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Abstract—Machine learning (ML), and deep learning (DL) in
particular, play a vital role in providing smart services to the
industry. These techniques, however, suffer from privacy and
security concerns since data are collected from clients and then
stored and processed at a central location. Federated learning
(FL), an architecture in which model parameters are exchanged
instead of client data, has been proposed as a solution to these
concerns. Nevertheless, FL trains a global model by communi-
cating with clients over communication rounds, which introduces
more traffic on the network and increases the convergence time to
the target accuracy. In this work, we solve the problem of optimiz-
ing accuracy in stateful FL with a budgeted number of candidate
clients by selecting the best candidate clients in terms of test
accuracy to participate in the training process. Next, we propose
an online stateful FL heuristic to find the best candidate clients.
Additionally, we propose an IoT client alarm application that uti-
lizes the proposed heuristic in training a stateful FL global model
based on IoT device-type classification to alert clients about unau-
thorized IoT devices in their environment. To test the efficiency
of the proposed online heuristic, we conduct several experiments
using a real data set and compare the results against state-of-the-
art algorithms. Our results indicate that the proposed heuristic
outperforms the online random algorithm with up to 27% gain in
accuracy. Additionally, the performance of the proposed online
heuristic is comparable to the performance of the best offline
algorithm.
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I. INTRODUCTION

THE FOURTH industrial revolution (Industry 4.0) promises
the provisioning of smart services that enhance the man-

ufacturing process by utilizing emerging technologies, such as
Internet of Things (IoT) and artificial intelligence (AI) [1], [2].
In particular, most of the recent advances in Industry 4.0 and
AI are driven by machine learning (ML), a branch of AI, and
more specifically by deep learning (DL) [1], [3], [4].

The ML and DL techniques, however, require a large
amount of data for the training of their models. In particu-
lar, serious privacy and security concerns crop up when data
are collected and processed from scattered organizations and
users [5], [6]. For instance, the prediction of patient mortality
using electronic health record (EHR) data dispersed over many
hospitals is a complex undertaking due to the various privacy,
security, regulatory, and operational issues [7]. Additionally,
the communication of potentially large amounts of data from
the clients to a central server is costly and can choke the
networks when limited bandwidth is available [8]. Such bot-
tlenecks can be observed in vehicular edge computing (VEC)
where vehicles have to send their data such as images to road-
side servers to build models, which results in the networks
being greatly burdened [9].

To address the issues of security, privacy, and exces-
sive communication cost, the technique of federated learning
(FL) [10], a distributed ML approach that runs on a server
and multiple clients, was proposed. The server and the clients
use the same model architecture. The server initiates the global
model (i.e., the server model) and executes the following steps
over several communication rounds [8] [10].

1) The server sends the global model’s parameters to some
(or if possible all) clients.

2) Every participating client uses the received global
parameters to train the local model using the local data
set.

3) Every participating client sends the local model param-
eters to the server.
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4) The server aggregates the local parameters received from
the clients to update the global model.

5) Eventually, the accuracy of the global model converges
to some threshold.

In FL, the server has no access to the client’s local data
set since only the local model parameters are shared with the
server. Consequently, privacy and security are preserved and
communication cost is reduced. However, FL suffers from the
following two problems [11].

1) Convergence may take a long time, which increases the
communication cost.

2) Clients have different computation, storage, and com-
munication resources and different data set sizes, which
makes the task of selecting clients a challenge.

FL can be stateful or stateless. In stateful FL, a candidate
client can participate in each of the communication and com-
putation rounds used in training the global model and thus the
state is preserved between rounds. Nevertheless, in stateless
FL, a candidate client will likely participate in one commu-
nication and computation round to train the global model,
which means in each round, new fresh candidate clients are
utilized [12].

In this article, we propose a stateful FL model with a bud-
geted number of candidate clients to overcome communication
and computation constraints. In other words, from a total of N
candidate clients, we select the best R < N candidate clients to
participate in training the global model. Now, some candidate
clients become available while others become offline or out
of communication range over time. Also, we assume that not
all candidate clients are available at the same time. Meaning
that the problem of selecting R candidate clients is an online
problem. As a result, the selection of candidate clients is a
challenge. In offline problems, information about all candi-
date clients are well known in advance rendering the problem
of selecting the best R candidate clients trivial. However, in
online problems, once a candidate client becomes available
then an irrevocable decision must be made on the selection of
this candidate client without any prior knowledge about incom-
ing candidate clients. Consequently, we propose a budgeted
online selection algorithm that selects the best R candidate
clients based on their evaluated test accuracy. The proposed
algorithm is inspired by the solution of the secretary problem.

The proposed algorithm can be used in different applica-
tions, particularly for online applications with intermittently
available mobile clients. Once a client is available, a decision
must be made on whether to utilize the client or not since the
client may become unreachable like out of communication
range or offline [13]. However, once the client is selected,
the client will be utilized. Furthermore, decisions cannot be
revoked in online applications but might be regretted.

Detection and identification of unauthorized IoT devices are
very important especially with the increase in the number of
attacks on IoT devices [14]. Therefore, we propose a clients’
alarm application that alerts clients about unauthorized IoT
devices in their environment. Each client uses a local machine
(i.e., server) to monitor the traffic generated by IoT devices
in the environment and extract features based on IoT device
behavior. Extracted features are used to identify the IoT device

type by training an ML model on those features. This is known
as IoT device-type classification. However, clients cannot iden-
tify unknown IoT devices in their environment depending only
on the local data set. Therefore, clients subscribe to the alarm
service provided by the server on the cloud that utilizes the
proposed algorithm. Clients share their model’s parameters
with the server to train a global model capable of identifying
unauthorized IoT devices.

The salient contributions of this article are as follows.
1) We propose a model for optimizing accuracy in state-

ful FL by selecting the best candidate clients based on
test accuracy. We formulate the problem of maximiz-
ing the probability of selecting the best R candidate
clients based on test accuracy from N total candidate
clients as a secretary problem and analytically analyze
the performance and provide proofs.

2) We propose an online heuristic solution for optimal bud-
geted client selection based on test accuracy inspired by
the secretary problem that works in stateful FL settings.
To the best of our knowledge, this is the first work that
utilizes online resources selection in FL.

3) We propose a client alarm application for identifying
unauthorized IoT devices using the proposed algo-
rithm and IoT device-type classification. We conduct
many experiments to evaluate the performance of the
proposed heuristic against other state-of-the-art algo-
rithms. Results show an improvement of up to 27% in
accuracy compared with the online random algorithm
and an accuracy gain of approximately 10% compared
with the offline best algorithm.

The organization of the remainder of this article is
as follows. A background regarding FL is discussed in
Section II. Related literature is reviewed in Section III.
Section IV provides a heuristic solution. Section V provides
performance proofs including analysis for the worst case sce-
nario. Experimental results are provided in Section VI, where
we discuss the application, the data set (and its preprocess-
ing phases), and the conducted experiments. A discussion of
the results and the salient lessons learned are provided in
Section VII. Finally, this article is concluded in Section VIII
by summarizing this work and identifying future research
directions.

II. BACKGROUND

In this section, we introduce the properties and challenges of
FL. Then, we review studies related to the online selection of
resources using the optimal stopping theory and the secretary
problem in particular.

A. Federated Learning

To understand the concepts of FL systems, Li et al. [6]
provided a comprehensive study of FL systems. They cate-
gorize FL systems based on six features, including the ML
model, communication architecture, data partition, privacy
mechanism, motivation of federation, and scale of federation.
Additionally, the authors present a summary of a comparison
that includes 42 studies based on the six proposed features.
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Yang et al. [5] and Li et al. [6] categorized FL based on data
distribution as follows.

1) Horizontal FL: Data sets of clients share the same fea-
ture space but with a small intersection in regards to the
sample space.

2) Vertical FL: Data sets of clients share the same sam-
ple space but with a small intersection in regards to the
feature space.

3) Hybrid FL (Federated Transfer Learning): Data sets of
clients have a small intersection in regards to both the
feature and sample spaces.

We would like to emphasize that a hybrid FL approach is
used in this work. The main challenges in implementing FL,
as described in [11] and [15], are as follows.

1) Communication Cost: There could be many clients (mil-
lions) and the system may execute many rounds before
converges to the required level of accuracy, which
imposes an overload on the network.

2) Clients Heterogeneity: The system is heterogeneous and
has clients with varying computation, storage, and com-
munication capabilities. Also, the client data sets may
differ in features and samples (i.e., the data sets may
have statistical heterogeneity).

3) Privacy and Security: FL already protects clients’ data
by only sharing models’ parameters. However, sensitive
information may be revealed.

Lim et al. [15] and Bonawitz et al. [16] have highlighted the
importance of client selection for enhancing the performance
of FL systems since it contributes to both communication cost
and resource allocation.

Existing research on enhancing performance in FL follow
one of the following approaches.

1) Algorithm optimization optimizes the FL algorithm and
perform more computation on clients to reduce the con-
vergence time by reducing the number of rounds on the
expense of more computation [17]–[24].

2) Selective updates select only important updates from the
clients or select the best clients in regards to the clients’
resources and data size [25]–[30].

3) Model compression reduces the amount of data exchan-
ged between clients and the server [18], [31]–[33].

B. Secretary Problem

The secretary problem, which is also known as the marriage
problem, dowry problem, beauty contest problem, or Googol
is a class of the optimal stopping decision problems. The sec-
retary problem was first introduced by Martin Gardner back
in 1960 [34]. The classical secretary problem focuses on the
selection of a secretary from a pool of candidates adhering to
the following rules [34] [35].

1) The number N of candidates is known.
2) Only one candidate is to be chosen.
3) Candidates are interviewed sequentially in a random

order.
4) Each candidate must be accepted or rejected before inter-

viewing the next one (with no provision for recalling
rejected candidates later).

5) Candidates are ranked from best to worst and the deci-
sion of accepting or rejecting a candidate depends on
the relative ranks of candidates interviewed so far.

6) The problem focuses on maximizing the probability of
selecting the best candidate.

The solution of the secretary problem is for some integer
1 ≤ α < N, reject the first α candidates then select the first
candidate with rank better than of those observed candidates.
The goal is to find the optimal α that maximizes the prob-
ability of selecting the best candidate. Actually, it has been
proven that the optimal value for α is 0.367879 with optimal
probability of (1/e) [34]. In other words, the probability of
finding the best candidate is 37% when rejecting the first 37%
of candidates and selecting the first candidate with ranking
better than those observed ones.

Freeman [36] reviewed the extensions and generalizations
of the secretary problem. They indicate that some researchers
focus on the secretary problem when the number of candidates
is unknown. Other researchers assume that candidates’ ranks
follow a specific distribution such as Poisson. Additionally,
they show that some studies focus on selecting R candidate
instead of one.

In this article, we are interested in studies of the
secretary problem where R top candidates are selected.
Gilbert and Mosteller [37] provided many variations of the
secretary problem studied under different assumptions and one
of these cases is for selecting R candidates with one of the
candidates as the best candidate. Kleinberg [38] proposed an
algorithm to maximize the sum of ranks of the R selected can-
didates. The algorithm has two stages. In the first stage, the
classical secretary algorithm is recursively applied on roughly
the first half of candidates to select l = R/2 best candidates.
In the second stage, the rank of the lth selected candidate in
the first stage is used as a threshold for selecting R/2 can-
didates from the second half of candidates. The author states
that the algorithm has a competitive ratio of 1 − O(

√
q/R).

Babaioff et al. [39] proposed an algorithm to maximize the
sum of the R selected candidate. The algorithm rejects the first
�n/e� candidates and records the R highest rankings in set S.
Next, when a candidate with a rank higher than the minimum
rank in S is encountered, the candidate is selected and the min-
imum rank in S is removed. This is repeated until either S is
empty or all candidates are reviewed. The authors indicate that
the algorithm has a competitive ratio no worse than e for all
values of R.

The work in this article is inspired by the aforementioned
studies. However, this work is different in that we find the
optimal stopping position α, which we call α∗, to maximize
the probability of selecting the R top candidates. We reject
the first α∗ candidates and record the best rank. Then, we
use the best rank as a threshold in selecting the top R
candidates.

III. RELATED WORK

FL is a hot research area that has recently grabbed the
attention of many researchers. In this section, we list different
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approaches for enhancing the performance and discuss studies
in each approach.

A. Algorithm Optimization

Some researchers work on optimizing the algorithm used in
FL to reduce the convergence time and thus reduce the gener-
ated traffic in the network. Replacing the minibatch stochastic
gradient descent (mb-SGD) optimization model with Adam
has been studied in [18]. The authors propose CE-FedAvg, an
algorithm that uses Adam optimization and compresses mod-
els before uploading to the server. The authors claim that using
Adam optimization along with model compression reduces the
convergence time by reducing the number of rounds and the
amount of data exchanged between clients and the server.
Using a multiobjective evolutionary algorithm with neural
networks in FL has been studied in [19]. The authors use the
elitist nondominated sorting genetic algorithm (NSGA-II) to
minimize the communication cost at the expense of higher
computation cost. Liu et al. [20] proposed momentum FL
(MFL), which uses momentum gradient descent (MGD) in
every step of local updates rather than the first-order gradient
descent. The authors state that since MGD considers preceding
iteration, it converges faster than the traditional FL system.

Other researchers proposed algorithms that utilize the com-
putation power on clients’ machines to speed up the conver-
gence process. To reduce the number of rounds, Liu et al. [21]
proposed to use federated stochastic block coordinate descent
(FedBCD) algorithm in vertical FL, which let clients do
multiple local model updates before syncing with each other.
Yao et al. [22] claimed that using two models in every client
instead of a single model can reduce the number of rounds.
Besides training the global model received from the server,
each client trains another local model and uses the maximum
mean discrepancy (MMD) between the output of the two mod-
els. Using agents on edge nodes between clients and the server
are studied in [23] and [24]. Multiple agents perform partial
model aggregation before communicating with the server to
reduce the communication cost between clients and the server.

Other researchers study the tradeoff between the number
of iterations performed by clients to minimize the loss func-
tion and the frequency of global aggregation done by the
server. Wang et al. [17] computed the convergence bound
of the gradient-descent algorithm then designed an algorithm
that finds the best frequency of global aggregation based on
system dynamics, model characteristics, and data distribution
to minimize the consumed computation and communications.
Qolomany et al. [40] proposed a particle swarm optimization
(PSO)-based technique to optimize the hyperparameter set-
tings for the local ML models in an FL environment. They
evaluated and compared the proposed PSO-based parameter
optimization approach with the grid search technique. They
found that the number of client–server communication rounds
to explore the landscape of configurations to find the near-
optimal parameter settings is greatly decreased by two orders
of magnitude using the PSO-based approach compared to the
grid search method. To deal with heterogeneous data inher-
ent in federated networks, Li et al. [41] proposed a modified

version of FedAvg; namely, FedProx, that allows for variable
amounts of work to be performed locally across devices, and
relies on a proximal term which helps to improve the stability
of the method against heterogeneous data.

B. Selective Updates

Chen et al. [25] formulated a client selection and resource
allocation optimization problem for FL in wireless networks
to minimize the value of the loss function. They first derived
an equation to represent the expected convergence rate of the
FL algorithm. Next, they simplified the optimization problem
as a mixed-integer nonlinear programming problem. Then for
a given uplink resource block allocation and client selection,
they compute the optimal transmit power. Finally, they trans-
form the problem into a bipartite matching problem and use the
Hungarian algorithm to find the optimal client selection and
resource block allocation. Nishio and Yonetani [26] proposed
a new FL protocol named FedCS to enhance the efficiency
of FL. The basic idea of the proposed protocol is to select
clients based on their computation/communication capabili-
ties and their data size instead of picking clients randomly. To
reduce the communication overload, Wang et al. [27] proposed
an approach that identifies clients with irrelevant updates and
prevent those clients from uploading their updates to the
server. Anh et al. [28] and Nguyen et al. [29] proposed the
selection of clients based on the consumed energy in model’s
transmission and training, clients’ distance from the server,
and channel availability using the deep reinforcement learn-
ing (DRL) approach. Yoshida et al. [30] proposed a hybrid
FL approach based on the assumption that some clients share
and upload their data to the server to improve the accuracy
and mitigate the degradation resulted from nonindependent
and identically distributed (nonIID) data. However, uploading
clients’ data to the server violates the rules of FL.

C. Model Compression

Sattler et al. [31] proposed a new compression framework
named sparse ternary compression (STC). The authors claim
that their compression framework performs better than other
proposed methods in the literature in bandwidth-constrained
learning environment. Konecný et al. [32] proposed to use
structured updates (low rank and random mask) and force
models to use these structures and also sketched updates with
lossy compression before sending models to the server. On the
other hand, Caldas et al. [33] applied lossy compression on
the model sent from the server to the clients.

The related research discussed above has a high computa-
tional cost. The clients’ intensive computation and algorithm
optimization approach requires intensive computation. In addi-
tion to the extra computation required by the compression
approach, it is best applied to models with large parameter
vector such as images or models with many hidden layers. The
presented studies using the selective updates approach either
are too difficult to train (especially when a large number of
clients are used as in DRL) or have no analysis and/or proofs
for convergence. In contrast, our proposed algorithm, which
uses a selective updates approach, does not require intensive
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TABLE I
SUMMARY OF MATHEMATICAL NOTATIONS

computations or a large parameter vector, and we also provide
analysis and proofs demonstrating convergence.

IV. PROPOSED CLIENT SELECTION SOLUTION

A. System Model

We assume N candidate clients and one server. Also, we
assume a budget of R candidate clients. The nature of the
proposed model is online since some clients become avail-
able while others become unreachable or offline over time.
Consequently, the server must make an irrevocable decision
to accept (i.e., select) or reject a candidate client once a can-
didate client becomes available. The server runs the proposed
heuristic (explained in the next section), which initializes the
global model, selects the R best candidate clients based on
their test accuracy, and then trains the global model using the
selected candidate clients in K communication rounds. Each
selected candidate client trains the local model in E epochs
using the local data set but with the global model parameters.
Moreover, we assume the data sets of candidate clients are
different in size. Therefore, we use the terms fat clients and
thin clients to point to candidate clients with different sizes
of data sets. We note that in some literature, the terminology
of elephants (instead of fat) and mice (instead of thin) is used
instead [42]. For the convenience, we have listed the main
mathematical notations used in this article in Table I.

B. Problem Formulation

The problem we tackle in this article is to select the best
set of candidate clients that provide higher test accuracy when
training the global model using their local data set. This
problem is similar to the famous secretary problem, which
aims to maximize the probability of selecting the maximum
element from a randomly ordered sequence [39]. The secre-
tary problem is formulated as a linear programming problem
as follows [43]:

max
1

N
·

N∑

1=1

iPi

s.t. ∀1 ≤ i ≤ N i · Pi ≤ 1 −
i−1∑

j=1

Pj

∀1 ≤ i ≤ N Pi ≥ 0.

In the traditional secretary problem, the objective function
aims to maximize the probability of selecting the best can-
didate. However, instead of selecting one element, in this
problem, R elements must be selected. The secretary problem
is one scenario of the optimal stopping theory. In the sec-
retary problem, an employer wants to hire a secretary and
there are N candidates. The employer cannot assess the qual-
ity of a candidate until after the end of the interview and have
to make an irrevocable hiring decision. Thus, the employer
may end up hiring a candidate before interviewing the rest
of the candidates and the hiring of the best candidate is not
guaranteed.

Our solution is inspired by the secretary problem. The qual-
ity of a client is determined by its test accuracy. We evaluate
the test accuracy (i.e., quality) of the first α∗ (see Section V)
clients and reject them all. Then, select the next R clients with
test accuracy better than the best test accuracy of the first α∗
clients, and if none is found then select the last clients.

C. Proposed Algorithm

The proposed heuristic identifies the best test accuracy
among the first few available candidate clients then use this
test accuracy as a threshold for accepting or rejecting candidate
clients available later. The heuristic accepts the parameters N,
R, r1, r2, K, E, and δ as explained in Algorithm 1 and consists
of three stages that run every δ time units to update the global
model.

In the first stage (Algorithm 1, lines 2–11), the value of
α∗ (discussed in Section V) is computed based on the value
of r1 and r2 using (7). The first α∗ candidate clients that
are available are then tested to determine the best test accu-
racy. However, none of those candidate clients are accepted.
Whenever a candidate client becomes available, the server ini-
tializes the global model and communicates with the candidate
client to evaluate its test accuracy. Testing is performed by
sending the initialized global model’s parameters from the
server to the candidate client for one communication round
so that the candidate client trains the local model with these
parameters using the local data set. Then, the candidate client
sends back the updated parameters to the server. The server
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Algorithm 1 Proposed Heuristic
Input: N (expected number of clients), R (number of selected candidate
clients), r1, r2 (to compute α∗), K (number of communication rounds),
E (number of epochs per client), and δ

Output: Trained global model
1: for every δ time units do

// Find best test accuracy for first m candidate clients, m:1..α∗
2: Initialize the global model
3: Compute α∗ based on r1, r2, and N using equation (7)
4: Set Ab, best test accuracy = 0
5: for m = 1 to α∗ do
6: Test client CM and record Am, its test accuracy
7: if Am > Ab then
8: Set Ab = Am
9: end if

10: Reject candidate client Cm
11: end for

// Find R best candidate clients
12: Set Sb, set of best candidate clients = []
13: Set Nb, number of best candidate clients found = 0
14: for m = α∗ + 1 to N do
15: if Nb = R then
16: Reject candidate client Cm
17: else if (N − m) ≤ (R − Nb) then
18: Accept candidate client Cm and add it to Sb
19: Increment Nb by 1
20: else
21: Test client Cm and record Am, its test accuracy
22: if Am > Ab then
23: Accept candidate client Cm and add it to Sb
24: Increment Nb by 1
25: end if
26: end if
27: end for

// Start training
28: for k = 1 to K do
29: Send global model to all candidate clients in Sb
30: Candidate clients train global model on local dataset for E epochs
31: Server average aggregated model parameters from candidate

clients in Sb
32: end for
33: end for

evaluates the received parameters (i.e., no averaging is applied
since only one candidate client is involved) using the test data
set to determine the test accuracy of the candidate client. After
testing α∗ candidate clients, the server selects the best test
accuracy to be used as a threshold in the second section.

In the second stage (Algorithm 1, lines 12–27), whenever a
candidate client becomes available, it gets tested in the same
way explained in the first section. Next, the server accepts
(i.e., selects) the candidate client only if its test accuracy is
greater than the best test accuracy found in the first section.
Nonetheless, if the number of available candidate clients is
less than the number of required candidate clients (i.e., R)
then the server has no choice but to select those remaining
candidate clients. In the worst case scenario, the candidate
client with the best test accuracy is met during the first section.
Consequently, all candidate clients met early in the second
stage are rejected for having a test accuracy less than that of
the best test accuracy found in the first section. As a result,
the server is forced to accept all candidate clients that are
met at the end of the second section. In fact, in the worst case
scenario, the proposed heuristic behaves similar to the random
algorithm explained in Section VII.

In the third stage (Algorithm 1, lines 28–32), once the best
candidate clients are identified, the global model is trained

Fig. 1. Illustrative example of the proposed algorithm.

using the selected candidate clients for K communication
rounds as described in Section I.

D. Illustrative Example

To understand the proposed algorithm in more depth, we
present an example where we observe one run cycle (when δ

is 1) of the proposed algorithm overtime (see Fig. 1). Assume a
total of ten candidate clients becoming available over time dur-
ing the observed period (i.e., N = 10). We refer to candidate
i as Ci. Additionally, we set the budget to 2 candidate clients
(i.e., R = 2), which means that we want to select the best two
candidate clients for training the global model. Moreover, we
set E, the number of epochs, to 3 and set K, the number of
communication rounds between the server, and selected candi-
date clients for training the global model to 20. Also, the value
of α∗ is computed based on (7) in Section V-A (assuming r1
is 1 and r2 is 2) and its value is 2.

When a candidate client becomes available then 1) the
proposed algorithm initiates the global model’s parameters
then sends them to the candidate client; 2) the candidate client
trains the local model for E epochs using the received param-
eters from the server on the local data set; 3) the candidate
client sends the updated parameters to the server; and 4) the
server evaluates the accuracy of the candidate client by test-
ing the global model using the updated parameters on the test
data set. Then, the proposed algorithm must make an irrevo-
cable decision on whether to use this client or not based on
its evaluated test accuracy.

The proposed algorithm runs in three stages. In the first
stage, the proposed algorithm communicates with the first α∗
(i.e., 2) candidate clients and evaluate their test accuracy to
determine the best test accuracy, which is used as a selec-
tion threshold with the rest of candidate clients that become
available later. Thus, when C1 becomes available, the proposed
algorithm communicates with C1 then evaluates its test accu-
racy and finds it 0.30. The proposed algorithm sets its selection
threshold to 0.30 and rejects C1. Next, C2 becomes available
and the proposed algorithm communicates with C2 then evalu-
ates its test accuracy and finds it 0.62. The proposed algorithm
updates its selection threshold to 0.62 as illustrated in Fig. 1
where Ci(x) represents candidate client i with evaluated test
accuracy x (test accuracy is a number between 0 and 1, where
0 means the trained model fails to identify all test samples
while 1 means the trained model identifies all test samples
successfully).

In the second stage, the proposed algorithm will continue to
communicate with any candidate client that becomes available
and evaluate its test accuracy to decide on the selection of this
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candidate client. This process continues as shown in Fig. 1
until the proposed algorithm selects two candidate clients and
as follows.

1) C3 becomes available and its test accuracy is 0.23 and
thus gets rejected.

2) C4 becomes available and its test accuracy is 0.41 and
thus gets rejected.

3) C5 becomes available and its test accuracy is 0.56 and
thus gets rejected.

4) C6 becomes available and its test accuracy is 0.85 and
thus gets selected.

5) C7 becomes available and its test accuracy is 0.2 and
thus gets rejected.

6) C8 becomes available and its test accuracy is 0.92 and
thus gets selected.

7) The server is not going to communicate with C9 and C10
once they are available since the proposed algorithm has
already selected two candidate clients.

In the third stage, the proposed algorithm trains the global
model using C6 and C8 with K communication rounds but
without initiating the global model in every round. A best
case scenario is presented in this example, but a worst case
scenario can occur if the test accuracy of C2 is evaluated and
found as 0.93. In this case, the proposed algorithm rejects
both C6 and C8. Eventually, the proposed algorithm will have
to communicate with the last two clients (C7 and C10) and
selects both.

V. PERFORMANCE ANALYSIS

The performance of the proposed algorithm explained in
the previous section depends vitally on the optimal value of
α, which is α∗. In this section, we derive an equation for
computing the value of α∗ and prove its validity. This equa-
tion is plugged in the first stage of the proposed algorithm
as mentioned in Section IV-C. Finally, we analytically ana-
lyze the performance of the proposed algorithm in worst case
scenario.

A. Optimal Value for α

By assuming 1) M and im positions are not known in
advance; 2) the candidates can arrive in any order; and
3) N, α >> R, we aim to find the optimum value α∗,
depending on both, allowing to maximize P(r1,r2).

Lemma 1: The following summation:

K(R, α) =
N−R+1∑

iR=α+1

1

iR − 1

N−R+2∑

iR−1=iR+1

1

iR−1 − 1
· · ·

N∑

i1=i2+1

× 1

i1 − 1
(1)

can be tightly approximated by

K(R, α) ≈
(
log N

α

)R

R!
. (2)

Proof: Let us proceed by induction. one can ascertain
that for R = 1, the summation

∑N
i1=α+1 [1/(i1 − 1)] can be

approximated by the
∫ N
α

(dt/t) = log(N/α), confirming (2).

Let us assume that (2) holds for R − 1. One obtains

K(R, α) =
N−R+1∑

iR=α+1

1

iR − 1
K(R − 1, iR)

≈ 1

(R − 1)!

N−R+1∑

iR=α+1

(
log N

iR

)R−1

iR − 1

≈ 1

(R − 1)!

∫ N−R+1

α

(
log N

t

)R−1

t
dt. (3)

Finally, taking into account that R << N (i.e., N − R + 1 ≈
N), it follows that:

K(R, α) ≈ 1

R!

[
−
(

log
N

t

)R
]N

α

(4)

≈ 1

R!

(
log

N

α

)R

(5)

which concludes the proof.
Proposition 1: For all positive numbers r1, r2 << α, N, the

approximation

P(r1,r2) ≈ α

N

r2∑

R=r1

1

R!

(
log

N

α

)R

(6)

holds, and the optimum value maximizing such probability is

α∗ = N exp

(
−
(

r2!

(r1 − 1)!

) 1
r2−r1+1

)
. (7)

Proof: Given that the indices of the selected candidates
are sorted in increasing order of candidates’ accuracies, ER can
be broken into R exclusive events as follows.

1) Candidate client M is the best one in [1, iR − 1].
2) Candidate clients im are the best ones in [1, im−1 − 1],

2 ≤ m ≤ R.
3) Candidate client i1 is the best one in [1, N].
Consequently

Pr(ER) =
N−R+1∑

iR=α+1

N−R+2∑

iR−1=iR+1

× · · ·
N∑

i1=i2+1

Pr

⎛

⎜⎜⎜⎝
R∩

�=1

{
A(i�) ∩ B(�,i�)

R

}

︸ ︷︷ ︸
DR

⎞

⎟⎟⎟⎠. (8)

With the aid of Bayes’s rule, DR can be rewritten as

Pr(DR) = Pr
(
A(iR)

∣∣∣B(R,iR)
R ∩ DR−1

)
Pr
(
B(R,iR)

R

∣∣∣DR−1

)
.

(9)

The probability to select the Rth best one among [1 · · · N] \
{i1, i2, . . . , iR−1} is

Pr
(
B(R,iR)

R

∣∣∣DR−1

)
= 1

N − R + 1
(10)
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TABLE II
CHOOSING α∗ THAT MAXIMIZES THE PROBABILITY TO SELECT R BEST

CANDIDATES SUCH THAT r1 ≤ R ≤ r2 AND N = 1000

with the conditional probability in (9) can be evaluated as

Pr
(
A(iR)

∣∣∣B(R,iR)
R ∩ DR−1

)
= α

iR − 1

R−1∏

�=1

1

i� − 1
. (11)

Substituting (11), (10), and (9) into (8), one obtains

Pr(ER) = α

N − R + 1
K(R, α). (12)

Leveraging Lemma 1 and noting that N − R + 1 ≈ N, (6)
is obtained. Now, defining x = α/N (i.e., 0 ≤ x ≤ 1), the two
first derivatives of P(r1,r2) with respect to x can be expressed
as

∂P(r1,r2)

∂x
= (− log x)r2

r2!
− (− log x)r1−1

(r1 − 1)!
(13)

∂2P(r1,r2)

∂x2
= −1

x

[
(− log x)r2−1

(r2 − 1)!
− (− log x)r1−2

(r1 − 2)!

]
. (14)

Thus, by solving [(∂P(r1,r2))/∂x] = 0 and setting α∗ = Nx∗,
we get (7). Moreover, it can be easily checked that the second
derivative evaluated at x∗

∂2P(r1,r2)

∂x2
= − (− log x)r1−2

x∗(r1 − 2)!

⎡

⎢⎢⎢⎢⎣
(r1 − 2)!

(r2 − 1)!

(− log x∗)r2−r1+1

︸ ︷︷ ︸
= r2!

(r1−1)!

− 1

⎤

⎥⎥⎥⎥⎦

= −(r2 − r1 + 1)
(− log x)r1−1

x∗(r1 − 1)!
(15)

is negative as r2 > r1 and x∗ ≤ 1, which completes the
proof.

Table II summarizes some values of the optimal number
α∗ along with the aforementioned maximum probability for
various values of r1 and r2, when N = 1000. Note that
the probability (6) is an increasing function on r2, while its
maximum value is not monotone as it depends also on r1 as
summarized in Table I. It can be seen also that:

1) the smaller r1 is, the greater the optimal value
(α∗ = Nx∗);

2) for a fixed r1, the larger r2 is, the smaller α∗.
Fig. 2 shows that the probability of selecting the best R

clients is higher when the value of α is small.

B. Worst-Case Analysis (Competitive Ratio Analysis)

The worst case scenario is encountered when the proposed
heuristic does not find candidates that exceed CM from index
α∗ until N. The competitive ratio in the worst case scenario is

Fig. 2. Effects of α on the probability of selecting the best clients.

computed over all possible input sequences as the maximum
ratio of the gain of the online algorithm and the optimal offline
algorithm [44].

Proposition 2: The heuristic’s worst case performance has
a competitive ratio of O(1) when R is proportional to N.

Proof: Let ALG be the proposed heuristic and OPT be
the optimal algorithm.

The worst case happens when the highest element appears
before index α∗. In that case, the proposed algorithm randomly
selects candidate clients from index α∗+1 until N. A candidate
client within this range of indices is selected with probability
[R/(N − α∗)]. Consequently, the following proof is concluded
as follows:

Comr = ALG

OPT
= R

N − α∗ .

Thus, Comr, the competitive ratio, becomes O(1) when R is
proportional to N.

VI. EXPERIMENTAL SETTINGS

In this section, we describe the application proposed in this
article in detail first. Next, we describe the data set used in the
simulation and describe the data set preparation phases used
to transform the raw data set into N candidate clients’ data
sets. Finally, we discuss conduced experiments.

A. Use Case: IoT Device-Type Classification

IoT devices perform specific tasks, which makes their
network behavior predictable [45]. There are plenty of stud-
ies on IoT device-type classification or fingerprinting in
[14] and [45]–[53]. Those studies concentrate on identify-
ing IoT devices type for different reasons, including security,
access control, provisioning, resource allocation, and man-
agement [46]. Actually, most of those studies concentrate on
security in response to recent incidents [54], [55]. In one inci-
dent, thousands of IoT devices including surveillance cameras
are used for Distributed Denial of Service (DDoS) attack [14].
Therefore, we propose a client alarm application based on
IoT device-type classification in FL settings to identify unau-
thorized IoT devices. The IoT device-type classification is
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Fig. 3. Illustration of the clients alarm application. The cloud server run-
ning the proposed algorithm communicates with the local servers of the best
subscribed clients to train the global model.

inspired by the work in [53]. We aim to use the proposed appli-
cation as a use case to test the performance of the proposed
heuristic.

The proposed application consists of N candidate clients,
a main server in the cloud, and an alarm mechanism. Each
client’s environment has several IoT devices, a local machine
(i.e., the local server), and an alarm device as shown in Fig. 3.
The alarm can be a physical device or software that delivers
e-mail, text messages, or any other form of notification to the
client. The local server monitors the traffic generated by IoT
devices, extracts features, and builds a local data set. Then,
train the local model using the local data set. However, train-
ing on local data set is not sufficient to identify unknown IoT
devices in the environment. As a result, the clients subscribe
to the alarm service provided by the server through the use
of FL. The server is responsible for running the proposed FL
algorithm. Also, the server and clients cooperate to build a
global model capable of classifying devices used by participat-
ing clients. In other words, clients can use the global model to
identify unknown devices from the knowledge of other clients.

The proposed algorithm in the server trains a global model
by sharing only the model’s parameters with clients and thus
preserving the security and privacy of clients. The process
of training the global model is repeated every δ time units
to make sure that the new clients, and clients with the new
installed IoT devices, are considered and included.

Employing all clients in the training process produce high
traffic, which overloads the network. Additionally, this might
be infeasible since some clients are not available all the time.
However, selecting clients with high accuracy contribution to
the global model training enhance the classification accuracy,
which is done by the proposed heuristic.

B. Data Set Details and Preprocessing Phases

To test the performance of the proposed heuristic, we use
a real data set collected by researchers from the University
of New South Wales (UNSW), Sydney, Australia [53]. The
data set is created using 28 IoT devices and also some nonIoT
devices installed in a lab on the campus of the university. Trace
data are captured over six months between October 1, 2016
and April 13, 2017. However, only 20 days of trace data are
available for the public. Raw data consisting of packet headers
and payload information are captured using the tcpdump tool
installed on the gateway. The data set is available as a set of
pcap (packet capture) files and also as a set of CSV (comma-
separated values) files. The data set consists of 20 pcap files,
one file per day.

The raw data set is processed in five phases (illustrated in
Fig. 4) in order to create N candidate client’s data sets to
simulate FL settings as described next.

In the flows collection phase (Phase-1), we collect flows
from raw data in pcap files using the joy tool developed by
Cisco Systems [56]. Joy is a data collection tool that reads
the data from raw traffic (or from pcap files) and produces
a JavaScript object notation (JSON) file with a summary of
the traffic data in the form of flows. We create a bash script
that uses the joy tool to process the pcap files and produce
JSON files. Each JSON file contains flows related to a spe-
cific IoT device based on the MAC address listed in Table III,
which includes names of devices and their MAC addresses
as indicated in the data set’s website [53]. To filter by MAC
address, we use the Berkeley/BSD Packet Filter syntax sup-
ported by the joy tool through the data feature options. Each
flow in the resultant JSON file has a flow key that includes
the source and destination addresses, and the source and des-
tination port and protocol numbers. Each flow also contains
number of bytes, number of packets, start time, and end time.
Additionally, joy can be configured to save more information
per flow. Algorithm 2 describes the flow collection process.
Also, the script is available on GitHub [57].

In the features extraction phase (Phase-2), we extract fea-
tures from the flows stored in JSON files. Inspired by a
previous study [53], we analyze the flows and extract features
as listed in Table IV. Features are saved in a CSV file with the
first ten columns for features and the last column for the labels,
which are the IoT device IDs. Algorithm 3 shows the steps
used in the extraction process. In addition, the Python code
for extracting the features is made available on GitHub [57].

In the normalization phase (Phase-3), we first normalize
all features by transforming features’ values to be between
0 and 1 using the MinMaxScaler function from the
scikit-learn library [58]. Second, to ensure that samples
are distributed randomly, we randomly reindex all normalized
features in the data set.

In the ML model design phase (Phase-4), we split the data
set into two parts: 1) the training data set (80% of the original)
and 2) the test data set (20% of the original). To ensure a
fair comparison between the proposed algorithm and other
algorithms, the test data set is stored on the server. We then
design a deep neural network (DNN)-based ML model with
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Fig. 4. Data set preprocessing phases (through which the raw data set is transformed to the N candidate clients’ data sets).

TABLE III
NAMES AND MAC ADDRESSES OF THE USED IOT DEVICES

Algorithm 2 Flows Collection Algorithm
Input: dataset pcap files.
Output: JSON files.

1: for each pcap file as pFileName do
2: Open pFileName for reading
3: Set deviceCo = 1
4: Set json = pFileName + deviceCo
5: for each MAC address in Table III as mac do
6: Run joy with pFileName as input, json as output, and

mac as the host MAC address
7: Set deviceCo = deviceCo + 1
8: end for
9: Close pFileName

10: end for

three layers, each having 25 neurons. The first two layers
use the ReLu activation function, while the last layer uses
a softmax activation function. Adam optimizer is utilized for
optimization.

Finally, in the data set splitting phase (Phase-5), we create
N data sets to represent local data sets for the N candidate
clients. Each of the N data sets is created randomly from
the training data set. To reflect a real scenario, we ensure
that those data sets do not have the same size. The major-
ity of candidate clients possess a small amount of the data set

TABLE IV
IOT DEVICE FEATURES

TABLE V
FL PARAMETERS

while the minority of candidate clients possess large portions
of the data set. Consequently, the fat clients constitute 20%
of candidate clients and each fat client has about 10% of the
training data set selected randomly. On the other hand, the thin
clients constitute 80% of candidate clients and each thin client
has about 1% of the training data set randomly selected. All
these parameters along with other FL parameters are listed in
Table V.

C. Experiments

After Phase-5, N candidate clients’ data sets are formed to
simulate a hybrid FL setting, which is utilized in the conducted
experiments. To measure the performance of the proposed
heuristic, we compare the results of two algorithms against the
proposed heuristic. The two algorithms are the online random
algorithm and the offline best algorithm. The online random
algorithm selects and rejects candidate clients randomly. On
the other hand, the offline best algorithm is an offline algorithm
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Algorithm 3 Features Extraction Algorithm
Input: JSON files.
Output: features CSV file.

1: Open features file for writing
2: Set maxPeriod = 10 minutes
3: for each JSON file do
4: Open JSON file for reading
5: Read deviceID from JSON file
6: Set totalSleepTime = 0; totalActiveTime = 0
7: Set totalFlowVolume = 0; totalPackets = 0
8: Set numberOfServers = 0; numberOfProtocols = 0
9: Set numberOfUniqueDNS = 0; DNSinterval = 0

10: Set NTPinterval = 0; lastFlowEndTime = 0
11: for each flow do
12: Set #flow = flow number
13: Set flowTime = flowEndTime − flowStartTime
14: Set totalActiveTime = totalActiveTime + flowTime
15: Set totalFlowVolume = totalFlowVolume+ number of bytes in the

flow
16: Set totalPackets = totalPackets+ number of packets in the flow
17: if port in flow is not recorded before then
18: Set numberOfProtocols = numberOfProtocols + 1
19: Record port
20: end if
21: if port in flow = 53 then
22: Set DNSinterval = DNSinterval + flowTime
23: if DNS query in flow is not recorded before then
24: Set numberOfUniqueDNS = numberOfUniqueDNS + 1
25: Record DNS query
26: end if
27: else if port in flow = 123 then
28: Set NTPinterval = NTPinterval + flowTime
29: else
30: if destination address in flow is not recorded before then
31: Set numberOfServers = numberOfServers + 1
32: Record destination address
33: end if
34: end if
35: if #flow = 1 then
36: Set startTime = flowStartTime
37: else
38: Set totalSleepTime = totalSleepTime+

(flowStartTime − lastFlowEndTime)
39: if flowEndTime − startTime ≥ maxPeriod then
40: Set flowRate = 0
41: if totalActiveTime ≥ 0 then
42: Set flowRate = totalFlowVolume/totalActiveTime
43: end if
44: Set avgPacketSize = 0
45: if totalPackets ≥ 0 then
46: Set avgPacketSize = totalFlowVolume/totalPackets
47: end if
48: Add a record to features file with features and deviceID
49: Reinitialize all features variables
50: end if
51: end if
52: Set lastFlowEndTime = flowEndTime
53: end for
54: Close JSON file
55: end for
56: Close features file

that can work with all candidate clients at the same time. In
other words, the offline best algorithm does not have to wait for
clients to be available over time and instead have the advantage
of working with all candidate clients at the same time. The
offline best algorithm creates a sorted list of all (i.e., N) candi-
date clients based on accuracy and selects the top R candidate
clients, which are mostly fat candidate clients.

We conduct 125 experiments to test the performance of
the proposed heuristic. In all these experiments, we fixed

TABLE VI
SIMULATION PARAMETERS

the number of communication rounds to 20; the number of
epochs per client to 8; and the batch size to 3 (as shown in
Table V). We are not interested in optimizing the aforemen-
tioned parameters since the goal of this article is not to achieve
the highest accuracy possible, but to investigate the ability of
the proposed heuristic compared against the state-of-the-art
algorithms. Thus, we vary the number of clients N, the num-
ber of selected candidate clients R, and r2 (used to compute
the value of α∗) each with five different values as indicated
in Table VI. Experimenting with different values of N, R, and
r2 is vital to truly test the abilities of the proposed heuristic.

The values in Table VI are not selected arbitrarily. We test
with values of N that vary from hundreds to thousands by
doubling the numbers to see how this increase affects the
performance. As for R, we test with different values in tens
and noticed that raising R more is not interested since the
performance of all algorithms converges as explained later.
Setting r1 to one is a must since we need to select the first
best candidate client. Additionally, we noticed that raising the
value of r2 to more than 5 will results in a very low α∗ espe-
cially when N is 100. In other words, setting r2 to higher
numbers will reduce the search size to zero candidate clients
since α∗ will be close to zero.

VII. DISCUSSION

Since we cannot present all values and figures of the 125
experiments, we fixed in each case 2 of the variables (i.e.,
N, R, and r2) and show the results for changing the third
variable. Also, for each case, we present three figures: the
first represents the general accuracy of the system; the second
for the average accuracy of selected candidate clients, which
is used to indicate the contribution of individual candidate
clients toward the general accuracy of the system; and finally,
the percentage of the accepted Fat clients, which is useful for
investigating if more Fat clients lead to higher accuracy.

A. Experimenting With Different Values of r2

The results illustrated in Fig. 5 support the discussion in
Section V. Increasing the value of r2 while fixing r1 to 1
reduces the value of α∗ and thus increases the probability
of finding the best candidate clients as shown in Fig. 5(a).
Furthermore, Fig. 5(a) and (b) confirms the fact that increas-
ing the value of r2 leads to accepting more fat candidate clients
with higher accuracy.

B. Experimenting With Different Values of R

Fig. 6 shows that the proposed heuristic is more competi-
tive when the number of selected candidate clients (i.e., R) is
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(a) (b) (c)

Fig. 5. Performance of algorithms for different r2 values (1, 2, 3, 4, 5) while fixing N, number of clients, to 400 and R, number of selected clients, to 20.
Our proposed algorithm performs better than the random algorithm approaching the performance of the best algorithm as r2 is increased. (a) Test accuracy.
(b) Average accuracy per selected client. (c) % Fat clients.

(a) (b) (c)

Fig. 6. Performance of algorithms for different R, number of selected clients, values (10, 20, 30, 40, 50) while fixing N, number of clients, to 400 and r2
to 4 (α∗ is 43). Our proposed algorithm is more competitive for smaller values of R and as R is increased, the performance of algorithms converges. (a) Test
accuracy. (b) Average accuracy per selected client. (c) % Fat clients.

(a) (b) (c)

Fig. 7. Performance of algorithms for different N, number of clients, values (100, 200, 400, 800, and 1600) while fixing R, number of selected clients, to 30
and r2 to 4 (different α per N value). Our proposed algorithm performs better than the random algorithm approaching the performance of the best algorithm
regardless of the value of N. (a) Test accuracy. (b) Average accuracy per selected client. (c) % Fat clients.

low. However, as R increases, the accuracy of all algorithms
converges as indicated in Fig. 6(a). As the number of selected
candidate clients increases, all algorithms will have a good
portion of the data set and will be able to converge to a high
accuracy in less time. As a result, there is no problem to solve
for high values of R. Besides, sometimes it is not feasible to
contact many candidate clients since some of them are not
available. Fig. 6(b) and (c) shows that the accuracy of the
system increases regardless of the accuracy of the individual
candidate clients and the number of fat nodes.

C. Experimenting With Different Values of N

The performance of the proposed heuristic is almost stable
when the total number of candidate clients is increased while

fixing R to 30 as illustrated in Fig. 7. The accuracy of the
proposed heuristic is almost 80% for different values of N as
shown in Fig. 7(a). Additionally, Fig. 7(b) and (c) supports
this argument.

D. Lessons Learned

We can conclude here that based on the presented results.
1) The performance of the proposed online heuristic is

stable regardless of the number of total clients N, as
illustrated in Fig. 7.

2) The accuracy of the proposed heuristic increases as
the number of selected candidate clients R increases.
However, as R goes up, the performance of the proposed
online heuristic, the online random algorithm, and the
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offline best algorithm tends to converge as indicated in
Fig. 6. This is because, with more candidate clients,
algorithms have access to a larger portion of the overall
data set.

3) As the number of best candidate clients (r2) is increased,
the performance of the proposed online heuristic is
enhanced since better candidate clients are used as
shown in Fig. 5.

VIII. CONCLUSION

In this article, the problem of optimizing accuracy in state-
ful FL by selecting the best candidate clients based on test
accuracy is considered. Then, the problem of maximizing the
probability of selecting the best candidate clients based on
accuracy is formulated as a secretary problem and performance
analysis is presented along with proofs. Based on the formula-
tion, an online stateful FL heuristic is proposed to find the best
candidate clients. In addition, an IoT client alarm application
is proposed that utilizes the proposed heuristic along with IoT
device-type classification to identify unauthorized IoT devices
and alert clients. To test the efficiency of the proposed heuris-
tic, we run many experiments using a real IoT data set and the
performance of the online random algorithm and the offline
best algorithm are compared against the performance of the
proposed heuristic. Results show that the proposed heuris-
tic performs better than the two state-of-the-art algorithms.
Additionally, we notice the stability in the performance of the
proposed heuristic compared against the performance of the
other two algorithms regardless of the number of participat-
ing candidate clients. We also notice that when increasing the
number of best selected candidate clients, the proposed heuris-
tic becomes less competitive. This is because with more clients
comes more data and thus the performance of algorithms
converges regardless of how bad an algorithm in selecting
candidate clients.

We want to emphasize a disclaimer that the proposed algo-
rithm is not designed to work efficiently in stateless FL.
Moreover, the proposed algorithm is not competitive in appli-
cations of offline nature and/or with open budget in terms of
selected clients since clients’ data set size and testing accura-
cies are known in advance and all clients can be used in the
training process.

In the future, we plan to devise different variations of the
secretary problem and provide performance analysis along
with proofs for each. We also intend to run several experiments
using a real data set to evaluate those variations and com-
pare their performance with the performance of the proposed
heuristic.
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