
______________________________________________________________________________________________________________________ 

* Zhitao Guan is the corresponding author (email: guan@ncepu.edu.cn) 

Wenti Yang, Zhitao Guan and Naiyu Wang are with School of Control and Computer Engineering, North China Electric Power University 

Longfei Wu is with Department of Mathematics & Computer Science, Fayetteville State University 

Xiaojiang Du is with Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken NJ, USA 

Mohsen Guizani is with Department of Computer Science and Engineering, Qatar University 

A Practical Cross-Device Federated Learning Frame-

work over 5G Networks 
 

 
Wenti Yang, Naiyu Wang, Zhitao Guan*, Longfei Wu, Xiaojiang Du, Mohsen Guizani 

 
Abstract—The concept of federated learning (FL) was first 

proposed by Google in 2016. Thereafter, FL has been widely 

studied for the feasibility of application in various fields due to 

its potential to make full use of data without compromising the 

privacy. However, limited by the capacity of wireless data 

transmission, the employment of federated learning on mobile 

devices has been making slow progress in practical. The devel-

opment and commercialization of the 5th generation (5G) mobile 

networks has shed some light on this. In this paper, we analyze 

the challenges of existing federated learning schemes for mobile 

devices and propose a novel cross-device federated learning 

framework, which utilizes the anonymous communication tech-

nology and ring signature to protect the privacy of participants 

while reducing the computation overhead of mobile devices par-

ticipating in FL. In addition, our scheme implements a contribu-

tion-based incentive mechanism to encourage mobile users to 

participate in FL. We also give a case study of autonomous driv-

ing. Finally, we present the performance evaluation of the pro-

posed scheme and discuss some open issues in federated learning. 

I . INTRODUCTION 

Nowadays, mobile devices are widely used in various ap-
plication scenarios, as a result, a huge amount of data is gener-
ated. The artificial intelligence (AI) technology can make the 
data more valuable. Specifically, the data can be used to train 
machine learning (ML) models and these models can be used 
to improve the applications and services related to mobile de-
vices. For example, optimizing wireless networks (e.g., content 
caching, spectrum management, 5G core network) [1], advanc-
ing intelligence of Internet of Vehicles, and so on. As we all 
know, one of the most important factors for training a good 
machine learning model is to employ a large amount of real 
data. The data collected from a single mobile device is limited 
and biased. Therefore, it should be enabled for multiple devic-
es to share their data for the training of machine learning mod-
els together. The sharing of large amounts of raw data may 
leads to two main challenges: privacy leakage and excessive 
communication overhead. Although existing technologies such 
as anonymous communication, differential privacy, and public 
key encryption, can be used to alleviate the risk of privacy 
leakage to some extent, the later cannot be solved at the same 
time [2].  

Federated learning (FL) is a promising AI technology to 
solve the above problems. However, in practical, due to the 
limited capacity of wireless communication and computing 
power of mobile devices, the application of federated learning 
for mobile devices is restricted [3]. The emergence of 5G net-
works brings new opportunities for FL on mobile devices. The 
FL coupled with the fast and reliable 5G wireless communica-
tions is ideal for the secure and practical data sharing among 
mobile devices [4]. 

1.1. Introduction to Federated Learning 

Federated Learning is a distributed ML technology that 
provides privacy-preservation. In FL, multiple participants 
collaborate to train a ML model, with the participants’ raw 
data kept locally to themselves. In the server-client based hori-
zontal FL, each participant uses local data to train the model 
and uploads the model parameters to an aggregation server. 
The server is responsible for aggregating the model parameters 
uploaded by each participant, generating the global model pa-
rameters and returning them to each participant. The above 
process iterates until the model parameters converge or meet 
the preset conditions.  

In terms of training samples, the types of federated learning 
mainly include horizontal FL and vertical FL. The Horizontal 
FL is for horizontally partitioned data which has the same fea-
ture space but different sample spaces. For example, the same 
type of information from different users in different banks. The 
vertical FL is for vertically partitioned data which has the same 
sample space but different feature spaces. For example, differ-
ent types of information from the same user in a bank and in a 
medical care system. In this paper, we mainly talk about the 
horizontal FL. 

In terms of application scenarios, the types of federated 
learning mainly include cross-device FL and cross-silo FL. 
The cross-device FL is usually used in mobile device applica-
tions and has the characteristics of a large number of partici-
pants with a small amount of raw data owned by each partici-
pant. In contrast to the cross-device FL, only several reliable 
organizations are involved in cross-silo FL. In this paper, we 
mainly study the cross-device FL. [5] 

Besides, in addition to the server-client FL, some research-
ers proposed peer-to-peer (P2P) FL. The key idea of P2P FL is 
to avoid the potentially untrusted third party by using P2P 
communication between the peer participants. However, the 
excessive communication overhead has become a huge obsta-
cle to P2P FL. 

In addition to using the cross-device FL to optimize 5G 
wireless communications, there are many potential application 
scenarios of cross-device FL in the context of 5G networks, 
such as autonomous driving, vehicle to everything, medical 
care, smart grid and other IoT-based applications [4]. 

1.2. Challenges of Cross-Device FL and Our Motivation 

Although the development of 5G networks makes it possi-
ble for federated learning to be efficiently carried out between 
mobile devices, there are still some challenges: 

1) Privacy leakage 

Researchers found that the output vectors, model parame-
ters, gradients of ML model may reveal sensitive information 
of the training data and the parameters of the model. In the 
application process of ML models, there are some attacks (e.g., 
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model extraction attack, model inversion attack, membership-
inference attack) that may cause the leakage of model parame-
ters or the training data [5]. In the training process of FL, par-
ticipants need to send the updated gradients or the model pa-
rameters of each iteration to the server or other participants, 
which may also reveal the private information of the training 
data. Privacy leakage is still a challenge that cannot be ignored 
in FL. 

2) Unreliable mobile devices with limited computing power  

Most existing FL schemes use the following privacy 
preservation techniques to solve the above privacy leakage 
problem during the FL training process: 

a) Pairwise additive masking: Adding masks to the local 

gradients and model parameters is a commonly used 
privacy preservation technique in FL. To prevent data 
from becoming unavailable due to the superimposition 
of masked data during the aggregation process, partic-
ipants need to interact multiple times to eliminate the 
mask in the aggregation [6]. This restricts the partici-
pants from withdrawing halfway. However, mobile 

devices participating in FL may fail or drop out due to 
various reasons such as network disruption, low bat-
tery, and so on. Therefore, this method may lead to 
poor robustness of the system.  

b) Differential privacy: Using differential privacy to add 
noise to the local gradients and model parameters is al-
so a good solution to protect privacy. However, mobile 
devices usually have less training data, and adding 

noise may cause data to be inefficient [7].  

c) Secure multi-party computation: Some researches pro-
posed the FL privacy preservation schemes based on 
secure multi-party computation such as garbled cir-
cuits, homomorphic encryption and secret sharing, 
which aggregate the gradients and parameters in the 
form of encrypted circuits or ciphertexts. [8]. This 
method is computationally expensive, and not suitable 
for devices with limited computing power (e.g., mo-
bile devices).  

In general, the above methods are suitable for the cross-silo 
FL with only a few stable participants: each participant has 
sufficient computing capability, large training data set and the 
communication between participants is stable, for example, FL 
for several banks. On the contrary, most mobile devices rely 
on wireless networks for communication and are often widely 
distributed. In addition, the computing capability of mobile 
devices is limited and the training data set is relatively small. 
Therefore, a more practical privacy preservation scheme for 
mobile devices is needed. 

3) Incentive and fairness 

Due to the concerns about privacy leakage or simply the 
unwillingness to devote computing resources, mobile users 
may be reluctant to participate in the federated learning. In 
addition, participants with different contributions to the model 
are rewarded with the same global model parameters, which 
may discourage the active participants. In order to motivate 
more mobile users to participate and ensure fairness, a reason-

able incentive mechanism needs to be added. The existing in-
centive mechanisms for FL mainly include: contribution-based 
incentive mechanism [9], reputation-based incentive mecha-
nism and resource allocation incentive mechanism [10,11]. 
There are also some FL schemes that consider both privacy 
preservation and performance when implementing the incen-
tive mechanism [10]. These schemes use game theory, block-
chain and other technologies to achieve novel incentive mech-
anisms. However, most of them motivate users by monetary 
reward, ignoring the role of the models. In addition, some in-
centive mechanisms mainly focus on resource allocation, how 
to quantify the value of participants' local data (e.g., data quali-
ty and data quantity) for FL training privately, and ensure the 
fairness of FL is also a challenge. [12] 

To address the above challenges, we propose a practical 
cross-device federated learning framework and give a case 
study on autonomous driving. Our framework has the follow-
ing features: 

a) It adopts the anonymous communication technology, 
participants do not need to interact multiple times and 
waste additional computing resources, which can pro-
vide privacy preservation while reducing the computa-
tional overhead.  

b) Considering that there may be adversaries posing as 
participants to affect the training of the model, we 
adopt the ring signature to verify the identities of par-
ticipants. 

c) It utilizes a contribution-based incentive mechanism 
that can quantify the value of participants' training data 
privately, different from existing incentive mecha-
nisms that uses monetary rewards, model-based re-
wards can help to improve and/or optimize the mobile 
applications and services on their devices.  

II. THE GENERAL FRAMEWORK 

2.1. Description of the Proposed Framework 

Our FL framework contains two layers: the local training 
layer and the aggregation layer, as shown in Fig. 1. In the local 
training layer, participants (mobile devices) use their local data 
to update the global model and get different local models. In 
the aggregation layer, the aggregation server aggregates the 
local models uploaded by participants to generate/update the 
global model. This is an iterative process, the detailed steps are 
as follows:  

a) The aggregation server sets a unified initial global 
model and distributes the model parameters to the mo-
bile devices participating in FL. 

b) Each participant contributes to the global model by 
training its own local data and generates the local 
model. Since participants use their own local data for 
the training, their trained local models vary from each 
other. 

c) Each participant then uploads the local model parame-
ters to the aggregation server through the anonymous 
communication network. As a result, the aggregation 
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server and the adversary cannot find out the true iden-
tities of the owners of the local model parameters col-
lected in a certain iteration. 

d) The aggregation server aggregates the local model pa-
rameters uploaded by the participants and gener-
ates/updates the global model. There are multiple ag-
gregation rules, such as federated averaging (FedAvg), 
centroid distance weighted FedAvg, and so on. The 
aggregation server distributes the global model param-
eters to the participants. When the global model pa-
rameters converge or meet the preset requirements, the 
iteration terminates. Otherwise, repeat steps b-d. 

e) The aggregation server sends the final global model to 
the incentive center.  

f) The incentive center distributes the contribution scores 
for each participant and ranks each global model ac-
cording to the preset’s rules. 

g) Participants with a certain degree of contribution can 
access the corresponding model. This step is imple-
mented by an access control scheme. 

2.2. Characteristics of the Proposed Framework 

Considering the features of the mobile device environment, 
our proposed federated learning framework for mobile devices 
has the following characteristics.  

1)  Privacy-preservation 

As we mentioned earlier that privacy leakage could happen 
not only in the application of the model, but also in the training 

and iteration of FL. The main focus of this paper is to prevent 
the privacy leakage in the training and iteration of FL. To pro-
tect the privacy of participants, the anonymous communication 
technology and ring signature is adopted. When a participant 
submits updated model parameters to the aggregation server, 
the network address can be anonymized to protect the partici-
pants' identities. In this way, the adversaries cannot figure out 
who the model parameters belong to, so that they cannot infer 
participants' privacy through the process of iterative updates. 

2) Trade-off between privacy and computation overhead 

In the mobile device environment, due to the limited com-
puting capability, reducing the computation overhead is always 
a top priority. Therefore, we abandon the conventional privacy 
preservation methods, such as homomorphic encryption (HE), 
and instead make a trade-off between the level of privacy and 
the computation overhead. 

In terms of the computation overhead, we take the HE-
based FL scheme as an example. Before uploading the model 
parameters to the aggregation server, participants need to en-
crypt each element in the vectors of the parameters using HE, 
so that the parameters can be aggregated in the form of cipher-
text. In some deep neural network models, the number of ele-
ments can reach the size of millions, which means each partic-

ipant needs to perform millions of encryption operations. Alt-
hough some works have proposed the batch encryption, there 
is still a limitation on the number of parameters that can be 
encrypted at one time [8]. In this paper, the ring signature we 

use does not need to calculate the elements one by one, instead, 
it uses cascade or hash function to map all elements to one 
element to achieve verification. 

 

Figure 1. The proposed framework 

Authorized licensed use limited to: Qatar University. Downloaded on October 19,2022 at 08:51:48 UTC from IEEE Xplore.  Restrictions apply. 



In terms of privacy, under the security guarantee of encryp-
tion techniques, the server or the adversaries cannot obtain any 
information about the parameters. In our paper, due to the use 
of anonymous communication technology, neither the server 
nor the adversaries can know the owner of the parameters in 
each round. Therefore, even if the server receives the parame-
ters, it cannot infer any private information as the belongings 
of these values are unknown. Besides, the ring signature used 
in our scheme can prevent the adversaries from posing as par-
ticipants and submitting fake parameters.  

3) System robustness 

Since the large number of participants in the cross-device 
federated learning can be widely distributed, the communica-
tion among the participants may be unstable. The privacy-
preservation methods such as adding mask require multiple 
rounds of interactions among the peer participants to prevent 
data from becoming unavailable. However, participants' inten-
tional or unintentional withdrawals may affect the accuracy of 
the final model. In our FL framework, participants only need 
to communicate with the server, which has better tolerance for 
single-device failure or disconnection. 

4) Incentive 

Due to the concerns about privacy leakage, or simply the 
unwillingness to devote computing resources, mobile users 
may be reluctant to participate in the federated learning. In 
order to get more mobile devices to participate the FL, we pro-
pose a contribution- based incentive mechanism with access 
control. Different from existing incentive mechanisms, sharing 
the outcome of federated learning – the global model with the 
participants can help to improve and/or optimize the mobile 
applications and services on their devices. This can motivate 
mobile users to actively participate and provide high quality 
data to the FL. Avoiding monetary incentives can also prevent 
some legal issues. 

III. CASE STUDY: APPLICATION ON AUTONOMOUS DRIVING 

In recent years, autonomous driving has made some pro-
gress. However, it is still a huge challenge for autonomous 
driving to deal with complex and unforeseen environments. 
One of the main reasons is that the amount of training samples 
used for autonomous driving learning algorithms is not suffi-
cient. Federated learning, as a promising solution, can use the 
actual data collected from each autonomous car for model 
training while protecting the privacy of each individual partic-
ipant. 

3.1. Security Assumption   

First, we define the security of the system according to the 
actual conditions in autonomous driving. 

1) Participant: We assume that the participants (autono-
mous cars) are honest-but-curious. They do not submit fake 
model parameters maliciously, but they may try to figure out 
the private information of other participants. 

2) Aggregation server: The aggregation server is a semi-
honest third party, it may return wrong aggregation results due 
to laziness and is curious about the privacy of the participants. 

3) Malicious adversary: The malicious adversaries may try 
to recover the participants' private information from their mod-
el parameters. Additionally, the malicious adversaries may 
impersonate legitimate participants to send fake model pa-
rameters to the aggregation server to corrupt the global model.  

4) Key generation center (KGC): The key generation center 
is responsible for generating the system parameters of ring 
signature. It is a fully trusted party and does not participate in 
the training of FL. After it generates the system parameters, it 
goes offline. 

3.2. Preliminary 

1) Ring Signature 

The ring signature is a digital signature scheme that can 
achieve the anonymity of the signer’s identity. The core idea of 
the ring signature is that there are n users, and each user has a 
public key and a private key. When a user signs a message m, 
it needs to use the public key of other users and his own pri-
vate key to generate the signature. The verifier can verify that 
the signature is generated by one of the n signers, but the actu-
al signer cannot be located. A user can choose any possible set 
of signers to produce a valid ring signature, and use the public 
key of these signers and his own private key to complete the 
signing operation. We adopt ring signature to prevent adver-
saries from masquerading as the legitimate participants. 

2) Homomorphic Hash 

The homomorphic hash function is a kind of collision-
resistant hash function satisfying the homomorphic property. 
Given an additive homomorphic hash function H, several ran-
dom numbers a1, a2, ..., an. According to the data field of the 

corresponding hash function, the value of H(a1) + H(a2) + ... + 
H(an) is equal to the value of H (a1 + a2 + ... + an). This special 
hash function can verify the correctness of the calculation re-
sult without knowing the raw data. The verifier only needs to 
obtain the hash value of each parameter to verify whether the 
calculation result (the sum of these parameters) is correct. Our 
framework conducts the correctness verification for the aggre-
gation results using homomorphic hash.  

3.3. Description of the scheme 

1) System Initialization 

When a new FL task needs to be initiated, the KGC first 
uses the number of participants n and the aggregation server to 
decide a unified initial model and parameters. The KGC needs 
to generate the following parameters. 

 A pair of public and private keys (pki, ski) for each 
participant i, which is used for the ring signature. 

 A hash function H with homomorphic property which 
is used to verify the correctness of the aggregation 
results. 

The KGC sends the key pair (pki, ski) to the corresponding 
participant i and announces pki and the hash function H to all 
participants and the aggregation server.  

2) Local Training 
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The local training phase includes the following steps.  

 Each participant downloads the unified initial model 
and parameters (represented by ω0) from the 
aggregation server. 

 Each participant i uses the local data sets and 
parameters ω0 to perform the local model training 
operation: LocalUpdate(i, ω0)→ω1,i. Due to the 
different local data sets used for training, the local 
model constructed by each participant is different. 

 Each participant i calculates the ring signature of the 
local model parameters, as shown in Fig. 2: RSign(ω1,i, 
pki, pkj, ..., pkk, ski)→Rω(1,i). The participant i can select 
the public keys for the ring signature from all the n 
participants (The greater the number of public keys 
selected, the better for the privacy-preservation, but 
the greater the computation overhead), and use the 
public keys as well as his own private key ski to sign 
the parameters ω1,i. Then it uploads the local 
parameters ω1,i, the ring signature Rω(1,i) and the 
signers’ public keys used for ring signature to the ag-
gregation server via the anonymous communication 
network. In order to verify the correctness of the 
aggregation results, each participant i calculates the 
homomorphic hash of the local model parameters 
H(ω1,i), and multicasts H(ω1,i) to other participants. 

 If the local training is not the first round, after down-
loading the parameters ωk from the aggregation server, 
the participants first verify whether the aggregation re-
sults calculated by the aggregation server are correct. 
Each participant only needs to verify whether the sum 
of the homomorphic hash values H(ωk,i) of all partici-
pants is equal to H(ωk).  

3) Aggregation 

In the aggregation phase, the aggregation server needs to 
execute two tasks. 

First, the aggregation server verifies if the identities of the 
participants sending the parameters are legitimate.  

We assume that VSign is the verification algorithm for the 
ring signature. The aggregation server can use ω1,i, Rω(1,i) and 
the public keys to verify whether VSign(ω1,i, pki, pkj, ..., pkk, 
Rω(1,i)) is equal to ω1,i. This verification can prevent malicious 
adversaries other than the n participants from submitting fake 
model parameters. During this process, the aggregation server 
cannot figure out the identity of the uploader of the model 
parameters, so the identities of the participants are protected. 

Then, the aggregation server aggregates the local 
parameters uploaded by each participant. 

The aggregation server averages the local model 
parameters ω1,i of all the n participants and produces the 
updated global model parameters ω1. Then the aggregation 
server checks whether the updated global model parameters ω1 
have converged. If they have converged, the federated training 
ends and the final global model parameters are obtained. 
Otherwise, each participant downloads ω1 from the 
aggregation server and the training process will repeat. 

4) Incentive 

The incentive mechanism is shown in Fig.3. Its detailed 
description is as follows.  

Before participating in the federated learning training, the 
user first uses his local data to train a local machine learning 
model and proves the quality of the model to the incentive 
center in the manner of zero-knowledge. The user holds the 
model, and the incentive center holds the data to be inferred. 
They perform secure inference over the ML model using se-
cure 2-party computation (2PC) such as oblivious transfer (OT) 
and garbled circuits [13]. 2PC can ensure that the incentive 
center cannot obtain the user’s model parameters, so as to pro-
tect the privacy of the user. The user also cannot get the in-
ferred data, and thus the deliberately modified inference results 
become meaningless (step 1). The incentive center distributes a 
contribution weight ε to the user according to the inference 
accuracy, which, to a certain extent, characterizes the possible 
contribution that the user's data made to the corresponding FL 
model (step 2).  

After the federated learning task is completed, a global 
model will be generated. The incentive center seeks the users’ 
consent, and adds tags to the trained model, grades it according 
to the usage, accuracy, and so on. Assuming that these models 

 

Figure 3. Contribution -based incentive mechanism 

 

Figure 2. Ring signature 
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are classified into four levels: A, B, C and D. The incentive 
center encrypts the model to implement the access control 
scheme. Each level corresponds to an attribute. For example, 
the access policy of the D-level model is set to A or B or C or 
D, and the access policy of the B-level model is set to A or B. 
Only users who have reached the corresponding contribution 
level can decrypt the model. The encrypted models are stored 
in the model market (step 3). The participants in the model can 
gain credits of contribution according to the number of times 
the model is accessed, the model level and their respective 
contribution weight ε (step 4). 

After reaching a certain contribution level, the user can re-
quest for a secret key SK of the access control scheme from 
KGC to access models of the same level. In the access control 
scheme, even if the users are of the same level, the granted 
secret keys are different, which can prevent the abuse of the 
secret key.  

IV. PERFORMANCE EVALUATION 

In this part, we evaluate the performance of our proposed 
framework from two perspectives: (1) the impact of the num-
ber of participants on accuracy and (2) when there is an adver-
sary, the impact of verification of participants on accuracy.  

We build the federated learning environment with Python 
(version 3.6.2) and TensorFlow (version 2.3.2). A multi-layer 
perceptron model is conducted as the experimental subject for 
the training on MNIST dataset of handwritten digits with a 
training set of 60,000 examples, and a test set of 10,000 exam-
ples. From Fig. 4, we can conclude that when a user conducts 
learning only based on her own local data, the accuracy of the 
model is much lower than that of the FL. Additionally, when 
the sample number of each user is certain, the more users in-
volved in learning, the higher accuracy the overall global mod-
el can achieve - this also highlights the importance of using the 
incentive mechanism. 

In the case study, We use the ring signature to protect 
privacy and verify the identity of participants to prevent 
adversaries from impersonating legitimate participants. Here 
we construct a malicious adversary in the experiment to show 
the importance of verifying participants. As shown in Fig.5, in 
the FL scheme without the verification function, a malicious 
adversary may greatly downgrade the accuracy of the model.  

To better show the advantages of our scheme in terms of 
computation overhead, we also give a comparison of the com-
putation overhead between the privacy preservation technique- 
used in our scheme (i.e., ring signature) and the HE commonly 
used in FL. 

We choose paillier as the HE algorithm, the encryption 
time of each parameter is about 0.037s. For the linear 
regression model, assuming that the feature dimension is 10, 
the computation overhead of encryption for each participant in 
one round is 0.407s. For a fully connected layer with 300 input 
neurons and 100 output neurons, the number of parameters can 
reach 330,100 and the corresponding computation overhead is 
12213.7s. Similarly, some practical convolution layers also 
have tens of thousands of parameters. At present, the 
parameters of some popular deep neural networks can reach 

the level of one million or even hundreds of millions, in which 
the HE can hardly work. 

The computation overhead of ring signature used in our 
scheme is only related to the number of public keys used for 
signatures, for example, 2 public keys for 0.0165s, 10 public 
keys for 0.0192s and 100 public keys for 0.056s. 

V.OPEN ISSUES 

1) How to solve the problem that participants may submit 
fake parameters 

To the best of our knowledge, none of the existing studies 
has successfully solved the problem of participants submitting 
fake parameters. Some related studies [14] have tried to solve 
this issue. However, these studies only judge whether the par-
ticipant is honest based on the parameters submitted by the 
participant. It may make a misjudgment, causing injustice to 
the honest participants and may lead to overfitting of the mod-
el (The model performed well on the raw data set, but poorly 
on the new data set). Zero-knowledge proof may be a promis-
ing solution. 

2) How to realize efficient federated learning for vertically 
partitioned data 

 

Figure 5. The effect of verification of participants on accuracy. A is 
the number of adversaries, V=1 means that there is a verification 
process, otherwise, V=0. 

 

Figure 4. The effect of the number of participants on accuracy. N is 
the number of participants in FL. 
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Most of the current federated learning schemes are for hor-
izontally partitioned data, but there are few studies on federat-
ed learning for vertically partitioned data. It is relatively diffi-
cult to implement federated learning for vertically partitioned 
data [15]. However, in the cross-device FL, there are some 
scenarios that require vertically federated learning, for exam-
ple, medical data and traffic data of the same user. It is neces-
sary to carry out more in-depth research on vertically federated 
learning. 

VI. CONCLUSION 

In this paper, we employed the anonymous communication 
technology to construct a cross-device federated learning 
framework based on 5G mobile networks. Our framework has 
lower computation overhead while protecting the privacy of 
mobile users. We give a case study of autonomous driving. 
The ring signature is used to verify the identity of participants 
and the hash homomorphism is used for the correctness verifi-
cation for the calculation results of the aggregation server. In 
addition, we implemented a contribution-based incentive 
mechanism with access control to encourage mobile users to 
participate in federated learning. The performance evaluation 
proves the practicality of our scheme. Finally, we discussed 
some open issues in federated learning. 
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