
Citation: Hamdi, A.; Karimi, A.;

Mehrdoust, F.; Belhaouari, S.B.

Portfolio Selection Problem Using

CVaR Risk Measures Equipped with

DEA, PSO, and ICA Algorithms.

Mathematics 2022, 10, 2808. https://

doi.org/10.3390/math10152808

Academic Editors: Peter Lakner and

Christoph Frei

Received: 18 June 2022

Accepted: 25 July 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Portfolio Selection Problem Using CVaR Risk Measures
Equipped with DEA, PSO, and ICA Algorithms
Abdelouahed Hamdi 1 , Arezou Karimi 2, Farshid Mehrdoust 2 and Samir Brahim Belhaouari 3,*

1 Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences,
Qatar University, Doha 2713, Qatar

2 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan,
Rasht P.O. Box 41938-1914, Iran

3 Division of Information and Computing Technology, College of Science and Engineering,
Hamad Bin Khalifa University, Doha 582500, Qatar

* Correspondence: sbelhaouari@hbku.edu.qa

Abstract: Investors always pay attention to the two factors of return and risk in portfolio optimization.
There are different metrics for the calculation of the risk factor, among which the most important
one is the Conditional Value at Risk (CVaR). On the other hand, Data Envelopment Analysis (DEA)
can be used to form the optimal portfolio and evaluate its efficiency. In these models, the optimal
portfolio is created by stocks or companies with high efficiency. Since the search space is vast in actual
markets and there are limitations such as the number of assets and their weight, the optimization
problem becomes difficult. Evolutionary algorithms are a powerful tool to deal with these difficulties.
The automotive industry in Iran involves international automotive manufacturers. Hence, it is
essential to investigate the market related to this industry and invest in it. Therefore, in this study we
examined this market based on the price index of the automotive group, then optimized a portfolio of
automotive companies using two methods. In the first method, the CVaR measurement was modeled
by means of DEA, then Particle Swarm Optimization (PSO) and the Imperial Competitive Algorithm
(ICA) were used to solve the proposed model. In the second method, PSO and ICA were applied to
solve the CVaR model, and the efficiency of the portfolios of the automotive companies was analyzed.
Then, these methods were compared with the classic Mean-CVaR model. The results showed that
the automotive price index was skewed to the right, and there was a possibility of an increase in
return. Most companies showed favorable efficiency. This was displayed the return of the portfolio
produced using the DEA-Mean-CVaR model increased because the investment proposal was basedon
the stock with the highest expected return and was effective at three risk levels. It was found that
when solving the Mean-CVaR model with evolutionary algorithms, the risk decreased. The efficient
boundary of the PSO algorithm was higher than that of the ICA algorithm, and it displayed more
efficient portfolios.Therefore, this algorithm was more successful in optimizing the portfolio.

Keywords: portfolio optimization; DEA; PSO; ICA; CVaR

MSC: 91G15; 91G10; 90C30; 91B05

1. Introduction

Economic growth is an indicator of the increase in the wealth of a country, and several
factors are involved in this process, according to Batrancea [1].Capital market dynamics is
one of the factors that influence economic growth. Therefore, optimal asset allocation is
essential in this market. It is not easy to make a compelling portfolio. This is why most
experts are trying to find a model that is better than other models. Markowitz [2] was the
first researcher to develop a quantitative framework for portfolio selection. This model
determined the combination of investment assets such that the risk was minimized and the
desired return was achieved. This theory changed the course of thinking about portfolios
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and was accepted as a practical tool. After the introduction of this model, many researchers
developed this model and offered other models, including Linsmeier and Pearson [3],
Rockafellar and Uryasev [4], etc. The Markowitz model can be used when the number
of assets and market constraints are small, but when the actual market conditions are
considered, this model’s performance is not very favorable. In capital markets, the search
space is vast. Therefore, If we can choose an efficient stock among several stocks and invest
in it, we can say that we have made a successful investment. On the other hand, the basic
mean-variance model only considers the variance of return as a measure of investment
risk.Investors are interested in ascertainingtheir maximum loss on an investment, so that
they can invest in the market with more confidence. Hence, relying on return variance as
a measure of investment risk is insufficient. Therefore, unfavorable risk criteria, such as
CVaR, have attracted attention from researchers. The CVaR model is a more developed
mean-variance model, and the risk measure used in this model is the maximum amount of
loss on an investment.

Using the DEA and CVaR models to optimize automotive companies’ portfolios in the
Iranian stock market was the main objective of our research. Since the automotive price
has a direct relationship with other industries, such as the steel, petrochemical, electronic
industries, etc., automotive companies have played a decisive role in the Iranian stock
market in recent years. They are known as the flagships of other large companies.

Since we are looking for an optimal mix of assets in the real market, we face restrictions
such as the number of stocks, the weight of stock, the risk of a stock, etc., which lead to a
complex optimization problem. Furthermore, increased taxes and limited resources means
that the economic-financial system is complex and non-linear. The stock exchange is one
of the subsystems of this system and it is exposed to external noise, including external
events and political events. Therefore, optimization in such a context is difficult. For
years, advanced mathematics and computers have been used to help researchers with such
complex issues. Evolutionary methods are one of the advanced mathematical methods
that are used for difficult optimization problems. Therefore, we utilized PSO and ICA
algorithms in this study.

The first hypothesis presented in this paper is as follows: the return of the DEA-
Mean-CVaR portfolio is higher than the return of the Mean-CVaR portfolio. The second
hypothesis of the paper is that the use of the evolutionary methods PSO and ICA can
reduce the risk in the Mean-CVaR portfolio.

The innovation of this article is that, as far as we know, it is the first study that deals
with the optimization of automotive companies using the DEA-Mean-CVaR model and
analyzes the efficiency of stock in relation to Iranian automotive companies.It is also the
first study that solves the DEA-Mean-CVaR model with the PSO and ICA algorithms. In
this paper, we also present the first study that compares the DEA-Mean-CVaR model with
the Mean-CVaR model.

The paper is structured as follows: Section 2, labeled the literature review, presents
the recent studies conducted in portfolio optimization. The CVaR and DEA models are
presented in Section 3. PSO and ICA are explained in Section 4. The suggested model’s
usage in regard to the actual data is described in Section 5. In Section 6 we provide a
discussion of the results; then, our conclusions are presented in Section 7.

2. Literature Review

Financial pressures on countries’ economies affect their capital markets, according
to Batrancea [5]. Therefore, determining the optimal strategy in this market is necessary
for small and large investors. One of those strategies entails the formation of an opti-
mal portfolio. As mentioned earlier, the initial idea of basket formation was expressed
by Markowitz [2]. CVaR refers to the average of the worst losses at a given confidence
level. With the introduction of CVaR and its benefits, such as convexity, many researchers
have used this criterion to measure risk, and it quickly became the most popular risk
criterion. Among the researchers that have optimized portfolios with Mean-CVaR include
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Krokhmal et al. [6] and Bassett et al. [7], who used discretization to turn the problem into
a linear programming problem. Furthermore, Alexander and Baptista [8], assuming that
efficiency follows a multivariate normal distribution, introduced a new model, whereas
Huang et al. [9], Zhu and Fukushima [10] and Zhu et al. [11] suggested that robust opti-
mization of the portfolio can be achieved through the use of the worst-case CVaR.Recently,
continuous time balance policies were derived for optimization by means of the Mean-
CVaR approach in the work of He and Jiang [12], and Cui et al. [13] also examined the
discrete-time state. The Mean-CVaR portfolio optimization problem was solved based on
Lagrangian relaxation of the problem in a discrete time and an imperfect state in a study by
Strub et al. [14]. They solved one of the old puzzles in financial economics, the premium
puzzle, using a Mean-CVaR model. They indicated that a CVaR investor would have a
balanced set of bills, bonds and stocks in the face of historical returns.

Benati and Conde [15] put robust portfolio optimization on the agenda. They merged
risk and regret criteria with expected returns to find a solution which would guarantee
acceptable returns and protect the investor from market fluctuations. The objective function
of their problem is the maximum regret of the average return, and the CVaR risk measure
is considered as the constraint of the problem.

Aljinović et al. [16] suggested the PROMETHEE II approach to the formation of a
digital currency portfolio. They formed a portfolio considering capital market criteria,
standard deviation, VaR, CVaR, and daily returns, then compared the proposed model with
the Markowitz, Maximum Sharpe, VaR, and CVaR models. The results demonstrated the
success of the PROMETHEE II approach.

Bodnar et al. [17] investigated the optimal portfolio problem using the Bayesian
perspective and VaR and CVaR criteria. In this study, the required values in VaR and
CVaR calculations were extracted with the help of the posterior forecast distribution for
future portfolio returns, and the optimal portfolio weights were obtained according to the
observed data. Their results showed that the Bayesian approach worked better than other
methods in VaR forecasting, and the optimal portfolios obtained by means of the Bayesian
approach were efficient.

Gabrielli et al. [18] presented an optimization of the purchase contract portfolio with
the goal of maximizing the expected financial performance and minimizing the financial
risk. They used CVaR as a measure of risk and showed that the risk of the purchase contract
was reduced by forming a portfolio.

Some studies have used DEA, introduced by Charnes et al. [19], to optimize portfolios.
Morey and Morey [20] presented the mean-variance model, supported by DEA. In this
model, the input and output were the variance and the expected return of the portfolio. DEA
is a mathematical programming method that assigns a relative efficiency to decision units
that convert the same inputs into similar outputs. Based on the weighted sums of outputs
in relation to the weighted sums of inputs,the relative efficiency assigned to each decision
unit by DEA is calculated.

Briec et al. [21] endeavored to predict the optimal points of the efficient frontier and
to evaluate the efficiency of these desirable points. Joro and Na [22] presented the mean-
variance-skewness framework, relying on DEA. They examined the performance of mutual
funds by considering the variance of returns as the input and the average return and
deviation coefficient as the output. Chen and Lin [23] examined the efficiency of investment
funds by modeling VaR with DEA. They used VaR as the model’s input and showed that
the combination of these two models could be used to evaluate the performance of different
fund periods more scientifically. Lamb and Tee [24], recognizing risk and return measures
as valid, applied DEA to the analysis of mutual funds. They demonstrated how a diverse
portfolio can be managed. Branda [25] built upon conventional DEA models to offer a
new performance evaluation method. He used standard deviation and return as the input
and output, respectively.
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Mashayekhi and Omrani [26] solved a mean-variance-DEA model using the GA
algorithm and found, considering the efficiency of the stock, that this model performed
better than the mean-variance model.

Zhang and Chen [27] used the DEA window analysis method and the DEA directional
distance function to comprehensively evaluate the dynamic performance of energy port-
folios. Using the study sample, they showed that investing in an energy portfolio has a
higher average efficiency than investing in a form of energy.

Amin and Hajjam [28] developed the DEA model for portfolio optimization and
investigated the role of alternative optimal solutions in data envelopment analysis (DEA)
models. They found that portfolio construction with lower risk and higher returns is
possible when alternative optimal solutions are included in the model.

Xiao et al. [29] built three variation-adaptive DEA models under the mean-variance
framework. They considered the expectation and covariance of portfolio returns as the in-
put and output in their DEA models. They investigated the impact of input data uncertainty
on the performance and rankings of 30 portfolios from the American stock market.

Zhou et al. [30] stated that the investment process consists of two parts: stock selection
and stock weighting in the portfolio. They introduced a stock selection plan that integrated
DEA with multiple data sources, then used a support vector machine (SVM) to select
the stock.

Adding new constraints to the portfolio optimization problem makes it a nonlinear
programming problem. Classical and meta-heuristic methods have been used to solve
this type of problem. One of the evolutionary optimization techniques is PSO, initially
developed as an optimization method by Kennedy and Eberhart [31]. PSO is based on
the social behavior of birds. The PSO method is based on the evolution of a group of
particles that move in a search space to find an optimal global solution. Evolution occurs
based on the velocity of the particles and their motion in the search space, according to
Rehman et al. [32]. Each particle has a memory and records the best position of itself and
its neighbors, so the particle interacts with the whole group and has the ability to find
the best path [33]. Cura [34] used the PSO method for a portfolio selection problem and
compared this method with Tabu search approaches, genetic algorithms, and simulated
annealing. He demonstrated that the PSO approach was successful in portfolio optimization.
Zhu et al. [35] presented a meta-heuristic perspective to portfolio optimization problems
using the PSO method. They tested the model on different limited and unlimited risky
investing portfolios and performed a comparison with genetic algorithms. They showed
that the PSO model had the highest efficiency in the construction of optimal portfolios.

Najafi and Mushakhian [36] used the mean-semivariance-CVaR model with PSO
and a genetic algorithm (GA) and showed that the PSO algorithm performed better than
the GA. Furthermore, the combination of two algorithms can provide better answers.
Liu and Yin [37] found that the PSO algorithm was successful in solving the CVaR model
and provided better solutions.

Burney et al. [38] applied particle-size computationand PSO to perform fuzzy bunch-
ing stock set exchange portfolio optimization. They examined the use of the proposed
model on Hong Kong stocks. The results showed that fuzzy PSO was appropriate for
portfolio optimization. Kaucic [39] expanded a superseded portfolio plan that merged the
risk equality approach with cardinality-constrained portfolio optimization, then for the
complex integer programming problem, an ameliorated multi-objective PSO algorithm
was used.Konstantinou et al. [40] optimized the cardinality of the S&P 500 index portfolio
using GA and Sonar algorithms. Zhang [41] developed an improved typical transaction
cost function based on CVaR, and managed the market risk by solving it with PSO. He
demonstrated that the PSO algorithm effectively ameliorated the precocious phenomenon
and showed higher convergence, velocity, and precision.

Another evolutionary optimization technique is ICA, which was introduced by Atash-
paz and Lucas [42]. This algorithm, like other algorithms, is formed with an initial popu-
lation. These populations are divided into colonial and imperialist groups, and together
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they form an empire. Most researchers use this algorithm in the field of operations research
problems, including Yin and Gao [43], Saadatjoo and Babamir [44], andLi et al. [45]. In this
study, we intended to use this algorithm in the optimization of a portfolio.

3. Definitions of Mathematical Concepts and Models

In this section, we first introduce some basic concepts and then describe the CVaR and
DEA models. In this paper, the following assumptions were made:

a. χ is a set of existing investment chances. The set of assets that can be invested in is
called an investment chance. For example, the stocks of high-return companies are an
investment chance.

b. Ri is the return of the ith asset in the probability space (Ω, F, P). Due to uncertainty
about the future, judgments about securities’ returns are probabilistic. To calculate the
return on securities, the investor is required to estimate the probable returns on the
securities and the probability of the occurrence of any possible returns.

c. χP = {Ri : i = 1, . . . , n} = {∑n
i=1 Riζi : ∑n

i=1 ζi = 1, ζi ∈ {0, 1}}. ζi is the weight of
each stock in the optimal portfolio.

3.1. Coherent Risk Measures

We say that the risk measure µ : L2(Ω)→ (−∞, ∞) is coherent whenever it satisfies the
conditions of translation equivariance, positive homogeneity, subadditivity, and monotonicity:

1. µ(X + C) = µ(X) + C, for all X ∈ χ and constant C.
2. µ(0) = 0 and µ(λX) = λµ(X), for all X ∈ χ and all λ ≥ 0.
3. µ(X1 + X2) ≤ µ(X1) + µ(X2) , for all X1, X2 ∈ χ.
4. µ(X1) ≤ µ(X2) when X1 ≥ X2, X1, X2 ∈ χ.

3.2. CVaR Model

Suppose that (ζ, λ) 7→ f (ζ, λ) is a loss function with decision vector ζ and λ is the
vector of a future return. Suppose that F(ζ, η) is the cumulative distribution function of
f (ζ, λ)

F(ζ, η) = P[ f (ζ, λ) ≤ η].

By considering β ∈ (0, 1) as the confidence level, the VaR function ηβ(ζ) is the β-
quantile of f (ζ, λ)

ηβ(ζ) = min
η∈R
{F(ζ, η) ≥ β}.

CVaR approximately equals the conditional expectation of f (ζ, λ) values exceeding
the VaR. The β-CVaR function can define the generalized β-tail distribution of a random
variable w

ϕβ(w) = Eβ−tail [w],

then, the generalized β-tail distribution of w is defined as,

Fβ(ζ, η) = P[w ≤ η] =

{
0 η < ηβ(ζ).
[F(ζ, ηβ(ζ)− β)

/
[1− β] η ≥ ηβ(ζ).

We can also define the CVaR of upper boundfor β− CVaR as follows:

ϕ+
β (x) = E[ f (ζ, λ)

∣∣ f (ζ, λ) > ηβ(ζ)] ,

then, β− CVaR can be displayed as the convex combination of β−VaR and β− CVaR+,

ϕβ(ζ) = γβ(ζ)ηβ(ζ) + [1− γβ(ζ)] ϕ+
β (ζ),
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where
γβ(ζ) = [F(ζ, ηβ(ζ))− β]

/
[1− β], 0 ≤ γβ(x) ≤ 1.

Rockafellar and Uryasev [4] showed that CVaR has an equivalent definition, as follows:

ϕβ(ζ) = min
η

{
η +

1
(1− β)J

J

∑
j=1

max{0, f (ζ, λ)− η}
}

.

Note that we consider the loss function to be discrete; hence, the loss function is defined as:

f (ζ, λ) = −
n

∑
i=1

riζi,

The negative portfolio’s return is the loss function. We can represent CVaR as follows:

∆β(ζ) = min
η

{
η +

1
(1− β)J

J

∑
j=1

max(0,−
n

∑
i=1

rijζi − η)

}
,

where rij is the return of the i-th instrument in scenario j, j = 1, . . . , J. When scenarios of
future returns are available, the Mean-CVaR can be formulated as a programming problem
as follows:

min
η

{
η+

1
(1− β)J

J

∑
j=1

zj

}

s.t.−
n

∑
i=1

rijζi − η ≤ zj, j = 1, . . . , J,

n

∑
i=1

ζiE(Ri) = Rp, (1)

ζi ≥ 0, zj ≥ 0, j = 1, . . . , J.

Problem (1) is a convex programming problem. Note that Rp is the expected portfo-
lio return.

3.3. DEA Model

There are n observations of decision-making units (DMU), where any DMU has m
inputs and s outputs. Furthermore, assume that xij for i = 1, . . . , m is a vector of the input
of DMUj for j = 1, . . . , n and yrj , for r = 1, . . . , s is a vector of the output of DMUj for
j = 1, . . . , n; note that we have denoted the input and output vectors as xj and yj. Then the
efficiency of each DMU can be calculated by means of the original DEA formula and the
attitude of the input is as follows:

min

{
θ − ε(

m

∑
i=1

s−i +
s

∑
r=1

s+r )

}

s.t.
n

∑
j=1

xijνj + s−i = θxi0 , i = 1, 2, . . . , m,

n

∑
j=1

yrjνj − s+r = yr0 , r = 1, 2, . . . , s, (2)

ν ∈ Ψ,

s+, s− ≥ 0,

ε > 0,
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where ν is an n-vector of variables νi, s+ is an s-vector of output slacks, s− is an m-vector of
input slacks, ε is a non-Archimedes factor, and the set Ψ is defined as follows:

Ψ =


{ν
∣∣ν ∈ Rn

+} By fixed return to scale,
{ν
∣∣ν ∈ Rn

+, 1Tν ≤ 1} By unincreasing returns to scale,
{ν
∣∣ν ∈ Rn

+, 1Tν = 1} By unconstant to scale.

A decision making unit (DMU) is considered efficient if θ = 1 and in all optimal
solutions the values of the slack variables are zero (s+ and s−); otherwise, it is consid-
ered inefficient.

Definition 1. X0 ∈ χ is said to be mean-risk-efficient if there is no X ∈ χ for which ε(X) ≥ ε(X0)
and µ(X) ≤ µ(X0) at least with a strict inequality. We note that ε(X) = E(X).

3.4. Input Attitude Models for Risk Measures

Suppose that assets with negative returns can be considered in the portfolio, that is,
ε j(X) is not nonnegative. Assume also that µq(X0) > 0 for every q = 1, . . . , Q, in which
µq(X0) is the average return on available portfolios, so the original DEA model in the input
attitude can be formulated as follows:

min θ

s.t. ε j

(
n

∑
i=1

ζi(Ri)

)
≥ ε j(X0), j = 1, . . . , J,

µq

(
n

∑
i=1

ζi(Ri)

)
≤ θ·µq(X0), q = 1, . . . , Q, (3)

n

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n.

This model is known as the DEA model with variable return to scale (VRS). In this
model, constraints imply that 0 ≤ θ ≤ 1.

3.5. Input Attitude Models with Positive or Negative Data for Risk Measures

The DEA model can take positive or negative input values, so the basic DEA model
changes as follows:

max θ

s.t. ε j

(
n

∑
i=1

ζi(Ri)

)
≥ ε j(X0) + θ · τj(X0), j = 1, . . . , J,

µq

(
n

∑
i=1

ζi(Ri)

)
≤ µq(X0)− θ · ∆q(X0), q = 1, . . . , Q, (4)

n

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n,

where
τj(X0) = max

X∈χ

(
ε j(X)

)
− ε j(X0),

∆q(X0) = µq(X0)−min
X∈χ

µq(X0).

This model identifies the inefficiency of an investment opportunity X0. We can write
the objective function min

θ

1−θ
1+θ , so X0 is efficient if θ(X0) = 1; otherwise it is inefficient.
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3.6. Input Attitude Models with Positive or Negative Data for CVaR Risk Measures

For the discrete loss function, CVaR risk measures can be formulated as:

CVaRβ

(
n

∑
i=1

ζi(Ri)

)
= min

VaR

VaRβ +
1

1− β
E

(− n

∑
i=1

ζi(Ri)−VaRβ

)+
,

We consider the expected return as an output and CVaRβ for different levels β ∈ (0, 1) as
the inputs, so the input-oriented equationcan be formulated as:

max θ

s.t. ε j

(
n

∑
i=1

ζi(Ri)

)
≥ ε j(X0) + θ · τj(X0), j = 1, . . . , J,

CVaRαq

(
n

∑
i=1

ζi(Ri)

)
≤ CVaRαq(X0)− θ · ∆q(X0), q = 1, . . . , Q, (5)

n

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n.

where
τj(X0) = max

X∈χ

(
ε j(X)

)
− ε j(X0),

∆q(X0) = CVaRαq(X0)−min
X∈χ

CVaRαq(X0).

Proposition 1. The problem (5) can be formulated as follows:

max θ

s.t.
n

∑
i=1

ε jζi(Ri) ≥ ε j(X0) + θ · τj(X0), j = 1, . . . , J,

E

[
−

n

∑
i=1

ζi(Ri) ≤ CVaRβq(X0)− θ · ∆q(X0)

]
≥ VaRβq , q = 1, . . . , Q,

n

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n.

Proof. According to the definition of CVaR, we have

CVaRβ

(
n

∑
i=1

ζi(Ri)

)
= min

VaR

VaRβ +
1

1− β
E

(− n

∑
i=1

ζi(Ri)−VaRβ

)+
,

and we can state that

E

(− n

∑
i=1

ζi(Ri)−VaRβ

)+
 = E

[
−

n

∑
i=1

ζi(Ri)

]
≥ VaRβ. (6)

On the other hand, given that CVaR is the loss limit for an investment, then we
must observe

−
n

∑
i=1

ζi(Ri) ≤ VaRβ +
1

1− β
E

(− n

∑
i=1

ζi(Ri)−VaRβ

)+
,
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and according to (6)

E

− n

∑
i=1

ζi(Ri) ≤ VaRβ +
1

1− β
E

(− n

∑
i=1

ζi(Ri)−VaRβ

)+
 ≥ VaRβ,

by incorporating the definition of CVaR into the problem (5), we obtain

max θ

s.t. ε j

(
n

∑
i=1

ζi(Ri)

)
≥ ε j(X0) + θ · τj(X0), j = 1, . . . , J,

VaRβq +
1

1− β
E

(− n

∑
i=1

ζi(Ri)−VaRβq

)+
 ≤ CVaRβq(X0)− θ · ∆q(X0), q = 1, . . . , Q,

E

(− n

∑
i=1

ζi(Ri)−VaRβq

)+
 = E

[
−

n

∑
i=1

ζi(Ri)

]
≥ VaRβq ,

n

∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n.

Given that the objective function is the maximum and the directions are positive,
the minimum value of CVaR is guaranteed.

4. Meta-Heuristic Algorithms
4.1. PSO Algorithm

The PSO algorithm is a random group optimization scheme that is carried out by
simulating the social behavior of a group of birds. Since it works as a group and has a
competency function, it is similar to evolutionary algorithms, but the main difference is that
each person benefits from their past information. In this algorithm, an initial population
is first generated. Each particle represents a solution to the problem. Particles in this
population have an initial velocity. The particles change their velocities according to the
best position. The new velocity adds up to the current position of the particle and creates
its new position. The velocity change is defined by:

vk+1
i,j = w vk

i,j + c1 rand1(pbest− sk
i,j) + c2 rand2(gbest− sk

i,j),

where vk+1
i,j is the velocity of the ith particle in the jth dimension in the (k + 1) iteration

and w is the inertia weight. c1 is a personal learning coefficient and c2 is a global learning
coefficient. pbest is the best particle position and gbest is the best group position. The rand
function generates random numbers in (0,1). sk

i,j is the position of the ith particle in the jth
dimension in the k iteration. Finally, the new position of ith particle is calculated as follows:

sk+1
i = vk+1

i + sk
i .

Figure 1 shows the process of updating particles in PSO algorithm.
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Figure 1. Particle updating process in PSO.

4.2. ICA Algorithm

One of the recent approaches involves the evolutionary optimization of algorithms,
ICA, which was inspired by imperialism and imperialist competition, leading to the selec-
tion of the strongest empire that provides the best optimal answer. Imperialist competition
means eliminating the weakest empire and strengthening the strongest empire.

4.2.1. Creating Early Empires

The ICA algorithm begins with an early population, of members called countries,
of size Npop. From this population Nimp, the best-performingmembers are chosen as
imperialists and the residual Ncol countries form the colonies. To shape the early empires,
the colonies are distributed between imperialists based on their normalized authority:

pn =

∣∣∣∣∣∣ Cn

∑
Nimp
i=1 Ci

∣∣∣∣∣∣,
where Cn is the cost of the nth imperialist and pn is its normalized cost. The number of
initial colonies of the empire is calculated as follows:

NCn = round(pn · Ncol),

4.2.2. The Departure of the Colonies to the Imperialists

The imperialist countries pursue a policy of assimilation of the colonies. Figure 2,
shows this policy.
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Figure 2. The departure of a colony to its relevant imperialist.

Each colony moves toward its imperialist as follows:

at+1 = at + α · d · γ · U(−φ, φ),

where α > 1 brings the colonies near to the imperialists, d is the spacing among the
imperialist and its colony, γ is the coefficient of assimilation (γ < 1), and φ is a parameter
which regulates the deflection from the basic path, which provides for probing around
the imperialist.

4.2.3. Whole Authority of an Empire

The authority of an empire is equal to the authority of the imperialist plus a percentage
of the authority of its colonies, so the whole cost of an empire is calculated as follows:

TCn = Cost (imperialistn) + ω mean{Cost(colonies o f empiren)},

where ω is less than 1 and is a positive number.

4.2.4. Imperialistic Competition

If the imperialist is unable to increase its authority, this authority is gradually weak-
ened and during the colonial competition, the strong imperialists take over its colonies and
it is omitted from the colonial competition. To begin the competition, the probability of
ownership Ppn of every empire is described as follows:

Ppn =

∣∣∣∣∣∣ NTCn

∑
Nimp
i=1 NTCi

∣∣∣∣∣∣,
where NTCn = TCn maxi{TCi · TCn} and NTCn are the whole cost and the normalized
whole cost of the nth empire, respectively. In order for these colonies to be divided between
empires, the vector P, is defined as follows:

P = [Pp1 , Pp2 , . . . , PpNimp
].

Then, the random vector R, which is the same measure with the vector P, and of which
the arrays are from a random number between (0,1), is formed as follows:

R = [r1, r2, . . . , rNimp ].
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So the vector D is constituted as follows:

D = P− R = [D1, D2, . . . , DNimp ]

= [Pp1 − r1, Pp1 − r2, . . . , PNimp − rNimp ].

Having the vector D, the mentioned colonies are given to the empire of which the
index in the vector D reaches a maximum.

Proposition 2. Suppose that X is a global minimum obtained via the PSO and ICA algorithms for
problem (5); then, X is unique.

Proof. Let X and Y be two global minima. Since the objective function is convex, we can
consider a convex combination of X and Y (for ρ ∈ (0, 1))

g(ρX + (1− ρ)Y) ≤ ρg(X) + (1− ρ)g(Y)

≤ ρg(X) + g(Y)− ρg(Y) (7)

≤ g(Y) (8)

Note that since g(X) = g(Y); therefore, ρg(X) = ρg(Y) in Equation (7). Equation (8)
contradicts the global minimum of Y. Y is said to be the global minimum if ∀ Ŷ ∈ Rn,
g(Y) ≤ g(Ŷ). Therefore global minimum is unique.

Proposition 3. Suppose that XA and XB are the portfolios created by ICA and PSO, respectively,
the probability distribution functions of which are the same. For problem (5), if E(XA) ≤ E(XB)
then θ(XA) ≤ θ(XB).

Proof. Let E(XA) ≤ E(XB). According to definition of expectation we have

XA · P(XA) ≤ XB · P(XB),

since XA and XB have the same probability distribution function; thus,

XA ≤ XB (9)

According to definition of coherent risk measures for if XA ≤ XB, then

µ(XA) ≥ µ(XB) (10)

Let φ̂j, θ̂q, X̂ ∈ χ be the optimal values for problem (5) in portfolio XB. Then, according
to the right sides of problem (5) and Equations (9) and (10), we have

ε j(XA) + φ̂j · τj(XA) ≤ ε j(XB) + φ̂j · τj(XB) ≤ ε j(X̂),

µq(XA)− θ̂q · ∆q(XA) ≥ µq(XB)− θ̂q · ∆q(XB) ≥ µk(X̂).

Since φ̂j, θ̂q, X̂ ∈ χ are fixed for portfolio XB , then these values can be changed for
portfolio XA (if they are equal then both portfolios are one portfolio). On the other hand,
we can write the objective function min

θ

1−θ
1+θ , so the value of XA is less than or equal tothe

value of XB, that is, θ(XA) ≤ θ(XB).

5. Instance Scrutiny: Iran Stock Exchange

In this section, DEA is used in two ways as follows. In the first method, efficient
assets are first identified using DEA, then we optimize automotive industry portfolio with
efficient assets using two algorithms, PSO and ICA. In the second method, the automotive
industry portfolio is optimized with two algorithms, PSO and ICA, then we check the
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efficiency of the portfolio generated by the mentioned algorithms.Then, these methods
were compared with the classic Mean-CVaR model. Here, the source of data was selected
as the Iranian Stock Exchange. We considered the actual data of 23 automotive companies
which had been active during the period from 2017 to 2020. We also applied the price index
from 2017 to 2020 to determine the trends of the automotive market. Figure 3 shows a
Q-Q graph of the price index of the automotive group. The Q-Q graph was applied to test
normality. In these graphs, if the data were located on the mean line, it was said that the
data distribution was normal. If the data were scattered around the mean line, then the
data were not normal. As expected,most of the data were scattered around the mean line,
so the price index did not have a normal distribution. We plotted a histogram of the return
matching (Figure 4) to understand how the data were distributed.
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Figure 3. Normality test of price index.
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Figure 4. Price index distribution.
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Figure 4 presents a histogram of the automotive price index. The histogram demon-
strates that the automotive index was skewed to the right. That is, there was a possibility of
a price increase in the index in the future. In this way, investing in the automotive market
would bring returns. Therefore, investors who were looking for short-term investments
could benefit from this increase.

Matlab software was used to calculate the logarithmic returns of each asset and the
CVaR, with three levels of confidence. This software was also used to implement PSO, ICA,
and DEA. The logarithmic return of each asset is shown in Figure 5. Table 1 shows the
input and output of the first method, including CVaR, with three levels of confidence, and
the expected return. Futhermore, Tables 10 and 11 display the input and output for the
second method.
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Figure 5. Logarithmic return of each asset.

According to Table 1, asset #10 had the highest expected return, and CVaR increased
with an increasing confidence level. Furthermore, asset #11 had the lowest CVaR in 90%
and 95% confidence levels, and asset #3 had the lowest CVaR, with a confidence level of 99.
Table 2 presents the efficiency of each asset. According to these results, asset #10, which had
the highest expected return, was efficient in the three confidence levels. Asset #11, which
had the lowest CVaR at the 90% and 95% confidence levels, was efficient in three levels.
Asset #3 had the lowest CVaR at a confidence level of 99, so it was efficient at this level.
Tables 3 and 4 illustrate the input parameters of two algorithms.
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Table 1. Input and output, consisting of the CVaR and expected return, in the first method.

Asset ID Stock Companies
Inputs (CVaR) Output

90% 95% 99% Expected
Return

1 IKCO1 0.0484 0.0883 0.3013 0.0006
2 MSTI1 0.0487 0.1191 0.2942 0.0008
3 SIPA1 0.0481 0.0991 0.2257 0.001
4 PKOD1 0.0483 0.0966 0.3262 0.0026
5 ZMYD1 0.0486 0.1038 0.3383 0.0032
6 RTIX1 0.0487 0.0993 0.2801 0.0021
7 KFAN1 0.0488 0.1314 0.3169 0.0024
8 MHKM1 0.0486 0.1094 0.3468 0.0001
9 LENT1 0.0487 0.0851 0.4174 0.0032

10 RADI1 0.0488 0.1136 0.3504 0.0041
11 KHSH1 0.0476 0.0758 0.2593 0.0026
12 GOST1 0.0487 0.123 0.338 0.0033
13 KRIR1 0.0487 0.1099 0.2922 0.0012
14 GHAT1 0.0486 0.1114 0.319 0.0025
15 ATIR1 0.0481 0.0858 0.258 0.0009
16 NMOH1 0.0487 0.1111 0.3663 0.003
17 MESI1 0.0495 0.1244 0.391 0.0029
18 FNAR1 0.0487 0.1381 0.4229 0.0015
19 CHAR1 0.0488 0.126 0.3577 0.0025
20 SZPOL 0.0486 0.1233 0.3121 0.0019
21 TMKH1 0.0488 0.1362 0.3804 0.0033
22 RIIR1 0.0488 0.1143 0.3104 0.0006
23 MNSR1 0.0487 0.1241 0.3523 0.0029

Table 2. Efficiency of each asset, measured using the first method.

Asset ID
Efficiency

90% 95% 99%

1 0.9835 0.8584 0.7491
2 0.9774 0.6364 0.7672
3 0.9896 0.7649 1
4 0.9855 0.7847 0.7949
5 0.9893 0.8198 0.8742
6 0.9774 0.7633 0.8883
7 0.9754 0.5769 0.805
8 0.9794 0.6929 0.6508
9 0.9873 1 0.7085
10 1 1 1
11 1 1 1
12 0.9889 0.7176 0.8929
13 0.9774 0.6897 0.7868
14 0.9794 0.6804 0.8063
15 0.9896 0.8834 0.8748
16 0.984 0.7381 0.7742
17 0.9665 0.6467 0.7098
18 0.9774 0.5489 0.5585
19 0.9754 0.6016 0.719
20 0.9794 0.6148 0.7837
21 0.9869 0.6481 0.7934
22 0.9754 0.6632 0.7271
23 0.9823 0.6483 0.7877
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Table 3. Input parameters of PSO.

Factor Level

Maximum Number of Iterations 100
Population Size (Swarm Size) 40

Inertia Weight (w) 1
Personal Learning Coefficient (c1) 2
Global Learning Coefficient (c2) 2

Table 4. Input parameters of ICA.

Factor Level

Maximum Number of Iterations 150
Population Size 40

Number of Empires/Imperialists 5
Assimilation Coefficient (α) 0.9

Revolution Probability 0.1
Revolution Rate 0.05

Colonies’ Mean Cost Coefficient (ω) 0.1

We formed an automotive industry portfolio with efficient assets and the Mean-CVaR
model. The results are presented in Tables 5–7 and Figures 6 and 7. We found that:

a. Both algorithms preferred to invest in asset #10, which has the highest expected return
and was efficient with three levels of confidence.

b. The risk and return of the portfolios in both algorithms were equal in three levels
of confidence.

c. The frontiers in both algorithms overlapped in three levels of confidence.
d. According to Table 7, the highest weight was related to asset #3 in the Mean-CVaR model.
e. The return and risk of the Mean-CVaR model were low.

Table 5. The weight of each efficient asset in the automotive industry portfolio.

Asset ID
PSO Asset Weight ICA Asset Weight

90% 95% 99% 90% 95% 99%

3 0 0 0 0 0 0
9 0 0 0 0 0 0

10 1 1 1 1 1 1
11 0 0 0 0 0 0

Table 6. Risk and return of optimized automotive industry portfolios.

Algorithm
Portfolio Return Portfolio Risk

90% 95% 99% 90% 95% 99%

DEA-Mean-CVaR-PSO 0.0041 0.0041 0.0041 0.1661 0.2695 0.5637
DEA-Mean-CVaR-ICA 0.0041 0.0041 0.0041 0.1661 0.2695 0.5637

Mean-CVaR 0.0033 0.0034 0.0034 0.0708 0.0994 0.1869



Mathematics 2022, 10, 2808 17 of 26

Table 7. The weight of each asset in optimized automotive industry portfolio developed using
the Mean-CVaR approach.

Asset ID
CVaR

90% 95% 99%

1 0.0366 0.0352 0.0261
2 0.0740 0.0538 0.0317
3 0.1011 0.0852 0.0385
4 0.0784 0.0749 0.0747
5 0.0734 0.0762 0.0849
6 0.0629 0.0740 0.1060
7 0.0393 0.0458 0.0588
8 0.0460 0.0372 0
9 0.0357 0.0420 0.0379
10 0.0578 0.0571 0.0548
11 0.0458 0.0425 0
12 0.0189 0.0218 0.0249
13 0.020 0.0257 0.0326
14 0.0214 0.0256 0.0408
15 0.0527 0.0438 0.0561
16 0.0432 0.0487 0.0774
17 0.0191 0.0181 0.0317
18 0.0182 0.0208 0.0368
19 0.0304 0.0313 0.0178
20 0.0192 0.0253 0.0282
21 0.0377 0.0471 0.0480
22 0.0245 0.0325 0.0530
23 0.0425 0.0341 0.0379
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Figure 6. Frontiers of PSO and ICA algorithms using the first method.
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Figures 8 and 9 present the daily return distribution of asset #10 and the relative
strength index, respectively. Figure 9 displays the relative strength index. The stock has
little risk if this index is below 30and should be bought. The stock has a lot of risk if
this index reaches 70 and should be sold. After obtaining the optimal solution with the
DEA-Mean-CVaR model, we found that the DEA-Mean-CVaR model suggested investing
only in asset #10. By constructed the logarithmic return diagram of the proposed stock,
we realized that the proposed stock was skewed to the right, which meant that there was
a possibility of an increase in the return. Furthermore, by analyzing the relative strength
index, we discovered that this asset had reached the number 30 and should be bought.
Therefore, it can be concluded that in the first method, the model suggested an asset that
should be bought according to the index and also, according to the histogram, there was a
probability of a return from this stock.
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Figure 8. Return distribution of asset #10.
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Figure 9. Relative strength index of asset #10.

The histogram of asset #3 return is shown in Figure 10. This asset received the most
weight according to the Mean-CVaR model. The histogram illustrates that the return
distribution of asset #3 exhibited kurtosis. Thus, there were extreme points (a sudden price
increase) in this asset. Therefore, it can be inferred that the weights were assigned based on
the momentary return in the Mean-CVaR model, whereas Figure 11 shows that the index
has reached 70, so the stock risk is high and should be sold.
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Figure 10. Return distribution of asset #3.
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Figure 11. Relative strength index of asset #3.

Table 8, shows that both algorithms in levels 90 and 95 assigned the most weight to
asset #10, with the highest expected return, and in level 99 they assigned the most weight
to asset #5. Furthermore, according to Table 9, the PSO algorithm under constant return
showed more risk than the ICA algorithm.

Table 8. The weight of each asset in automotive industry portfolios optimized with PSO and ICA
algorithms under Mean-CVaR.

Asset ID
PSO Asset Weight ICA Asset Weight

90% 95% 99% 90% 95% 99%

1 0 0 0 0 0 0.0001
2 0 0 0.0007 0 0.0001 0.0001
3 0 0.0001 0.0504 0.0002 0.0003 0.0391
4 0.0661 0.0817 0.0806 0.0605 0.075 0.0796
5 0.1301 0.1143 0.0935 0.1325 0.1095 0.0942
6 0.0038 0.0736 0.0519 0.0096 0.0651 0.0488
7 0.0449 0.0566 0.0715 0.0414 0.0582 0.0762
8 0 0 0 0 0 0.0014
9 0.0843 0.0873 0.0421 0.0908 0.0884 0.0423

10 0.1539 0.1151 0.0597 0.1344 0.1095 0.0593
11 0.0386 0.0622 0.048 0.046 0.0515 0.0373
12 0.1303 0.0715 0.027 0.099 0.0655 0.0274
13 0.0009 0.0004 0.0248 0 0 0.0271
14 0.0339 0.0481 0.0422 0.0409 0.0443 0.042
15 0.0002 0 0.0424 0.0001 0.0001 0.0481
16 0.0937 0.0812 0.0918 0.0851 0.0832 0.0783
17 0.0119 0.0194 0.0333 0.0287 0.0207 0.0324
18 0.0008 0.0051 0.0404 0.0006 0.0125 0.0372
19 0.0333 0.0415 0.0137 0.0565 0.0436 0.0345
20 0.001 0.0108 0.0285 0.0011 0.0107 0.0355
21 0.1072 0.06 0.0549 0.0883 0.074 0.0563
22 0.0001 0 0.0591 0 0.0006 0.0597
23 0.0649 0.0707 0.0435 0.0784 0.0871 0.0433
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Table 9. Risk and return of optimized automotive industry portfolios.

Algorithm
Portfolio Return Portfolio Risk

90% 95% 99% 90% 95% 99%

Mean-CVaR-PSO 0.0031 0.003 0.0025 0.0562 0.0643 0.0663
Mean-CVaR-ICA 0.0031 0.003 0.0025 0.0538 0.0645 0.0657

Mean-CVaR 0.0033 0.0034 0.0034 0.0708 0.0994 0.1869

Figure 12 shows that the frontier of the PSO algorithm was higher than that of the ICA
algorithm, so the PSO portfolio under certain return conditions showed more returns than
the ICA portfolio.
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Figure 12. Frontiers of PSO and ICA algorithms in the second method.

Tables 10 and 11 show the inputs and outputs of the second method, including the
CVaR of the portfolios in three levels of confidence, along with their returns. It was found
that CVaR increased with increasing confidence levels.

As shown in Table 12, portfolios 1, 4, 12, and 14 were efficient in three levels for
both algorithms. The number of efficient portfolios in three levels was higher in the PSO
algorithm than in the ICA algorithm.Portfolio #15, which was considered as the output
of the algorithms, was efficient in the PSO algorithm in three levels. After obtaining the
numerical results, we tested our hypotheses using the Wilcoxon test.
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Table 10. Inputs and outputs, consisting of the risk (CVaR) and return of 15 stocksin a portfolio
optimized with the ICA algorithm using the second method.

Portfolio

Input Output

ICA Portfolio Risk ICA Portfolio Return

90% 95% 99% 90% 95% 99%

1 0.037874 0.047221 0.063001 0.002127 0.002195 0.002177
2 0.037906 0.047277 0.063323 0.002113 0.002197 0.002173
3 0.037904 0.047251 0.063125 0.002124 0.002183 0.002216
4 0.037859 0.047265 0.062967 0.002104 0.002195 0.002149
5 0.037908 0.047194 0.063045 0.002121 0.002186 0.002186
6 0.037983 0.047194 0.063067 0.002142 0.002194 0.002211
7 0.037942 0.047294 0.063698 0.002144 0.002171 0.00217
8 0.03795 0.047352 0.063064 0.002131 0.002197 0.002223
9 0.039491 0.049404 0.068445 0.002392 0.002392 0.002394

10 0.043312 0.055871 0.081768 0.002675 0.002675 0.002675
11 0.050294 0.065357 0.104911 0.00296 0.002959 0.002959
12 0.0638 0.085905 0.113434 0.003243 0.003239 0.003063
13 0.064939 0.082137 0.094028 0.003277 0.003176 0.002892
14 0.057136 0.064369 0.065694 0.003154 0.002949 0.002459
15 0.053248 0.064454 0.065674 0.003084 0.002956 0.002457

Table 11. Inputs and outputs consisting of the risk (CVaR) and return of 15 stocks in a portfolio
optimized with the PSO algorithm using the second method.

Portfolio

Input Output

PSO Portfolio Risk PSO Portfolio Return

90% 95% 99% 90% 95% 99%

1 0.037887 0.047152 0.062022 0.002122 0.002193 0.00225
2 0.037833 0.047148 0.06257 0.0021 0.002173 0.002238
3 0.03788 0.047137 0.062108 0.002095 0.002184 0.002243
4 0.037864 0.047155 0.061964 0.0021 0.002203 0.002223
5 0.037837 0.047133 0.063738 0.002087 0.002185 0.002125
6 0.037828 0.047152 0.062029 0.002098 0.002173 0.002213
7 0.037801 0.047148 0.062201 0.002096 0.002183 0.00221
8 0.037868 0.047143 0.063119 0.002111 0.002202 0.00216
9 0.039177 0.048741 0.064874 0.002392 0.002392 0.002392

10 0.043143 0.05426 0.079014 0.002675 0.002675 0.002677
11 0.049953 0.065218 0.098566 0.002959 0.00296 0.002964
12 0.065444 0.091678 0.146192 0.003244 0.003244 0.003177
13 0.058897 0.083458 0.109542 0.003161 0.003224 0.003068
14 0.063892 0.088723 0.098888 0.003258 0.00326 0.002992
15 0.056204 0.064258 0.064929 0.003147 0.002961 0.002465
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Table 12. Risk and return of stocks in an automotive industry portfolio optimized with the DEA-
Mean-CVaR model.

Portfolio
Efficiency PSO Portfolio Efficiency ICA Portfolio

90% 95% 99% 90% 95% 99%

1 1 1 1 1 1 1
2 1 0.9998 0.9908 0.999 0.9986 0.9947
3 0.9994 1 0.9984 0.9991 0.9992 0.9979
4 1 1 1 1 1 1
5 0.9992 1 0.9722 0.9987 1 0.9988
6 0.9995 0.9997 0.9989 0.9967 1 0.9984
7 1 0.9998 0.9962 0.9978 0.9981 0.9885
8 1 1 0.9822 0.9983 0.9985 0.9988
9 1 1 0.9856 1 1 0.9298

10 1 1 0.9942 1 1 0.7894
11 1 1 0.9847 1 0.9732 0.6252
12 1 1 1 1 1 1
13 1 1 1 0.9127 0.8903 0.9051
14 1 1 1 1 1 1
15 1 1 1 1 0.9689 0.9963

According to Table 13, the probability was less than 0.05, so the hypothesis of return
equality was rejected. In other words, there was a difference between the efficiencies.
Furthermore, the hypothesis of risk equality was rejected because the probability was less
than 0.05.

Table 13. Hypothesis test results.

Method Mean Std Min Max Zval Prob

(MCVaR) 0.0022 0.0003 0.0021 0.0034
(DEA-MCVaR) 0.0028 0.0005 0.0024 0.0040

(DEA-MCVaR)-(MCVaR)-Ret −3.408 0.001
MCVaR-Rsk 0.2259 0.0267 0.1861 0.2695

MCVaR-PSO-Rsk 0.0582 0.0166 0.0471 0.0916
MCVaR-ICA-Rsk 0.0563 0.0133 0.0471 0.0859

(MCVaR-PSO)-(MCVaR)-Rsk −3.408 0.001
(MCVaR-ICA)-(MCVaR)-Rsk −3.408 0.001

6. Discussion of Results

To interpret the results, we considered the confidence level of 95 and based our
interpretations on the results obtained at the 95 levels. Focusing on the results, we found
that when we extended the Mean-CVaR, the results were improved. The Mean-CVaR
suggested that most investments should be on asset #3, but according to the RSI index, this
asset reached 70 and should be sold because its risk was high. When we expanded the model
to create a portfolio with efficient stocks, then solved it using the evolutionary algorithms
PSO and ICA, we found that the stocks with the highest expected returns and which
were efficient at three levels of risk were suggested by the two algorithms. The positive
skewness of the daily return distribution of asset #10 showed that there was a possibility of
an increase in returns for this stock in the future. The test of the first hypothesis informed
us that there was a difference between the returns of the portfolios constructed using DEA-
Mean-CVaR and Mean-CVaR. In other words, if the Mean-CVaR model was expanded,
the investor would obtain more returns.The test of the second hypothesis showed that
when we solved the Mean-CVaR model with evolutionary methods, the investment risk
decreased because the algorithms tried to find the best solution. According to the return
distribution and the RSI index and efficiency, asset #10 was the best answer, which was
suggested by the two algorithms at the confidence level of 95. In the end, we found that
the PSO portfolio’s efficient border is higher than the ICA portfolio’s efficient border and
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the number of efficient portfolios identified by the PSO algorithm was than that of the ICA
algorithm. Therefore, this algorithm worked more successfully in portfolio optimization
and offered better solutions.

7. Conclusions

In this research, we optimized an automotive industry portfolio for the Iranian stock
market in two ways. These companies play an essential role in the Iranian stock market.
At the beginning of the research, we proposed two hypotheses as follows: 1. The returns
obtained in the DEA-Mean-CVaR portfolio were higher than the returns of the Mean-CVaR
portfolio. 2. The use of the evolutionary methods PSO and ICA reduced the risk of the
Mean-CVaR portfolio.

Then, we checked the price index of the automotive industry. Our focus on the the
automotive group index showed that the distribution of the price index was skewed to
the right, so it could be said that investing in the automotive market would bring returns.
Therefore, with the help of 23 automotive companies, we formed a portfolio using two
methods. In the first method, CVaR was formulated using DEA, and then this model was
solved using the PSO algorithm and the ICA algorithm. Based on the results shown in
Table 5, it was found that both algorithms led to the proposal to invest in assets that had the
highest expected return and that were found to be efficient at three levels of confidenceand
that should have been purchased according to the RSI index. Furthermore, considering
Table 9, the risk and return of both algorithms were equal with three levels of confidence,
so according to Figure 6, the frontiers of the two algorithms coincided. In the second
method, was solved the CVaR model using the PSO and ICA algorithms, then evaluated the
performance of the obtained securities. We found that out of 40 portfolios generated using
the algorithms, only 15 portfolios were located at the border, and according to Table 12
of these 15 portfolios, only four portfolios in both algorithms were considered efficient at
three levels.

The results of the testing of the hypotheses indicated that the development of the
Mean-CVaR model increased returns, and the use of innovative methods in its solution
reduced risk.

Similarly to [26], and as shown in Table 5 and Figure 6, we found that the development
of portfolio selection models with the DEA model obtained better results.Furthermore, as
shown in Table 12 and Figure 12, similarly to the research of [36,37], our results indicated
that the PSO algorithm performed better in the task of portfolio optimization.

Finally, we conclude that when the Mean-CVaR model is developed using the DEA
model and when evolutionary algorithms are used to the solution of these problems, we
can invest more confidently in the proposed stocks. Overall, it can be stated that if investors
have a low degree of risk aversion, they can take advantage of the combination of DEA and
Mean-CVaR models. For future research, we suggested modeling other risk measures by
means of DEA and then calculating solutions with the PSO algorithm to compare results
with those the strength Pareto evolutionary algorithm.
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