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Abstract: In this article, certain sharp Lp estimates for a specific class of generalized Marcinkiewicz
operators with mixed homogeneity associated to surfaces of revolution are established. By virtue of
Yano’s extrapolation argument, beside these estimates, the Lp boundedness of the aforementioned
operators under weaker assumptions on the kernels is confirmed. The obtained results in this article
are fundamental extensions and improvements of numerous previously known results on parabolic
generalized Marcinkiewicz integrals.
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1. Introduction

Let s ≥ 2 be an integer, and let Ss−1 denote the unit sphere in the Euclidean space Rs,
which is equipped with the normalized Lebesgue surface measure dσ.

For j ∈ {1, 2, . . . , s}, assume that αj ≥ 1 are fixed numbers. Consider the mapping

V : R+ ×Rs → R by V(κ, ω) =
s
∑

j=1

ω2
j

κ
2αj

with ω = (ω1, ω2, . . . , ωs) ∈ Rs. Then, for a fixed

ω ∈ Rs, it is easy to see that V(κ, ω) is strictly decreasing mapping in κ > 0. So, the
equation V(κ, ω) = 1 has a unique solution, denoted by κ(ω) ≡ κ. The authors of [1]
proved that (Rs, κ) is a metric space and called it the mixed homogeneity space related to
{αj}s

j=1. For κ > 0, let Dκ denote the diagonal s× s matrix

Dκ =

κα1 0
. . .

0 καs

.

The change of variables regarding the space (Rs, κ) is given as the following:
ω1 = κα1 cos ϑ1 . . . cos ϑn−2 cos ϑs−1,
ω2 = κα2 cos ϑ1 . . . cos ϑs−2 sin ϑs−1,
...
ωs−1 = καs−1 cos ϑ1 sin ϑ2,
ωs = καs sin ϑ1.

This leads to dω = κα−1 J(v)dκdσ(v), where κα−1 J(v) is the Jacobian of the above trans-
forms,

v = Dκ−1 ω ∈ Ss−1, α =
s

∑
j=1

αj, and J(v) =
s

∑
j=1

αj(vj)
2.
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It is worth mentioning that the authors of [1] showed that J(v) belongs to the space
C∞(Ss−1) and also showed that there is a real number M with

M ≥ J(v) ≥ 1, ∀v ∈ Ss−1.

For λ = λ1 + iλ2 (λ1 ∈ R and λ2 ∈ R+), we define the kernel Kf,h on Rs by

Kf,h(ω) =
f(ω)h(κ(ω))

κ(ω)α−λ
,

where h : R+ → C is a measurable function and f is a function belonging to L1(Ss−1) that
satisfies the conditions

f(Dκω) = f(ω), ∀κ > 0, (1)

and ∫
Ss−1

f(v)J(v)dσ(v) = 0. (2)

For a suitable function Φ : R+ → R, we consider the generalized parabolic Marcinkiewicz
operator

M
(τ)
f,h,Φ,κ(g)(ω, ωs+1) =

(∫
R+

∣∣∣∣t−λ
∫

κ(u)≤t
g(ω− u, ωs+1 −Φ(κ(u))Kf,h(u)du

∣∣∣∣τ dt
t

)1/τ

,

(3)
where g ∈ S(Rs+1) and τ > 1.

It is obvious that when α1 = α2 = · · · = αs = 1, then we have α = s and κ(ω) = |ω|.
In this instance, we denote M

(τ)
f,h,Φ,κ by M

(τ),c
f,h,Φ. Further, when τ = 2, Φ(κ) = κ and h ≡ 1,

then M
(τ),c
f,h,Φ, denoted by Mf, reduces to the classical parametric Marcinkiewicz integral

operator. Historically, the integral operator Mf was introduced by Stein in [2] where he
established the Lp boundedness of Mf for all p ∈ (1, 2] whenever λ = 1 and f belongs
to the space Lipγ(Ss−1) for some 0 < γ ≤ 1. Afterwards, the above result was improved
by Hörmander in [3]. Indeed, he confirmed the Lp boundedness of Mf for all p ∈ (1, ∞)
under the conditions λ > 0 and f ∈ Lipγ(Ss−1) for some 0 < γ ≤ 1. Later on, the
authors of [4] extended and improved the result of Stein. In fact, they proved that Mf
is bounded on Lp(Rs) for all p ∈ (1, ∞) if λ = 1 and f ∈ C1(Ss−1). Subsequently, the
Lp boundedness of the M

(τ),c
f,h,Φ under various assumptions on the kernels has attracted a

considerable amount of attention from many mathematicians. For instance, Walsh in [5]
obtained the L2 boundedness of the operator Mf provided that f ∈ L(logL)1/2(Ss−1) and
λ = 1. Furthermore, he found that Mf will lose the L2 boundedness when the assumption
f ∈ L(log L)1/2(Ss−1) is replaced by f ∈ L(log L)υ(Ss−1) for any υ ∈ (0, 1/2). On the
other hand, the Lp (1 < p < ∞) boundedness for Mf was proved in [6] whenever λ = 1
and f belongs to the block space B(0,−1/2)

q (Ss−1) for some q > 1. In the same article,

the authors verified that −1/2 in B(0,−1/2)
q (Ss−1) cannot be substituted by any number in

(−1,−1/2), meaning that Mf is still bounded on L2(Rs).
Recently, Ali in [7] used Yano’s argument to improve and extend all the above-cited

results. In fact, he proved that if f ∈ L(logL)1/2(Ss−1) ∪ B(0,−1/2)
q (Ss−1), h ∈ Υµ(R+) for

some µ > 1, and Φ is in C2([0, ∞)), an increasing and convex function with Φ(0) = 0, then
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the operator M(2),c
f,h,Φ is bounded on Lp(Rs+1) for all |1/p− 1/2| < min{1/2, 1/µ′}, where

Υµ(R+) denotes the class of all measurable functions h : R+ → C that satisfy

‖h‖Υµ(R+) = sup
j∈Z

(∫ 2j+1

2j
|h(κ)|µ dκ

κ

)1/µ

< ∞.

For further information about the significance, development, and recent advances of the
discussion about the operator M(2),c

f,h,Φ, the readers are referred to [8–16] and the references
therein.

Although several problems regarding the boundedness of M(2),c
f,h,Φ remain open, the

study of the boundedness of the operator M(τ),c
f,h,Φ has been investigated by many authors.

For example, the operator M(τ),c
f,h,Φ was introduced in [17], where the authors showed that

when Φ(κ) = κ, h ≡ 1, f ∈ Lq(Ss−1) with q > 1, and 1 < τ < ∞, then for all 1 < p < ∞,∥∥∥M(τ),c
f,h,Φ(g)

∥∥∥
Lp(Rs+1)

≤ C‖(g)‖Hτ,p
0 (Rs+1). (4)

Later on, this result was improved by Le in [18]. Precisely, he proved that the inequality (4)
holds for all p ∈ (1, ∞) if Φ(κ) = κ, f ∈ L(log L)(Ss−1) and h ∈ Γmax{τ′ ,2}(R+), where τ′

denotes the conjugate index of τ.

Recently, the authors of [19] confirmed that if f ∈ B(0,−1/τ′)
q (Ss−1)∪ L(logL)1/τ(Ss−1),

Φ(κ) = κ and h ∈ Υµ(R+) with µ ∈ (1, 2], then the boundedness of M(τ),c
f,h,Φ is satisfied for

all p ∈ [τ, ∞). Further, they proved that if the condition µ ∈ (1, 2] is replaced by µ > 2,
then the boundedness of M(τ),c

f,h,Φ is satisfied for all p ∈ (1, τ) if 2 < µ < ∞ and µ ≤ τ′,
and also for all p ∈ (µ′, ∞) if 2 < µ ≤ ∞ and µ > τ′. Very recently, the authors of [20]
extended the results in [19]. In fact, they confirmed that the above results are true not only
for the case Φ(κ) = κ, but also when Φ belongs to the class I or the class D, which were
introduced in [21]. Precisely, the class I is the collection of all C1 functions Φ : R+ → R that
are non-negative and satisfy the following:

(i) Φ′ is monotone and Φ(κ) > 0 for all κ ∈ R+;
(ii) Φ(2κ) ≥ M1Φ(κ) for some fixed M1 > 1 and Φ(2κ) ≤ M2Φ(κ) with M2 ≥ M1;
(iii) κΦ′(κ) ≥ M3Φ(κ) on R+ for some 0 < M3 < log(M2).

In addition, D is the class of all C1 functions Φ : R+ → R that are non-negative and satisfy
the following:

(i) Φ′ is monotone and Φ(κ) < 0 for all κ ∈ R+;
(ii) Φ(κ) ≥ M1Φ(2κ) for some fixed M1 > 1 and Φ(κ) ≤ M2Φ(2κ) with M2 ≥ M1;
(iii) |κΦ′(κ)| ≥ M3Φ(κ) on R+ for some 0 < M3 < log(M2).

For recent advances in the study of the operator M
(τ),c
f,h,Φ, we refer the readers to

consult [19,20,22–25] and the references therein.
Let us recall the definitions of some spaces that are related to this work. For m > 0, we

let ∆m(R+) denote the collection of all functions h that are measurable on R+ such that

Λm(h) =
∞

∑
n=1

2nnmdn(h) < ∞,

where dn(h) = sup
j∈Z

2−j|U(j, m)| with U(j, m) =
{

κ ∈ (2j, 2j+1] : 2m−1 < |h(κ)| ≤ 2m} for

m ≥ 2 and U(j, 1) =
{

κ ∈ (2j, 2j+1] : |h(κ)| ≤ 2
}

.

It is clear that Υm(R+) ⊂ ∆ν(R+) for any m ≥ 1 and ν > 0.
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In this work, let L(log L)m(Ss−1) (for m > 0) denote the class of all functions f that
are measurable on Ss−1 such that

‖f‖L(log L)m(Ss−1) =
∫
Ss−1
|f(v)| logm(|f(v)|+ 2)dσ(v) < ∞.

In addition, let B(0,υ)
q (Ss−1) (with υ > −1 and q > 1) denote the block space that was

introduced in [26]. Furthermore, Hτ,p
ε denotes the homogeneous Triebel–Lizorkin space,

which is defined as follows: assume that θ ∈ Rs and W ∈ C∞
0 (Rs) is a radial function

satisfying the following:
(a) 0 ≤ W ≤ 1;
(b) suppW ⊂

{
θ : 1

2 ≤ |θ| ≤ 2
}

;

(c)W(θ) ≥ M > 0 if 3
5 ≤ |θ| ≤

5
3 ;

(d) ∑
n∈Z
W(2−nθ) = 1 (θ 6= 0).

For ε ∈ R and 1 < p, τ ≤ ∞ with (p 6= ∞),

Hτ,p
ε (Rs) =

g ∈ S ′(Rs) : ‖g‖Hτ,p
ε (Rs) =

∥∥∥∥∥∥
(

∑
n∈Z

2nετ |Fn ∗ g|τ
)1/τ

∥∥∥∥∥∥
Lp(Rs)

< ∞

,

where S ′ denotes the tempered distribution class on Rs and F̂n(θ) =W(2−nθ) for n ∈ Z.
The generalized parabolic Marcinkiewicz operator M(τ)

f,h,Φ,κ was recently introduced
in [27] under some weak conditions on the kernels. This result was studied in [28] under
some weaker conditions on the kernels only for the case τ = 2. In view of the result
in [19] on the boundedness of classical generalized parametric Marcinkiewicz M

(τ),c
f,h,Φ and

of the result in [28] on the parabolic Marcinkiewicz M
(2)
f,h,Φ,κ , a natural question arises: is

the boundedness of the parabolic operator M(τ)
f,h,Φ,κ satisfied under the same conditions

assumed in [19] while replacing the condition τ = 2 by a weaker condition τ > 1 and when
Φ belongs to I or D?

In the next section, we shall give an affirmative answer to this question.

2. Statement of results

We devote this section to presenting the main results of this article. Indeed, they are
formulated as follows.

Theorem 1. Let f belong to the space Lq(Ss−1) and h belong to the space Υµ(R+) with q, µ ∈
(1, 2]. Assume that Φ lies in I or D. Then, there is a constant Cp > 0 such that∥∥∥M(τ)

f,h,Φ,κ(g)
∥∥∥

Lp(Rs+1)
≤ Cp

1
(q− 1)(µ− 1)

‖h‖Υµ(R+)
‖f‖Lq(Ss−1)‖g‖Hτ,p

0 (Rs+1) i f 1 < p < τ, (5)

and∥∥∥M(τ)
f,h,Φ,κ(g)

∥∥∥
Lp(Rs+1)

≤ Cp
1

((q− 1)(µ− 1))1/τ
‖h‖Υµ(R+)

‖f‖Lq(Ss−1)‖g‖Hτ,p
0 (Rs+1) i f τ ≤ p < ∞. (6)

The constant Cp is independent of f, h, Φ, q, and µ.

Theorem 2. Suppose that f and Φ are given as in Theorem 1. Let h belong to the space Υµ(R+)
for some µ > 2. Then, the inequality∥∥∥M(τ)

f,h,Φ,κ(g)
∥∥∥

Lp(Rs+1)
≤ Cp

1
(q− 1)1/τ

‖h‖Υµ(R+)
‖f‖Lq(Ss−1)‖g‖Hτ,p

0 (Rs+1)
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holds for all p ∈ (1, τ) if 2 < µ < ∞ and τ ≤ µ′ and also holds for all p ∈ (µ′, ∞) if 2 < µ ≤ ∞
and τ > µ′.

By utilizing the conclusions of Theorems 1 and 2, Yano’s extrapolation argument, and
the same method used in [12,29,30], we obtain the following results.

Theorem 3. Let M(τ)
f,h,Φ,κ be given by (3) and Φ be given as in Theorem 1.

(i) If f ∈ B(0,−1/τ′)
q (Ss−1) for some q > 1 and h ∈ ∆1/τ(R+), then for any p ∈ [τ, ∞),∥∥∥M(τ)

f,h,Φ,κ(g)
∥∥∥

Lp(Rs+1)
≤ Cp

(
‖f‖

B(0,−1/τ′)
q (Ss−1)

+ 1
)
(Λ1/τ(h) + 1)‖g‖Hτ,p

0 (Rs+1).

(ii) If f ∈ B(0,0)
q (Ss−1) with q > 1 and h ∈ ∆1(R+), then for any p ∈ (1, τ),∥∥∥M(τ)
f,h,Φ,κ(g)

∥∥∥
Lp(Rs+1)

≤ Cp

(
‖f‖

B(0,0)
q (Ss−1)

+ 1
)
(Λ1(h) + 1)‖g‖Hτ,p

0 (Rs+1).

(iii) If f ∈ L(log L)1/τ(Ss−1) and h ∈ ∆1/τ(R+), then for any p ∈ [τ, ∞),∥∥∥M(τ)
f,h,Φ,κ(g)

∥∥∥
Lp(Rs+1)

≤ Cp

(
‖f‖L(log L)1/τ(Ss−1) + 1

)
(Λ1/τ(h) + 1)‖g‖Hτ,p

0 (Rs+1).

(iv) If f ∈ L(log L)(Ss−1) and h ∈ ∆1(R+), then for any p ∈ (1, τ),∥∥∥M(τ)
f,h,Φ,κ(g)

∥∥∥
Lp(Rs+1)

≤ Cp

(
‖f‖L(log L)(Ss−1) + 1

)
(Λ1(h) + 1)‖g‖Hτ,p

0 (Rs+1).

Theorem 4. Assume that Φ is given as in Theorem 1 and h ∈ Υµ(R+) for some µ > 2.

(i) If f ∈ B(0,−1/τ′)
q (Ss−1) for some q > 1; then,∥∥∥M(τ)
f,h,Φ,κ(g)

∥∥∥
Lp(Rs+1)

≤ Cp

(
‖f‖

B(0,−1/τ′)
q (Ss−1)

+ 1
)
‖h‖Υµ(R+)

‖g‖Hτ,p
0 (Rs+1)

holds for all p ∈ (1, τ) if 2 < µ < ∞ and µ ≤ τ′ and also for all p ∈ (µ′, ∞) if 2 < µ ≤ ∞ and
µ > τ′.

(ii) If f ∈ L(log L)1/τ(Ss−1), then∥∥∥M(τ)
f,h,Φ,κ(g)

∥∥∥
Lp(Rs+1)

≤ Cp

(
‖f‖L(log L)1/τ(Ss−1) + 1

)
‖h‖Υµ(R+)

‖g‖Hτ,p
0 (Rs+1)

holds for all p ∈ (1, τ) if 2 < µ < ∞ and µ ≤ τ′, and also for all p ∈ (µ′, ∞) if 2 < µ ≤ ∞ and
µ > τ′.

Here and henceforward, the letter C refers to a positive number whose value does not
depend on the primary variables and also that is not necessary the same at each occurrence.

3. Some Auxiliary Lemmas

We devote this section to establishing some preliminary lemmas that are needed to
prove our main results. Let us begin by introducing some notations. Let b ≥ 2. Define the
family of measures {σKf,h ,Φ,t := σt : t ∈ R+} and the corresponding maximal operators σ∗h
andMh,b on Rs+1 by∫

Rs+1
gdσt = t−λ

∫
t/2≤κ(ω)≤t

g(ω, Φ(κ(ω)))Kf,h(ω)dω,
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σ∗(g) = sup
t∈R+

||σt| ∗ g|,

and

Mh,b(g) = sup
j∈Z

∫ bj+1

bj
||σt| ∗ g|dt

t
,

where |σt| is defined in the same way as σt, but replacing fh by |fh|.
The following two lemmas play a great role in the proofs of Theorems 1 and 2. They

can be established by following the exact procedure utilized in [31] (with a very simple
minor modification).

For simplicity, we let G(h,f) = ‖h‖Υµ(R+)
‖f‖Lq(Ss−1).

Lemma 1. Let b ≥ 2, f ∈ Lq(Ss−1) and h ∈ Υµ(R+) for some q, µ > 1. Suppose that Φ belongs
to I or D. Then, there are constants δ and C with 0 < δ ≤ min{ 1

2 , m
2q′ ,

m
2α} such that for all j ∈ Z,

‖σt‖ ≤ CG(h,f)

and ∫ bj+1

bj
|σ̂t(ξ, ξs+1)|2

dt
t
≤ C(ln b)G2(h,f)min{

∣∣Dbj ξ
∣∣ 2δ

m(ln b) ,
∣∣Dbj ξ

∣∣− 2δ
m(ln b) },

where ‖σt‖ is the total variation of σt and m is denoted to be the distinct numbers of αj.

Lemma 2. Suppose that b, f, h, and Φ are given as in Lemma 1. Then, for 1 < p < ∞, there
exists Cp > 0 such that inequalities

‖σ∗(g)‖Lp(Rs+1) ≤ Cp(ln b)G(h,f)‖g‖Lp(Rs+1), (7)

and
‖Mh,b(g)‖Lp(Rs+1) ≤ Cp(ln b)G(h,f)‖g‖Lp(Rs+1) (8)

hold for all g ∈ Lp(Rs+1).

One of the key tools in proving our main results is Plancherel’s Theorem, which states
that ‖g‖L2(Rs+1) = C‖ĝ‖L2(Rs+1). A significant step towards handling our main results is to
prove the following:

Lemma 3. Let b ≥ 2 and Φ be in I or D. Assume that f ∈ Lq(Ss−1) for some 1 < q ≤ 2
and h ∈ Υµ(R+) for some 1 < µ ≤ 2. Then, there is C > 0 such that for arbitrary functions
{Aj(·), j ∈ Z} on Rs+1, nd we have

∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

≤ C(ln b)1/τG(h,f)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

(9)

for 1 < τ ≤ p < ∞, and

∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

≤ C(ln b)G(h,f)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

(10)

for 1 < p < τ.
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Proof. Firstly, we prove (9). For a fixed p ∈ [τ, ∞), we find, by duality, that there exists a
non-negative function φ ∈ L(p/τ)′(Rs+1) that satisfies ‖φ‖

L(p/τ)′ (Rs+1)
≤ 1 and

∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

τ

Lp(Rs+1)

=
∫

Rs+1

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj(ω, ωs+1)
∣∣τ dt

t

× φ(ω, ωs+1)dωdωs+1. (11)

Thanks to Hölder’s inequality, we deduce that

∣∣σt ∗ Aj(ω, ωs+1)
∣∣τ ≤ C‖h‖(τ/τ′)

Υ1(R+)
‖f‖(τ/τ′)

L1(Ss−1)

×
t∫

t/2

∫
Ss−1

J(v)
∣∣Aj(ω− Dκv, ωs+1 −Φ(κ))

∣∣τ |f(v)|dσ(v)|h(κ)|dκ

κ
. (12)

Hence, the inequalities (11) and (12) together with Hölder’s inequality lead to∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

τ

Lp(Rs+1)

≤ C‖h‖(τ/τ′)
Υ1(R+)

‖f‖(τ/τ′)
L1(Ss−1)

∫
Rs+1

(
∑
j∈Z

∣∣Aj(ω, ωs+1)
∣∣τ)M|h|,bφ(−ω, ωs+1)dωdωs+1

≤ C‖h‖(τ/τ′)
Υ1(R+)

‖f‖(τ/τ′)
L1(Ss−1)

∥∥∥∥∥∑
j∈Z

∣∣Aj
∣∣τ∥∥∥∥∥

L(p/τ)(Rs+1)

∥∥∥M|h|,b(φ)
∥∥∥

L(p/τ)′ (Rs+1)
,

where φ(−ω, ωs+1) = φ(ω, ωs+1). Therefore, by Lemma 2, we find that

∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

≤ C(ln b)1/τG(h,f)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

(13)

for τ < p < ∞. Now, let us prove (9) for the case p = τ. It is clear that, by using (12) and
Hölder’s inequality,

∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

τ

Lp(Rs+1)

≤ C‖f‖(τ/τ′)
L1(Ss−1)

‖h‖(τ/τ′)
Υ1(R+)

× ∑
j∈Z

∫
Rs+1

∫ bj+1

bj

t∫
t/2

∫
Ss−1

J(v)
∣∣Aj(ω− Dκv, ωs+1 −Φ(κ))

∣∣τ |f(v)||h(κ)|dσ(v)
dκ

κ

dt
t

dωdωs+1

≤ C(ln b)‖h‖(τ/τ′)+1
Υ1(R+)

‖f‖(τ/τ′)+1
L1(Ss−1)

∫
Rs+1

(
∑
j∈Z

∣∣Aj(ω, ωs+1)
∣∣τ)dωdωs+1.

Therefore, the inequality (9) holds for the case p = τ. Let us prove (10) for the case
1 < p < τ. Thanks to the duality, we deduce that a set of functions {Fj(ω, ωs+1, t)} defined

on Rs+1 ×R+ exists such that
∥∥∥∥∥∥‖Fj‖Lτ′ ([bj ,bj+1], dt

t )

∥∥∥
τ′

∥∥∥
Lp′ (Rs+1)

≤ 1 and
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∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

=
∫

Rs+1

∑
j∈Z

∫ bj+1

bj

(
σt ∗ Aj(ω, ωs+1)

)
Fj(ω, ωs+1, t)

dt
t

dωdωs+1

≤ C((ln b)1/τ
∥∥∥(Ψ(F ))1/τ′

∥∥∥
Lp′ (Rs+1)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

, (14)

where

Ψ(F )(ω, ωs+1) = ∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Fj(ω, ωs+1, t)
∣∣τ′ dt

t
and Fj(ω, ωs+1, t) = Fj(−ω, ωs+1, t).

As p′ > τ′, there exists a function r ∈ L(p′/τ′)′(Rs+1) satisfies

‖Ψ(F )‖L(p′/τ′)(Rs+1)
= ∑

j∈Z

∫
Rs+1

∫ bj+1

bj

∣∣σt ∗ Fj(ω, ωs+1, t)
∣∣τ′ dt

t
r(ω, ωs+1)dωdωs+1. (15)

Thus, by employing the same procedure as above, we obtain

‖Ψ(F )‖L(p′/τ′)(Rs+1)
≤ C‖h‖(τ

′/τ)
Υµ(R+)

‖f‖(τ
′/τ)

L1(Ss−1)

× ‖σ∗(r)‖
L(p′/τ′)′ (Rs+1)

∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣Fj(·, ·, t)
∣∣τ′ dt

t

)∥∥∥∥∥
L(p′/τ′)(Rs+1)

≤ C(ln b)‖h‖(τ
′/τ)+1

Υµ(R+)
‖f‖(τ

′/τ)+1
Lq(Ss−1)

‖r‖
L(p′/τ′)′ (Rs+1)

, (16)

where r(ω, ωs+1) = r(−ω, ωs+1). Consequently, by using (14) and (16), the inequality (10)
is satisfied. So, the proof of Lemma 3 is complete.

In the same manner, we get the following lemma.

Lemma 4. Suppose that b, Φ, and f are given as in Lemma 3, and suppose that h ∈ Υµ(R+) for
some 2 ≤ µ < ∞. Then, for arbitrary functions {Aj(·), j ∈ Z} on Rs+1, the inequality∥∥∥∥∥∥

(
∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

≤ C(ln b)1/τG(h,f)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

(17)

holds for any p ∈ (1, τ) if τ ≤ µ′, and for any p ∈ (µ′, ∞) if τ > µ′.

Proof. Let us prove (17) for the case p ∈ (1, τ) with τ ≤ µ′. By duality, there are
functions {Hj(ω, ωs+1, t)} that are defined on Rs+1 × R+ such that∥∥∥∥∥∥‖Hj‖Lτ′ ([bj ,bj+1], dt

t )

∥∥∥
lτ′

∥∥∥
Lp′ (Rs+1)

≤ 1 and

∥∥∥∥∥∥
(

∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

=
∫

Rs+1

∑
j∈Z

∫ bj+1

bj

(
σt ∗ Aj(ω, ωs+1)

)
Hj(ω, ωs+1, t)

dt
t

dωdωs+1

≤ C((ln b)1/τ
∥∥∥(Ω(H))1/τ′

∥∥∥
Lp′ (Rs+1)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

, (18)
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where

Ω(H)(ω, ωs+1) = ∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Hj(ω, ωs+1, t)
∣∣τ′ dt

t
.

As 1 < τ ≤ µ′ ≤ µ, then Hölder’s inequality leads to

∣∣σt ∗ Hj(ω, ωs+1, t)
∣∣τ′ ≤ C‖f‖(τ

′/τ)

L1(Ss−1)
‖h‖τ′

Υµ(R+)

∫ bj+1

bj

∫
Ss−1
|f(ω)|

×
∣∣Hj(ω− Dκv, ωs+1 −Φ(κ), t)

∣∣τ′dσ(v)
dt
t

. (19)

Again, as p′ > τ′, we deduce that there exists a function u belonging to L(p′/τ′)′(Rs+1) such
that ∥∥∥(Ω(H))1/τ′

∥∥∥τ′

Lp′ (Rs+1)
= ∑

j∈Z

∫
Rs+1

∫ bj+1

bj

∣∣σt ∗ Hj(ω, ωs+1, t)
∣∣τ′ dt

t
u(ω, ωs+1)dωdωs+1.

So, by using Lemma 2, Hölder’s inequality, and the inequality (19), we obtain∥∥∥(Ω(H))1/τ′
∥∥∥τ′

Lp′ (Rs+1)
≤ C‖f‖(τ

′/τ)

L1(Ss−1)
‖h‖τ′

Υµ(R+)
‖σ∗(u)‖

L(p′/τ′)′ (Rs+1)

×
∥∥∥∥∥∑

j∈Z

∫ bj+1

bj

∣∣Hj(·, ·, t)
∣∣τ dt

t

∥∥∥∥∥
L(p′/τ′)(Rs+1)

≤ Cp‖f‖(τ
′/τ)+1

L1(Ss−1)
‖h‖τ′

Υµ(R+)
‖u‖

L(p′/τ′)′ (Rs+1)
. (20)

Consequently, by the last inequality and (18), we get (17) for any p ∈ (1, τ) with µ ≤ τ′.
On the other hand, to satisfy (17) for the case p ∈ (µ′, ∞) with µ > τ′, we employ the

arguments employed in [19]. By invoking Lemma 2, we find that

∥∥∥∥∥sup
j∈Z

sup
t∈[1,b]

∣∣σbjt ∗ Aj
∣∣∥∥∥∥∥

Lp(Rs+1)

≤
∥∥∥∥∥σ∗

(
sup
j∈Z

∣∣Aj
∣∣)∥∥∥∥∥

Lp(Rs+1)

≤ CpG(h,f)

∥∥∥∥∥sup
j∈Z

∣∣Aj
∣∣∥∥∥∥∥

Lp(Rs+1)

(21)

for all µ′ < p < ∞ with µ ≥ 2. This leads to∥∥∥∥∥∥∥‖σbjt ∗ Aj‖L∞([1,b], dt
t )

∥∥∥
L∞(Z)

∥∥∥∥
Lp(Rs+1)

≤ CpG(h,f)
∥∥∥∥∥Aj

∥∥
L∞(Z)

∥∥∥
Lp(Rs+1)

. (22)

Thanks again to duality, we deduce that there exists ρ ∈ L(p/µ′)′(Rs+1) such that ‖ρ‖
L(p/µ′)′ (Rs+1)

≤
1 and
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∥∥∥∥∥∥
(

∑
j∈Z

∫ b

1

∣∣σbjt ∗ Aj
∣∣τ′ dt

t

)1/τ′
∥∥∥∥∥∥

τ′

Lp(Rs+1)

=
∫

Rs+1

∑
j∈Z

∫ b

1

∣∣σt ∗ Aj(ω, ωs+1)
∣∣τ′ dt

t
ρ(ω, ωs+1)dωdωs+1

≤ C‖f‖(τ
′/τ)

L1(Ss−1)
‖h‖τ′

Υµ(R+)

∫
Rs+1

∑
j∈Z

∣∣Aj(ω, ωs+1)
∣∣τ′σ∗(ρ)(ω, ωs+1)dωdωs+1

≤ C ln(b)‖f‖(τ
′/τ)

L1(Ss−1)
‖h‖τ′

Υµ(R+)

∥∥∥∥∥∑
j∈Z

∣∣Aj
∣∣τ′∥∥∥∥∥

L(p/τ′)(Rs+1)

‖σ∗(ρ)‖
L(p/τ′)′ (Rs+1)

≤ C ln(b)‖f‖(τ
′/τ)+1

L1(Ss−1)
‖h‖τ′

Υµ(R+)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ′) 1

τ′
∥∥∥∥∥∥

τ′

Lp(Rs+1)

, (23)

where ρ(ω, ωs+1) = ρ(−ω, ωs+1). Define the linear operator Θ on any functionAj(ω, ωs+1)
by Θ(Aj(ω, ωs+1)) = σbjt ∗ Aj(ω, ωs+1) and then interpolate (22) with (23); thus, we end
with ∥∥∥∥∥∥

(
∑
j∈Z

∫ bj+1

bj

∣∣σt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

≤

∥∥∥∥∥∥
(

∑
j∈Z

∫ b

1

∣∣σbjt ∗ Aj
∣∣τ dt

t

)1/τ
∥∥∥∥∥∥

Lp(Rs+1)

≤ Cp(ln b)1/τG(h,f)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Aj
∣∣τ)1/τ

∥∥∥∥∥∥
Lp(Rs+1)

for all p ∈ (µ′, ∞) with µ > τ′. The proof of Lemma 4 is complete.

4. Proof of Theorem 1

Assume that f ∈ Lq(Ss−1) and h ∈ Υµ(R+) for some q, µ ∈ (1, 2]. By using
Minkowski’s inequality, we obtain that that

M
(τ)
f,h,Φ,κ(g)(ω, ωs+1) ≤

∞

∑
j=0

(∫
R+

∣∣∣∣t−λ
∫

2−j−1t<κ(u)≤2−jt
g(ω− u, ωs+1 −Φ(κ(u)))Kf,g(u)du

∣∣∣∣τ dt
t

)1/τ

=
2λ1

2λ1 − 1

(∫
R+

|σt ∗ g(ω, ωs+1)|τ
dt
t

)1/τ

. (24)

Let b = 2q′µ′ . Then, ln(b) ≤ 1
(q−1)(µ−1) . Let

{
ζ j
}

j∈Z be a collection of smooth functions

defined on (0, ∞) and satisfying the following proprieties:

supp ζ j ⊆
[
b−1−j, b1−j

]
; 0 ≤ ζ j ≤ 1;

∑
j∈Z

ζ j(κ) = 1; and
∣∣∣∣dnζ j(κ)

dκn

∣∣∣∣ ≤ Cn

κn .

Let ζ̂ j be the multiplier operators defined on Rs+1 by

ζ̂ j(g)(η, ηs+1) = ζ j(κ(η))ĝ(η, ηs+1) f or (η, ηs+1) ∈ Rs ×R.
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Thus, for g ∈ S(Rs+1) we have that

M
(τ)
f,h,Φ,κ(g)(ω, ωs+1) ≤

2λ1

2λ1 − 1 ∑
n∈Z
M(τ)

f,h,Φ,n(g)(ω, ωs+1), (25)

where

M(τ)
f,h,Φ,n(g)(ω, ωs+1) =

 ∫
R+

∣∣Bf,h,Φ,n,b(ω, ωs+1, t)
∣∣τ dt

t

1/τ

,

Bf,h,Φ,n,b(ω, ωs+1, t) = ∑
j∈Z

(ζ j+n ∗ σt ∗ g)(ω, ωs+1)χ
[bj ,bj+1)

(t).

The Lp-norm ofM(τ)
f,h,Φ,n(g) is estimated as follows: If p = τ = 2, then ‖g‖H2,2

0 (Rs+1)
=

‖g‖L2(Rs+1). So, by Lemma 1 and Plancherel’s Theorem, we get

∥∥∥M(2)
f,h,Φ,n(g)

∥∥∥2

L2(Rs+1)
≤ ∑

j∈Z

∫
Ij+n,b

 bj+1∫
bj

|σ̂t(η, ηs+1)|2
dt
t

|ĝ(η, ηs+1)|2dηdηs+1

≤ Cp(ln b)G2(h,f) ∑
j∈Z

∫
Ij+n,b

(
min

{∣∣∣D2q′µ′ j η
∣∣∣ 2δ

mq′µ′ ,
∣∣∣D2q′µ′ j η

∣∣∣− 2δ
mq′µ′

})
|ĝ(η, ηs+1)|2dηdηs+1

≤ Cp2−ε|n|(µ− 1)−1(q− 1)−1G2(h,f) ∑
j∈Z

∫
Ij+n,b

|ĝ(η, ηs+1)|2dηdηs+1

≤ Cp2−ε|n| (µ− 1)−1(q− 1)−1‖h‖2
Υµ(R+)

‖f‖2
Lq(Ss−1)‖g‖

2
L2(Rs+1),

where Ij,b =
{
(η, ηs+1) ∈ Rs+1 : κ(η) ∈

[
b−1−j, b1−j

]}
and 0 < ε < 1. Thus,∥∥∥M(2)

f,h,Φ,n(g)
∥∥∥

L2(Rs+1)

≤ C2−
ε
2 |n|(µ− 1)−1/2(q− 1)−1/2‖h‖Υµ(R+)

‖f‖Lq(Ss−1)‖g‖H2,2
0 (Rs+1)

. (26)

On the other hand, if p ∈ [τ, ∞), then by Lemma 3, we obtain that∥∥∥M(τ)
f,h,Φ,n(g)

∥∥∥
Lp(Rs+1)

≤ C(q− 1)−1/τ(µ− 1)−1/τ‖h‖Υµ(R+)
‖f‖Lq(Ss−1)‖g‖Hτ,p

0 (Rs+1). (27)

Moreover, if p ∈ (1, τ), we conclude that∥∥∥M(τ)
f,h,Φ,n(g)

∥∥∥
Lp(Rs+1)

≤ C(q− 1)−1(µ− 1)−1‖h‖Υµ(R+)
‖f‖Lq(Ss−1)‖g‖Hτ,p

0 (Rs+1). (28)

Consequently, when we interpolate (26) with (27) and (28) and then use (25), we directly
get (5) and (6). This finishes the proof of Theorem 1.

In the same manner, except invoking Lemma 4 with b = 2q′ instead of Lemma 3, we
can prove Theorem 2.

5. Conclusions

In this work, we found appropriate Lp bounds for the generalized parabolic Marcinkiewicz
operators M(τ)

f,h,Φ,κ whenever f belongs to the space Lq(Ss−1). By employing these bounds
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along with Yano’s extrapolation argument, we establish the Lp boundedness of M(τ)
f,h,Φ,κ

under very weak conditions assumed on the integral kernels. The results in this article
represent substantial extensions and improvements to previously known results. In fact,
our results improve and extend the results in [2–9,19,22,25]. We notice that the range of p,
|1/p− 1/2| < {1/µ− 1/2} becomes a tiny open interval when µ → 1+. In future work,
we aim to prove the Lp boundedness of the operator M(τ)

f,h,Φ,κ for the full range of p ∈ (1, ∞)

and also whenever f ∈ B(0,−1/2)
q (Ss−1) ∪ L(log L)1/2(Ss−1).
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