoring schemes 

n M Censoring Schemes 

40 30 (029, 10), (5, 028, 5), (10, 029) 

60 40 (039, 20), (10, 028, 10), (20, 039) 

100 60 (059, 40), (20, 058, 20), (40, 059) 

The results of the simulation study are given in Tables 2, 

3 and 4. In the tables the bias of an estimator is denoted by 

𝑏(. ), the MSE by 𝑀𝑆(. ), the coverage probability of an 

interval for a parameter by 𝐶𝑃(. ) and the expected length 

by 𝐸𝐿(. ). Based on the tables, it appears that the MSE of 

all estimators of all parameters is the largest when the all 

the censoring occurs at the last failure, the special case 

corresponding to Type II censoring. It is smallest when all 

the censoring occurs at the first failure. The bias has almost 

a similar pattern in most cases. It appears also that the 

Lindley approximation of the Bayes estimator has 

generally the least MSE among all estimators. However, 

the least squares and the weighted least squares estimators 

appear to have the least bias among all estimators. The 

Metropolis-Hastings approximation appears to have the 

worst performance in terms of Bias and MSE in most cases. 

For interval estimation, it appears that the coverage 

probabilities of the Bayesian intervals obtained from the 

Metropolis-Hastings algorithm attain the nominal coverage 

probabilities in all cases considered. On the other hand, the 

Wald intervals for the scale parameter appear to be 

anti-conservative. Comparison of interval expected lengths 

will be limited to the shape parameter because Wald 

intervals for the scale parameter are highly 

anti-conservative and therefore invalid. It appears that the 

Bayesian intervals for the shape parameter to be shorter 

than the Wald intervals in almost all situations under study. 

Both intervals attain the nominal coverage probability in 

almost all cases. Therefore, we recommend the use of the 
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Bayesian intervals in all cases as they are generally shorter 

and attain the nominal coverage probabilities. 

We observed that the sample size or the censoring 

configuration does not affect the relative performance of 

the likelihood and Bayes inference procedures. However, 

for much larger sample sizes, we expect that the MLE and 

Bayes estimators will have similar performance as 

anticipated from the large sample properties of both 

estimators [19]. 

Table 2.  Biases and MSEs of the point estimators for θ = 0.5, β = 0.5. 

 θ      β  

(n, m) Scheme  MLE LSE WLSE Lindley Metropolis  MLE LSE WLSE Lindley Metropolis 

(40, 30) (029, 10) Bias 0.281 0.147 0.186 0.302 0.149  0.031 0.202 0.190 0.022 0.378 

  MSE 2.981 2.310 4.735 3.219 0.556  0.187 0.374 0.390 0.171 0.439 

 (5, 028, 5) Bias 0.147 0.058 0.075 0.119 0.077  0.034 0.183 0.160 0.039 0.415 

  MSE 0.801 0.779 1.030 0.268 0.251  0.165 0.310 0.297 0.154 0.479 

 (10, 029) Bias 0.071 0.058 0.045 0.090 0.031  0.053 0.195 0.146 0.035 0.418 

  MSE 0.051 0.903 0.288 0.228 0.029  0.153 0.319 0.243 0.136 0.459 

(60, 40) (039, 20) Bias 0.237 0.091 0.119 0.221 0.130  0.015 0.144 0.138 0.019 0.292 

  MSE 1.856 0.486 1.004 1.541 0.251  0.119 0.221 0.235 0.138 0.291 

 (10, 038, 10) Bias 0.102 0.030 0.036 0.082 0.064  0.024 0.143 0.125 0.031 0.303 

  MSE 0.228 0.094 0.081 0.183 0.059  0.105 0.192 0.179 0.105 0.288 

 (20, 039) Bias 0.054 0.033 0.039 0.052 0.026  0.021 0.120 0.080 0.034 0.328 

  MSE 0.030 0.082 0.092 0.030 0.023  0.088 0.165 0.124 0.110 0.289 

 

(100, 60) 

(059, 40) Bias 0.121 0.066 0.095 0.117 0.107  0.018 0.104 0.099 0.015 0.192 

  MSE 0.374 0.245 0.484 0.322 0.111  0.091 0.142 0.159 0.085 0.168 

 (20, 058, 20) Bias 0.055 0.020 0.027 0.066 0.041  0.013 0.088 0.076 0.006 0.191 

  MSE 0.033 0.030 0.034 0.054 0.029  0.063 0.100 0.098 0.067 0.139 

 (40, 059) Bias 0.029 0.013 0.017 0.032 0.011  0.023 0.082 0.055 0.015 0.212 

  MSE 0.013 0.018 0.015 0.015 0.011  0.056 0.091 0.072 0.052 0.140 

Table 3.  Biases and MSEs of the point estimators for θ = 1.0, β = 1.5. 

 θ      β  

(n, m) Scheme  MLE LSE WLSE Lindley Metropolis  MLE LSE WLSE Lindley Metropolis 

(40, 30) (029, 10) Bias 0.154 -0.035 -0.030 0.175 1.059  -0.194 0.116 0.069 -0.398 0.234 

  MSE 0.326 0.272 0.266 0.336 7.772  1.000 1.117 1.122 0.813 1.021 

 (5, 028, 5) Bias 0.175 -0.006 0.016 0.168 0.708  -0.147 0.146 0.095 -0.274 0.286 

  MSE 0.316 0.252 0.260 0.303 4.931  0.897 1.018 0.969 0.660 0.907 

 (10, 029) Bias 0.194 0.017 0.052 0.180 0.325  -0.105 0.131 0.084 -0.209 0.436 

  MSE 0.280 0.219 0.211 0.256 1.939  0.721 0.989 0.864 0.516 0.980 

(60, 40) (039, 20) Bias 0.168 0.018 0.024 0.166 0.939  -0.212 0.060 -0.005 -0.364 0.172 

  MSE 0.355 0.305 0.309 0.348 5.219  0.982 1.089 1.094 0.773 0.907 

 (10, 038, 10) Bias 0.177 0.032 0.053 0.178 0.581  -0.122 0.135 0.102 -0.251 0.266 

  MSE 0.302 0.248 0.265 0.308 3.083  0.808 0.953 0.962 0.609 0.831 

 (20, 039) Bias 0.154 0.040 0.058 0.154 0.213  -0.032 0.164 0.123 -0.143 0.360 

  MSE 0.212 0.207 0.179 0.200 0.659  0.591 0.822 0.733 0.433 0.832 

(100, 60) (059, 40) Bias 0.150 0.021 0.033 0.164 0.632  -0.128 0.119 0.059 -0.278 0.156 

  MSE 0.319 0.279 0.305 0.341 1.903  0.875 0.998 1.017 0.706 0.747 

 (20, 058, 20) Bias 0.171 0.043 0.059 0.174 0.402  -0.062 0.154 0.113 -0.182 0.183 

  MSE 0.265 0.223 0.236 0.278 0.933  0.664 0.826 0.816 0.512 0.628 

 (40, 059) Bias 0.120 0.047 0.067 0.101 0.142  -0.017 0.164 0.106 -0.055 0.243 

  MSE 0.131 0.154 0.138 0.120 0.139  0.433 0.682 0.561 0.334 0.528 
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Table 4.  Simulated Coverage Probabilities Expected Lengths of Wald and Bayes Intervals 

 

(n, m) 

 

scheme 

 

CI 

θ = 0.5, β = 0.5  

EL(β) 

θ = 1.0, β = 1.5 

EL(θ) CP (β) 

 

CP (θ) EL(β) EL(θ) C P (β) CP (θ) 

(40, 30) (029, 10) Wald 1.236 1.296 0.841 0.956 4.444 4.587 0.934 0.948 

  Bayes 2.084 1.047 0.897 0.911 3.976 3.268 0.824 0.828 

 (5, 028, 5) Wald 1.237 0.956 0.845 0.957 3.946 3.501 0.898 0.947 

  Bayes 2.121 0.788 0.904 0.929 3.991 2.730 0.886 0.888 

 (10, 029) 
Wald 1.189 0.681 0.855 0.961 3.634 2.314 0.872 0.954 

Bayes 2.084 0.592 0.920 0.943 4.060 1.877 0.937 0.938 

(60, 40) (039, 20) Wald 1.167 1.178 0.866 0.952 4.338 4.618 0.956 0.922 

  Bayes 1.836 1.077 0.908 0.919 3.747 3.372 0.821 0.831 

 (10, 038, 10) Wald 1.111 0.856 0.869 0.959 3.808 3.275 0.905 0.945 

  Bayes 1.793 0.743 0.920 0.933 3.778 2.690 0.897 0.898 

 (20, 039) 
Wald 1.089 0.561 0.876 0.966 3.264 1.854 0.871 0.956 

Bayes 1.767 0.510 0.917 0.943 3.581 1.593 0.942 0.948 

(100, 60) (059, 40) Wald 1.046 0.991 0.882 0.949 3.997 4.308 0.958 0.915 

  Bayes 1.421 1.001 0.925 0.935 3.536 3.217 0.871 0.873 

 (20, 058, 20) Wald 0.951 0.613 0.899 0.961 3.344 2.710 0.917 0.942 

  Bayes 1.309 0.602 0.945 0.954 3.329 2.455 0.924 0.923 

 (40, 059) 
Wald 0.888 0.419 0.896 0.954 2.684 1.353 0.885 0.959 

Bayes 1.257 0.396 0.935 0.936 2.883 1.253 0.958 0.954 

6. An Example 

To illustrate the use of the methods studied in this paper, we use the dataset given in Simpson [27]. The data includes 

measurements of the total rain volume in South Florida from cloud base following seeding penetration by the aircraft. The 

data contains 26 observations from seeded clouds and 26 observations from control clouds. This data was further 

discussed and analyzed in Giles et al. [13]. The suitability of the Lomax distribution to this data was checked by Helu et al. 

[15]. Here we shall consider the subset of measurements in the control group and impose the progressive type II censoring 

scheme 𝑅 = (3, 018, 3). The resulting data set is as follows: 

Scheme Censored data 

(3, 018, 3) 0 17.3 21.7 24.4 26.1 26.3 28.6 29.0 36.6 41.1 

 47.3 69.5 81.2 87.0 95.0 147.8 163.0 244.3 321.2 345.5 

The maximum likelihood, LSE, WLSE and the Bayes estimates were obtained using the results obtained in this paper. 

These estimates and CI are presented in Tables 5 and 6. For computing Bayes estimates, since we don’t have any prior 

information, we used zero values of the hyper-parameters on 𝜃 and 𝛽, i.e., 𝑎1 = 𝑎2 = 0, 𝑏1 = 𝑏2 = 0. 

Table 5.  Point estimates of the Lomax parameters based on the data set   

 Parameter 

 Estimator θ Β S(58.7401) S(26.84343) S(7.276598) 

MLE 1.4882 0.0080 0.5633 0.7483 0.9191 

LSE 1.1584 0.0112 0.5567 0.7374 0.9132 

WLSE 1.4076 0.0081 0.5782 0.7581 0.9225 

Lindley’s approximation 1.4882 0.0080 0.5636 0.7486 0.9192 

Metropolis-Hastings 1.6382 0.0084 0.5745 0.7533 0.9199 

The results for point estimation appear similar between the MLE and the Bayesian estimators. The variance-covariance 

matrix of the MLE is given by 
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𝐽−1 = [
1.097705 −0.0080054

−0.0080054 0.00006493
] 

This was used to construct likelihood based intervals (Wald intervals) for the parameters and the reliability function as 

explained earlier. The Bayesian intervals are obtained using the Metropolis-Hastings algorithm. We obtained the 

following results 

Table 6.  Interval estimates of the Lomax parameters based on the data set 

 Parameter  

Interval Θ Β S(58.7401) S(26.84343) S(7.276598) 

Likelihood (0.0000, 3.5413) (0.0000, 0.0238) (0.3866, 0.7401) (0.6070, 0.8898) (0.8611, 0.9772) 

Bayes (0.7555, 3.2911) (0.0026, 0.0189) (0.4208, 0.7200) (0.6330, 0.8520) (0.8699, 0.9557) 

Note that the Bayesian intervals are narrower than the corresponding Wald intervals. Since we found in the simulation 

study that they attain the nominal coverage probabilities, they are considered better than the corresponding likelihood 

intervals. 

Appendix 

An asymptotic expansion for evaluating the ratio of integrals of the form: 

𝑢∗ = 𝐸[𝑢(𝜃, 𝛽)|𝐲] =
∫ ∫ 𝑢(𝜃, 𝛽)𝑒𝑥𝑝[𝑙(𝜃, 𝛽|𝐲) + 𝜌(𝜃, 𝛽)]

∫ ∫ 𝑒𝑥𝑝[𝑙(𝜃, 𝛽|𝐲) + 𝜌(𝜃, 𝛽)]
d𝜃d𝛽, 

where 𝑢(𝜃, 𝛽) is a function of 𝜃  and 𝛽  only, and 𝑙(𝜃, 𝛽|𝐲)  is the log-likelihood function of Eq. and 𝜌(𝜃, 𝛽) =
log[𝜋(𝜃, 𝛽)], has been proposed by Lindley . Utilizing Lindley’s method, we can approximate 𝑢∗ as 

𝑢∗ = 𝑢 +
1

2
[(𝑢𝜃𝜃 + 2𝑢𝜃𝜌𝜃)𝜎𝜃𝜃 + (𝑢𝜃𝛽 + 2𝑢𝜃𝜌𝛽)𝜎𝜃𝛽 + (𝑢𝛽𝜃 + 2𝑢𝛽𝜌𝜃)𝜎𝛽𝜃

+ (𝑢𝛽𝛽 + 2𝑢𝛽𝜌𝛽)𝜎𝛽𝛽 + (𝑢𝜃𝜎𝜃𝜃 + 𝑢𝛽𝜎𝜃𝛽)(𝐿𝜃𝜃𝜃𝜎𝜃𝜃 + 𝐿𝜃𝛽𝜃𝜎𝜃𝛽 + 𝐿𝛽𝜃𝜃𝜎𝛽𝜃 + 𝐿𝛽𝛽𝜃𝜎𝛽𝛽)

+ (𝑢𝜃𝜎𝛽𝜃 + 𝑢𝛽𝜎𝛽𝛽)(𝐿𝜃𝜃𝛽𝜎𝜃𝜃 + 𝐿𝜃𝛽𝛽𝜎𝜃𝛽 + 𝐿𝛽𝜃𝛽𝜎𝛽𝜃 + 𝐿𝛽𝛽𝛽𝜎𝛽𝛽)].

    (17) 

All functions of the right-hand side of Eq. (17) are to be evaluated at the MLE 𝑢 of 𝑢. In our setup, we have 

𝜋(𝜃, 𝛽) ∝ 𝜃𝑎1−1  𝛽𝑎2−1 𝑒−(𝑏1𝜃+𝑏2𝛽) and 

𝜌(𝜃, 𝛽) = log[𝜋(𝜃, 𝛽)] = (𝑎1 − 1)log𝜃 + (𝑎2 − 1)log𝛽 − 𝑏1𝜃 − 𝑏2𝛽. 

This turns out that 

𝜌𝜃 =
𝑑𝜌

𝑑𝜃
=

𝑎1 − 1

𝜃
− 𝑏1,   𝜌𝛽 =

𝑎2 − 1

𝛽
− 𝑏2,  𝑢𝜃 =

𝑑𝑢

𝑑𝜃
, 𝑢𝛽 =

𝑑𝑢

𝑑𝛽
 

𝑢𝜃𝛽 =
𝑑2𝑢

𝑑𝜃𝑑𝛽
, 𝑢𝛽𝜃 =

𝑑2𝑢

𝑑𝛽𝑑𝜃
, 𝑢𝜃𝜃 =

𝑑2𝑢

𝑑𝜃𝑑𝜃
, 𝑢𝛽𝛽 =

𝑑2𝑢

𝑑𝛽𝑑𝛽
. 

For 𝑢(𝜃, 𝛽) = 𝜃, 𝑢𝜃 = 1, 𝑢𝜃𝜃 = 0 = 𝑢𝛽 = 𝑢𝜃𝛽 = 𝑢𝛽𝜃 = 𝑢𝛽𝛽, the Bayes estimate of 𝜃 under SELF loss function 

is 

𝜃𝐵𝐿 = 𝜃 +
1

2
[2𝜌𝜃  𝜎𝜃𝜃 + 2𝜌𝛽  𝜎𝜃𝛽 + 𝜎𝜃𝜃(𝐿𝜃𝜃𝜃𝜎𝜃𝜃 + 𝐿𝜃𝛽𝜃𝜎𝜃𝛽 + 𝐿𝛽𝜃𝜃𝜎𝛽𝜃 + 𝐿𝛽𝛽𝜃𝜎𝛽𝛽)

+𝜎𝛽𝜃(𝐿𝜃𝜃𝛽𝜎𝜃𝜃 + 𝐿𝜃𝛽𝛽𝜎𝜃𝛽 + 𝐿𝛽𝜃𝛽𝜎𝛽𝜃 + 𝐿𝛽𝛽𝛽𝜎𝛽𝛽],
 

and when 𝑢(𝜃, 𝛽) = 𝛽, 𝑢𝛽 = 1, 𝑢𝛽𝛽 = 0 = 𝑢𝜃 = 𝑢𝜃𝜃 = 𝑢𝛽𝜃 = 𝑢𝜃𝛽, we obtain the Bayes estimate of 𝛽 as 

�̂�
𝐵𝐿

= �̂� +
1

2
[2𝜌𝜃  𝜎𝛽𝜃 + 2𝜌𝛽  𝜎𝛽𝛽 + 𝜎𝜃𝛽(𝐿𝜃𝜃𝜃𝜎𝜃𝜃 + 𝐿𝜃𝛽𝜃𝜎𝜃𝛽 + 𝐿𝛽𝜃𝜃𝜎𝛽𝜃 + 𝐿𝛽𝛽𝜃𝜎𝛽𝛽)

+𝜎𝛽𝛽(𝐿𝜃𝜃𝛽𝜎𝜃𝜃 + 𝐿𝜃𝛽𝛽𝜎𝜃𝛽 + 𝐿𝛽𝜃𝛽𝜎𝛽𝜃 + 𝐿𝛽𝛽𝛽𝜎𝛽𝛽].
 

In the above expressions 𝜎𝑖𝑗 = (𝑖, 𝑗)-th element in the inverse of the negative Hessian matrix, 𝑖, 𝑗 = 𝜃, 𝛽, and 𝐿𝑖𝑗𝑘  

implies the term obtained from differentiating 𝑙 = log𝐿 with respect to 𝑖, 𝑗 and 𝑘. 
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