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The emergence of antimicrobial resistance has raised great
concern for public health in many lower-income countries
including India. Socio-economic determinants like poverty,
health expenditure and awareness accelerate this emergence by
influencing individuals’ attitudes and healthcare practices such
as self-medication. This self-medication practice is highly
prevalent in many countries, where antibiotics are available
without prescriptions. Thus, complex dynamics of drug-
resistance driven by economy, human behaviour, and disease
epidemiology poses a serious threat to the community, which
has been less emphasized in prior studies. Here, we formulate
a game-theoretic model of human choices in self-medication
integrating economic growth and disease transmission
processes. We show that this adaptive behaviour emerges
spontaneously in the population through a self-reinforcing
process and continual feedback from the economy, resulting in
the emergence of resistance as externalities of human choice
under resource constraints situations. We identify that the
disparity between social-optimum and individual interest
in self-medication is primarily driven by the effectiveness of
treatment, health awareness and public health interventions.
Frequent multiple-peaks of resistant strains are also
observed when individuals imitate others more readily and
self-medication is more likely. Our model exemplifies
that timely public health intervention for financial risk
protection, and antibiotic stewardship policies can improve the
epidemiological situation and prevent economic collapse.
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Figure 1. Empirical association between community-level utilization of antibiotics (2012–2016) [21] and the Human Development
Index (HDI) (2015) of different states of India. Antibiotic use and self-medication are higher in states with limited access to
healthcare facilities, low per capita income, and a lack of awareness and literacy. A polynomial regression shown in black
dotted line indicates a negative relationship between these two variables. The other two dotted lines in orange and cyan
exhibit 95% confidence interval. The HDI data are available from Global Data Lab: https://globaldatalab.org/shdi/shdi/ (accessed
on 25 July 2021). See electronic supplementary material for more details.
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1. Introduction
Self-medication (SM) is a global phenomenon and a potential contributor to antimicrobial resistance
worldwide, especially in LICs and LMICs [1–4]. It is a common behavioural practice that includes
self-diagnosis of illness and the utilization of antibiotics to treat without seeking proper medical
suggestions [5]. Individuals adopt and practice self-medication to avoid expensive and lengthy
treatment procedures. Poor socio-economic status, lengthy diagnostic processes, expensive medicines,
lack of education and awareness are key factors contributing to such behavioural practice [6]. In
economically destitute communities, unavailability and inaccessibility of healthcare facilities also
motivate such adaptive social behaviour [1,7]. It was found that 50% of purchased antibiotics in South
Asian countries like India, Nepal, Bangladesh and Pakistan is through Over-the-Counter (OTC) drug
sales, which plays a crucial role in fostering self-medication [3,8–10]. Irrational use of antibiotics
without medical supervision may result in improper diagnosis and treatment, resulting in
greater probability of delay in proper health care, leading to microbial resistance and increased
morbidity [11–13].

In resource-limited countries, there is also a high prevalence of antimicrobial self-medication [14,15].
For example, one in three households in Bangladesh, Vietnam, Thailand, Ghana, Mozambique and South
Africa reported obtaining antibiotics without a prescription [16]. In previous and recent literature, it was
also reported that approximately 80% of all antibiotics are bought without prescription in developing
nations [14,17–20]. The reciprocal relationship between OTC antibiotic use and socio-economic
development is also visible in Indian states (figure 1). States with inadequate access to healthcare
facilities, low per capita income, lack of awareness and literacy show higher antibiotic utilization and
self-medication (electronic supplementary material, figure S1). Countries like Brazil, Russia, India,
China and South Africa (BRICS countries) are developing countries that showed their highest drug
consumption from 2000 to 2010 with India as the first and China in second position. It was estimated
that approximately 16.8% of the total medicine sold in India between 2013 and 2014 was antibiotics,
worth approximately $12.6 billion [21].

Community-level antimicrobial self-medication has a direct correlation with the emergence and
burden of resistance. Our recent survey study shows resistance of Escherichia coli and Klebsiella
pneumoniae in India has a strong positive correlation with the steady increase of Carbapenems

https://globaldatalab.org/shdi/shdi/
https://globaldatalab.org/shdi/shdi/
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utilization from 2007 to 2018 (details are given in electronic supplementary material, text and figure S2).
This widespread inappropriate use of antibiotics, on the other hand, comes at a high cost to a country’s
economy, particularly in the case of LICs or LMICs [22–25]. For example, it was estimated that resistance
resulted in as much as $20 billion indirect costs in high-income nations, with $35 billion societal costs for
lost productivity each year in the USA alone [26]. As predicted, it would lose $1.1–3.8 of its annual gross
domestic product (GDP) due to resistance by 2050 [27]. A World Bank estimate indicates that LICs and
LMICs will suffer more in comparison to developed nations, stating that a total of 24 million people will
be forced into extreme poverty due to resistance by 2030 [27,28].

Compartmental models have been used to study epidemiological aspects of the emergence of drug-
resistance [6,29–35]. There are also game-theoretic models to describe human behavioural interactions in
infectious disease modelling, especially in vaccination choice [36–38]. However, less emphasis has been
placed so far on modelling human behaviour in the emergence of drug-resistance. To mention a few,
Kamal Jnawali et al. [39] have developed a classical two-player stochastic game theoretical model
showing that strategic interactions could strongly influence a population’s choice of antiviral drug use
policy. Fu & Chen [40] have shown how social learning may help prescribing behaviour of physicians
to promote the social optimum of antibiotic consumption. Coleman et al. [41] have also studied this
social dilemma among doctors in prescribing antibiotic drugs, and highlighted that rational doctors
are always motivated to attain the best outcomes for their own patients, irrespective of the impact on
the community, leading to situations like the tragedy of the commons. Apart from these, a paper by
Conlin et al. [42] used evolutionary game theory to illustrate that the population dynamics found in
microbial experiments are predicted by different two-strategy, two-player games. Von Neumann et al.
[43] studied a coordination game between a leader population and a follower population to show
how imitation can lead to an economy in a poverty trap. However, the emergence of antimicrobial
resistance is an ecological phenomenon—the result of a complex interplay among disease prevalence,
socio-economic conditions and antibiotic utilization through self-medication [44–46]. To avoid high
treatment costs, lengthy diagnosis and expensive medicines, irrational and inappropriate use of
antibiotics driven by individual self-interest often crosses the social-optimum of antibiotic
consumption, accelerating the emergence of drug-resistance in the population [47–49]. Thus, self-
medication can be seen as a tragedy of the commons, and therefore, it is of significant public health
interest to understand and manage antibiotic resistance from this behavioural perspective. To date,
there is no modelling study that highlights human behaviour in self-medication and its impact on
community-acquired drug-resistance.

In this paper, we use evolutionary game theory to model the co-evolving dynamics of human
behaviour in self-medication and the emergence of resistance. Three components—ecology of
infectious disease, socio-economic growth and antibiotic misuse—generate a self-reinforcing cycle
under continuous feedback on each other (electronic supplementary material, figure S3). In our
previous work [6], we explored the feedback system assuming a hypothetical relationship between
economic growth and antibiotic misuse. Here, in this research work, we investigate the emergence of
resistance under the mechanistic frame of human behaviour (i.e. self-medication) that mediates
antibiotic misuse. To the best of our knowledge, this is the first study that examines individual self-
medication behaviour from various epidemiological and socio-economic perspectives, as well as its
implications for the emergence of antibiotic resistance. Exploring the dynamics of resistance through
the lens of human behaviour allows us to better understand the relationship between population-level
medication behaviour and its consequences on the emergence of drug-resistance, which provides
insight into developing context-specific interventions to address the population-level drug-resistance
problem. For example, we compute social-optimum self-medication and determine its proportional
disparity with individual interest depending on key parameters like treatment effectiveness,
health awareness and socio-economic conditions. We also find that social learning in self-medication
has a significant influence on the pattern of emergence. Our analyses point out that timely public
health initiatives can break this self-reinforcing cycle, and recover the population from economic
downfall due to antibiotic drug-resistance—a result of the public health importance in controlling
antibiotic drug-resistance.
2. Model framework
Here, we formulate the individual choice of self-medication as an evolutionary game in the population.
Once infected with a pathogen, individuals develop symptoms of variable order. For example,
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individuals infected with a sensitive strain report mild symptoms, whereas severe symptoms develop
upon infection by a resistant strain. The players of the game are individuals who develop mild
symptoms. They decide after diagnosis whether to adopt self-medication or to choose a proper
medical consultation and follow-up, referred to as hospital treatment. Individuals’ perception of either
opting for self-medication or choosing proper hospital treatment evolves with time depending on
prevalence of resistant strain in the population. We model this decision-making as a two-strategy
pairwise contest: we define the population state as x(t) = ( fs, fT), and S ={SM,HT} denotes strategy set
comprising self-medication (SM) and hospital treatment (HT), where fs(t) is the fraction of population
using strategy SM (self-medication) per unit time (day) and fT(t) = 1− fs be the fraction of population
using strategy HT (hospital treatment) per unit time (day). The perceived payoff for adopting a self-
medication strategy is

pðSM, xÞ ¼ �rsevmz, ð2:1Þ
where rsev is the perceived penalty due to severity of infection by resistant strain, and parameter m (∈ (0,
1)) is the fraction quantifying the sensitivity of adopting hospital treatment to change in resistant
prevalence. The negative sign indicates the cost incurred upon infection with resistant strain. The
perceived payoff for adopting hospital treatment is given by

pðHT, xÞ ¼ gðrH , h, hoÞ, ð2:2Þ
where g(.) is a function of economic growth h, education and awareness ho, and treatment cost rH that
includes cost of hospital visits, diagnostic testing, medicines, loss of wages, etc. Here, we assume that
individuals use a ‘rule of thumb’ to estimate the treatment cost and also probability that they become
infected, instead of having a perfect knowledge of it. When 4E ¼ pðSM, xÞ � pðHT, xÞ . 0 implies
individuals switch to self-medication, whereas 4E , 0 indicates switching to hospital treatment. If an
individual samples others at a rate σ, and switches to a strategy with a proportionality constant ρ, the
growth equation of the population opting for self-medication is

dfs
dt

¼ ð1� fsÞ � sfs � r4E ¼ kfsð1� fsÞðpðSM, xÞ � pðHT, xÞÞ, ð2:3Þ

where κ = σρ is the combined imitation rate. We should note that the same equation (2.3) represents the
growth equation of population adopting hospital treatment fT = 1− fs.
2.1. Integrated model of antibiotic resistance and self-medication
We integrate population ecology of infectious diseases, and self-medication game to develop the model
of resistant transmission under antibiotic overuse. We consider a general SIS framework for the disease
process. Electronic supplementary material, figure S4 shows the schematic of the model, and table 1
provides a description of the variables and parameters used in the model. Infected individuals
reporting mild symptoms can move to either yT or ys depending on the choice of a strategy for
hospital treatment or self-medication. A detailed description of the model is given in the electronic
supplementary material. Including equation (2.3), the behaviour-prevalence model of drug-resistance
and self-medication:

dS
dt

¼ m� bSðyþ ys þ eyTÞ � b0Szþ g1yþ g2zþ h1yT þ h2ys � mS,

dy
dt

¼ bSðyþ ys þ eyTÞ � uy� g1y� my,

dz
dt

¼ b0Szþ jðnyT þ ysÞzþ sðnyT þ ysÞ � g2z� dz� mz,

dyT
dt

¼ uð1� fsÞy� njyTz� nsyT � h1yT ,

dys
dt

¼ ufsy� jysz� sys � h2ys

and
dfs
dt

¼ kfsð1� fsÞ4E:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð2:4Þ



Table 1. Baseline parameter values for simulation.

parameters description
values/range
(day−1) reference

rsev risk from self-medication 5.5 calibrated

rH risk from hospital treatment 2.5 calibrated

rch intrinsic growth rate 0.035 [6,50]

rcl per capita amount spend on training or education of labour — [6,50]

m sensitivity of individual decision 0.7 [40]

κ combined imitation rate (0.05–0.5) [37]

ω relative risk (0.01–1)

δ1 rate of capital depreciation [50]

β transmission rate of sensitive strain (0.18–0.2) [40]

β0 transmission rate of drug-resistant strain (0.02–0.08) [40]

Roy reproduction number for sensitive strains —

Roz reproduction number for drug-resistant strain —

γ1 recovery rate of sensitive strains 0.0833 [6,50]

γ2 recovery rate of drug-resistant strains 0.02

μ mortality rate 1
ð55�365Þ [6,50]

d death rate due to resistant 0.00001

σ mutation rate from sensitive strain to resistant strain 10−3 [40]

ξ plasmid transfer rate (0.05–0.1)

e reduced probability of infection from treated individuals (0.2–0.8) [51]

θ diagnostic rate (0.02–0.5) [51]

ν reduced probability of mutation and plasmid transfer for treated

individuals

(0.005–0.5) calibrated

η1 rapid recovery rate of individuals infected with sensitive strain

due to treatment

ð15 � 1
10Þ [40]

η2 rapid recovery rate of individuals infected with sensitive strain

and taking self-medication

ð 120 � 1
25Þ [40]

α the proportional effect on production and labour of the

economic growth from treated individuals

(0–1) calibrated

ho education and awareness level 0.5 [6]

cz per capita cost of treatment of resistant strain calibrated
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2.2. Economic growth and feedback
We further integrate socio-economic impact with the model 2.4, a similar approach of the integrated
system developed by some of the authors [6]. In this integrated system, we also assume that infection
has consequences for the economic growth of the population. We use a linear form of Solow’s model
to describe economic growth and its interaction with infections:

dh
dt

¼ ðrhhþ rlÞ � d1h� czz, ð2:5Þ
where cz is the per capita cost to treat individuals infected with resistant strain, and δ1 is the per capita rate
of capital depreciation. rh and rl are elasticity parameters defining the growth of economy from capital
and labour. We assume these two parameters are functions of strain prevalence because infections
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impede economic production [52–54]:

rhðy, ys, yT , zÞ ¼ rchð1� yÞð1� ysÞð1� ayTÞð1� zÞ ð2:6Þ
and

rlðy, ys, yT , zÞ ¼ rcl ð1� yÞð1� ysÞð1� ayTÞð1� zÞ: ð2:7Þ
Here, we consider the proportional impact of different disease classes on production and labour related
to the economic growth: less impact by treated individuals (denoted by α < 1) compared to the other
infected populations (y(t), ys(t), z(t)). Detailed descriptions of models and parameters are given in the
electronic supplementary material.
rnal/rsos
R.Soc.Open

Sci.9:211872
3. Results and discussion
3.1. Model equilibria and socially optimum self-medication
There are five equilibria of the model including pure self-medication and pure hospital treatment. We use
next-generation matrix to compute the basic reproduction ratio and social-optimum self-medication
(electronic supplementary material, equation S4). Socially optimum self-medication is the limit of
community-level antibiotic utilization beyond which the resistant strain emerges and becomes
endemic in the population. However, the socially optimum values decrease with an increase in
transmission rate (β, β0), effectiveness of treatment (e), and mutation rate (σ) (figure 2). Detailed
calculations of equilibria, social optimum, and impact of social learning in self-medication are given
in the electronic supplementary material.

To investigate how the disparity between the socially optimum and individual interest in antibiotic
utilization changes with critical epidemiological parameter regime, we plot both variables against
treatment effectiveness (e), relative probability of mutation and plasmid transfer (ν) and transmission
rate (β). At lower values of these parameters, individual self-medication is much higher than social-
optimum (figure 3). However, the prevalence drops steeply as the parameter values increase and it
even falls behind the social-optimum threshold. These simulations indicate that public health can
work towards informing individuals about realistic values of those parameters to improve the control
of drug-resistance.

3.2. Dynamical regime of individual self-medication

3.2.1. Effectiveness of hospital treatment

Treatment effectiveness influences individual decisions in self-medication by changing emergence and
transmission of resistant strains in populations. We have two proxy parameters to measure this: e, the
intensity of transmission by treated (inappropriately) individuals, and ν, the probability of mutation
and plasmid transfer from treated (inappropriately) individuals. We investigate this considering the
simpler form of g, say g(rH, h, ho) =−rH.

As observed from figure 4, higher efficacy (1− e) shows lower frequency of self-medication (figure
4(i)), and lower endemic prevalence of resistant population (figure 4(ii)). Higher e (i.e. lower
effectiveness 1− e) implies higher probability of transmission of sensitive strain due to inappropriate
treatment, which in turn increases the frequency of self-medication in the beginning, and hence
increases the chance of resistant mutation and transmission. This has been observed in figure 4(i).
However, as individuals’ risk perception from infection increases linearly with the resistant strain
frequency, the perceived risk increases, and hence individuals switch to treatment strategy later and
that suppresses the usage of self-medication and lowers the emergence of resistance. The same is also
reflected in the parameter plot rsev− rH– endemic prevalence of resistant strain decreases as relative
perceived risk rsev/rH increases (figure 4(ii)).

A similar dynamics is observed in variation of ν, the relative probability of mutation and plasmid
transfer from treated individuals. We explored the effect of ν under two different recovery periods
(indicated by η1) of treated individuals. At very low relative probability ν, frequencies of individuals
chose self-medication under different η1 showing a significant difference, which increases with time. By
contrast, the difference in self-medication proportions are negligible when ν is higher. The same is
observed with a resistant population in the parameter plan of rsev − rH. Details have been discussed in
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electronic supplementary material. These have, however, a very interesting consequence from the public
health point of view. Public health authorities should inform people about actual and long-term risks
from the drug-resistance. The higher relative risk of infection from resistance can be scaled up with the
current effectiveness of the treatment to reduce the emergence and burden of resistance in the population.

3.2.2. Risk perception as a function of income and awareness

The perceived cost of hospital treatment varies with income and awareness in the population [55–57]. For
example, individuals with higher income and high awareness about drug-resistance may find the
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hospital treatment is necessary and perceive the cost lower, whereas a low-income individual with little
awareness may consider the same cost higher and hence, ignore the hospital treatment upon infection.
This, however, introduces a reciprocal relation of perceived hospital cost with individual income and
awareness, impacting further on decision-making in self-medication. To explore this, we improve the
payoff function (2.2) by considering g(rH, h, ho) = rH/(ho + h).

With an improved version of the payoff function, we plot the resistant population as a function of
awareness and hospital cost rH. Figure 5 exhibits that the density of resistant population decreases as
ho increases and rH decreases. Higher ho and low rH decrease frequency of self-medication (see
equation (2.2)), thereby reduces the emergence of drug-resistance. As an implication towards public
health management of drug-resistance, it indicates that an increase in education and awareness of
potential risks from self-medication practices, especially antimicrobial, might help to improve the
situation. At the same time, reduced hospital treatment costs might lower the possibility of self-
medication and individuals will be inclined to proper treatment upon infection by any strain.

3.2.3. Expected utility as function of success rate

It is very rare to have any empirical data to support how individuals perceive situations and how
perceptions evolve over time. The probability of success of strategies and using it in the calculation of
expected utility sometimes plays a major role in decision-making, especially in health-related events
and health-seeking behaviour. We characterize this scenario by reformulating the payoff function g
and scaling the perceived hospital treatment cost using treatment effectiveness (1− e). We consider
two cases: (a) perceived cost does not depend on the effectiveness of treatment, i.e. g(rH, h, ho) = rH/
(ho + h), and (b) the utility of strategy equals the probability of success × cost of the strategy, i.e. g(rH,
h, ho) = (1− e)rH/(ho + h).

When success rate is not considered in calculating the expected utility, the relative risk does not
interact directly with treatment efficacy in the emergence of resistant strain in the population
(figure 6a)). The density of resistant strain does not change with increases in relative risk ω ( = rsev/rH),
although it has a little decrease when the effectiveness of the treatment is very high. By contrast, there
is a stark difference in the resistance prevalence pattern when effectiveness is considered in the payoff
function (equation (2.3)). It multiplies the impact of relative risk in individuals’ decision-making. At
the higher effective treatment, a little increase in rsev motivates individuals to switch to hospital
treatment that reduces the endemic prevalence of resistant (figure 6b). Considering the efficacy of
treatment or success rate while calculating the expected utility thus reduces the frequency of self-
medication. Health authorities should inform the public about the effectiveness of the treatment
through media coverage and personal communication so that individuals consider this factor as an
important component while estimating their payoff in medical decision-making.

3.3. Public health intervention
International organizations (i.e. third party funding) allocate funds in developing countries to fight
against drug-resistance. All such allocated budgets may act as an incentive at the individual level to
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0.4

0.2

0

100

50

0
20

15
10

5 0.1
0.3

0.5
0.70 500 1000 1500 2000

time (days)

re
si

st
an

t
po

pu
la

tio
n

re
du

ce
d

ar
ea

sensitivity
parameter (a)

maximum
help (z)

reduced area
w/o help
with help

(b)(a)

Figure 7. Scenario analysis illustrating sensitivity of public health initiative to reduce the effect of drug-resistance. (a) The bold curve
depicts the dynamics without intervention, while the dotted curve shows the results after implementing the help. ζ = 10 and a =
0.5. (b) Plot of reduced area (green) bounded by the bold and dotted curve in the given figure for varying ζ and a. Realizing a high
amount of aid and rapid initiative might help better in reducing the prevalence of resistance. Along with the baseline values, other
parameter values used for this simulation are rH = 5.5, rsev = 2.5, κ = 0.002, rch ¼ 0:025. For details, see the text.
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choose proper hospital treatment, and reduces the emergence of resistance in the population by lowering
the frequency of self-medication. We explore the case even with a more realistic situation where the
budget is released proportional to the current prevalence of resistance—meaning the higher the
prevalence, the more proactive the public health authorities are—in allocating funds to initiate a rapid
response to the situation. Coupling the incentive of budget allocation in the payoff equation, we have

4E1 ¼ �rsevmzþ rH
ho þ h

� zz
aþ z

� �
, ð3:1Þ

where ζ is the maximum budget available per unit time, and a is the sensitivity parameter reflecting how
likely it is that those third parties are responsive in allocating funds. Lower values of a means that parties
are more sensitive to the disease prevalence and release more funds.
3.3.1. Impact of intervention

Figure 7a exhibits time series of dynamics of resistance accumulation with and without public health
intervention. It clearly shows that the population colonized with resistant strain is much less when
public health prioritizes allocating funds quickly enough during the development of resistance in the
population. However, the actual reduction in the burden of resistance depends on when and how
much aid is allocated. To quantify this, we plot the area bounded by these two curves (before and
after aid) for a range of values ζ and a. As observed in figure 7b, the situation is much improved if
the funding is supplied on time, especially on the early level of development of drug-resistance in the
community. The decline in the resistant population is moderate with the low value of a in spite of the
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extreme left curve with dark red colour represents ζ = 0 (no aid), whereas extreme right with yellow colour is drawn for ζ = 15
(high amount aid). This shows that the growth of income rapidly falls (at rH = 0.1) below the dotted line when there is no public
health aid (i.e. ζ = 0). However, with an increase in financial aid, the value of rH beyond the income becomes negative and shifts
towards right. With a sufficient aid (ζ = 15), the graph of income never falls below zero, and thus the economy can recover from
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high budget. It is evident that the impact of a is higher when the maximum fund ζ is higher. Thus, the
authority should be providing maximum financial resources as early as possible. Once public health
authorities start investing in healthcare services and financial risk protection schemes, the utility gain
in switching to HT increases compared to self-medication. This clearly underscores that agencies and
policymakers need to be more proactive to combat the situation of antibiotic drug-resistance.
3.3.2. Recovery from economic downfall through public health investments

Public health funds from a government not only help to reduce the burden of resistance, but also enhance
the economic growth of the community and help it recover from financial collapse. The correlation
between health and income is allied through a vicious cycle: income impacts health and health affects
the income, and in turn, the economy of the population. Many investigations have pointed out that
healthcare costs impose a huge economic burden in low and middle-income countries [51,58–61]. The
continual feedback between income and health thus eventually leads the population to a poverty trap
[52,62]. An external perturbation is necessary to break the self-reinforcing cycle. We investigate this by
comparing the change in income (h) by varying hospital cost (rH) (figure 8a). Low cost (rH = 0)
increases the income, while high cost (rH = 1) reduces the income from the stable economic growth (at
rH = 0.5). We plot the area bounded by different rH curves to measure the impact of intervention (ζ)
(figure 8b). The black curve depicts when there is no initiative (i.e. ζ = 0). The depreciation is more
than the accumulation of income, and so income falls behind positive growth even at lower rH ∼ 0.1.
As the public health authority allocates more funds (say ζ = 15), the accumulation starts increasing
which keeps the economic development consistently positive even at higher rH (the extreme right
yellow curve). Thus, a timely and right amount of public health initiatives may protect the population
from the poverty trap and put the population back on the track of economic advancement.
4. Conclusion
The threat of antimicrobial resistance (AMR) is undoubtedly growing at an alarming rate and the
situation is perhaps aggravated in developing countries due to gross misuse of antibiotics, mainly
through self-medication (SM) [1,2]. Overuse of antibiotics in particular and self-medication in general
are problems that involve social, behavioural and health issues, and economies of many LIMC and
LICs [6,8,9]. A large percentage of the global population practice SM, especially antimicrobial, before
seeking proper care at public service, which has been recognized as a major contributing factor to the
current burden of antibiotic drug-resistance worldwide [63,64]. Van Boeckel et al. reported that India
was the largest consumer of antibiotics with 12.9 × 109 units (10.7 units per person) sold in the year
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2010. Between 2000 and 2010, BRICS countries accounted for 76% of the overall increase in global
antibiotic consumption, with India accounting for 23% [21,65].

Many empirical studies specify that lack of education and awareness in the population and lower
socio-economic growth motivate self-medication. This is also reflected in the divergence of
community-acquired resistance between developing and developed nations (figure 1) [63,66]. Using
evolutionary game theory, we develop a framework in this analysis to understand the co-evolving
dynamics of disease epidemiology and behavioural interactions that motivate individuals’ self-
medication under several epidemiological and socio-economic scenarios. The game-theoretic
perspective not only focuses our attention on the precise nature of adaptive human behaviour, which
can guide our expectations about the emergence of antibiotic resistance, but also provides some
insights to public health authorities about key factors in such an ever-increasing burden of resistance.

Although the nonlinear relationship between health and income is mentioned earlier in both
empirical and theoretical studies [50,53], the present study emphasizes feedback dynamics between
the economy and health, generating a self-reinforcing cycle mediated by individuals’ decision-making
in self-medication. Our model explores dynamical regimes such as diagnostic rate, treatment
effectiveness, risk perceptions and awareness to identify when and why individuals choose to self-
medicate. Furthermore, we emphasize that increased and timely public health initiatives, such as
providing financial risk protection through universal health coverage or insurance mechanisms to
reduce treatment costs and diagnostics, can break this self-reinforcing cycle, recovering the population
from economic downfall and continuous morbidity caused by antibiotic drug-resistance [6]. Various
international funding agencies such as GHIT, MOFA AND MHLW in Japan, and the Bill & Melinda
Gates foundations in the USA, are working to combat drug-resistance in developing countries by
providing large funds to the developing nations every year [67–69]. In contrast to our earlier research
paper [6], this paper explains the pathways of impact in real-world scenarios. This modelling work
predicts that financial risk protection effectively reduces the cost of treatment thereby providing an
opportunity to reduce self-medication, which consequently improves compliance with a full course of
antibiotics, reducing the probability of the emergence of drug-resistance. This dynamic interrelationship
explains how it potentially can reduce the magnitude of the problem of drug-resistance worldwide.

Every mathematical model is based upon simpler assumptions, and our self-medication game model
is no exception. An important social dilemma impacting the burden of drug-resistance is the prescribing
behaviour of community physicians. Chen & Fu [40], and Colman et al. [41] developed models to
illustrate the irrational prescribing decisions by doctors that increase the level of antibiotic resistance
in the community, and concluded that the burden may therefore be inevitable unless some means are
found of modifying the payoffs of this potentially catastrophic social dilemma. However, a more
complex model considering the physician-patients-population triad might require us to explore the
social dilemma at both an individual and physician level and find out the consequences of the burden
of drug-resistance. Also, considering the nonlinear production form in the constant-elasticity
substitution (CES) function is more realistic as economic production depends on many factors other
than labour and capital. Additionally, individuals’ risk perception depends on several social norms,
media exposure, etc.—inclusion of which might expand the practicality and feasibility of the model.
Analysis of the model can be studied by considering other socio-economic parameters like hygiene
level, living conditions and nutrition.

Nonetheless, our work is the first that provides a framework to describe self-medication as a game,
exploring individuals’ strategic decision-making in health practice and its externalities on society.
Individuals always maximize their payoff while ignoring population-level externalities when making
such decisions [70,71]. That is why it is critical to understand the interactions between resistance
prevalence, treatment cost, and individual perceptions of self-medication, as this may aid in the
management of antibiotic utilization for the benefit of individual health in the community.
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