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ABSTRACT Recently, information-centric wireless networks (ICWNs) have become a promising Internet
architecture of the next generation, which allows network nodes to have computing and caching capabilities
and adapt to the growing mobile data traffic in 5G high-speed communication networks. However, the design
of ICWN is still faced with various challenges with respect to capacity and traffic. Therefore, mobile edge
computing (MEC) and device-to-device (D2D) communications can be employed to aid offloading the core
networks. This paper investigates the optimal policy for resource allocation in ICWNs by maximizing the
spectrum efficiency and system capacity of the overall network. Due to unknown and stochastic properties of
the wireless channel environment, this problem was modeled as a Markov decision process. In continuous-
valued state and action variables, the policy gradient approach was employed to learn the optimal policy
through interactions with the environment. We first recognized the communication mode according to the
location of the cached content, considering whether it is D2D mode or cellular mode. Then, we adopt the
Gaussian distribution as the parameterization strategy to generate continuous stochastic actions to select
power. In addition, we use softmax to output channel selection to maximize system capacity and spectrum
efficiency while avoiding interference to cellular users. The numerical experiments show that our learning
method performs well in a D2D-enabled MEC system.

INDEX TERMS ICWN, MEC, D2D, resource allocation.

I. INTRODUCTION
In addition to advances in information and communica-
tions technology, the proliferation of smart mobile devices is
undergoing unprecedented growth [1]. Mobile applications in
devices such as face recognition, natural language processing,
and augmented reality are emerging constantly, resulting in
ever-increasing data traffic [2]. Therefore, data services are
expected to become information-centric communications to
meet multimedia file sharing and video transmission [3] in
future fifth-generation (5G) networks. However, traditional

The associate editor coordinating the review of this article and approving
it for publication was Balázs Sonkoly.

wireless cellular networks have gradually become incapable
of meeting the strong demands not only in high network
capacity but also in high computational capabilities [4]. Con-
sequently, a network with a flexible structure is desirable.

Information-centric wireless networking (ICWN) is a
promising next-Internet architecture that has better scala-
bility and robustness. The goal is to evolve the Internet
infrastructure to directly support information distribution by
introducing uniquely named data as a core Internet princi-
ple [5]. ICWN enables network nodes to have computation
and caching capabilities to accommodate the increasingly
growing traffic of mobile data in the 5G high-speed com-
munication networks [6]. Recently, the ICWN approach has
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been explored by a number of researchers. Compared with
traditional networks, ICWN provides network node caching
capabilities in many implementations to further improve the
network performance. However, the technical issues and
challenges created by the ICWN network require in-depth
research and thinking, such as the high and variable latency
of transmitted high-volume quantities of data to the cloud for
data processing. Thus, this approach causes a heavy burden
on the network, while network congestion and high network
demands need to be considered, such as computing, caching
and communicating (3C).

Designing ICWNs face various challenges related to the
capacity and traffic. To address the above issues, one preva-
lent method is to employ mobile edge computing (MEC) and
device-to-device (D2D) communications, which can offload
the core network and increase the capacity of the network [7].
In the recent ICWN paradigm, the D2D-enabled MEC can
collaborate with cached popular contents on various nearby
devices, helping to improve spectrum efficiency and decrease
traffic congestion [8].

The emerging MEC is a promising approach for moving
a portion of the data/computation to the edge of the network
instead of sending it to the cloud datacenters [9]. MEC pro-
vides mobile users (MUE) with highly reliable, low-latency
computing and communication services. In addition, D2D
communications have been applied in MEC systems. D2D
communications can be beneficial to MEC in two aspects:
using the terminal device for content caching, and using the
D2D link to aid the MEC node in performing service data
transmission [10], which can efficiently reduce the high cost
of base station (BS) transmission, reduce users’ download
time and improve users’ QoE. Hence, efficiently allocating
limited communication resources and optimizing the policy
of power control and resource allocation in communication
is still an urgent issue in integrating these two techniques in
ICWN. In the D2D-enabled MEC system, our motivation to
study efficient resource allocation and power control algo-
rithms is two-fold. First, because of the continuous establish-
ment of D2D links, MEC and D2D user collaborative content
caching will improve cache efficiency in ICWNs, but spec-
trum reuse may cause serious inter-user interference [11].
Second, communication resource allocation directly affects
the quality of communication links. Therefore, the problem of
reasonably establishing links and allocating communication
resources cannot be ignored.

In this paper, we consider a multiuser D2D-enabled MEC
system in ICWN, as shown in Fig. 1. There are numerous
small cells. The MEC servers and MUE are deployed in
cells. When considering the communication resource alloca-
tion of D2D-enabled MEC in an ICWN, we employ a novel
deep reinforcement learning (DRL) approach to automati-
cally optimize resource allocation and power control deci-
sions. The contributions of this paper are as follows:
(1) We first introduce the system model and optimization

goal. We determine the communication mode based on
the location of the cached content, whether it is the

D2D communication mode or cellular communication
mode.

(2) Then, a resource allocation with a policy gradient
method is proposed, which is a joint resource allocation
and power control algorithm for a D2D-enabled MEC.

(3) Optimization is a two-objective problem. We use the
Gaussian distribution as a parameterization strategy to
generate continuous stochastic actions to select power.
Moreover, we use a softmax output channel selection
to maximize system capacity and spectrum efficiency
while minimizing interference.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the related work of resource allo-
cation and power control for D2D-enabled MEC in ICWNs.
Next, we describe the system model and optimization goal in
section 3. Then, we propose themethod of resource allocation
and power control with DRL in section 4. In section 5,
the performance of the proposed algorithm is verified by
experiments. Finally, section 6 concludes the paper.

II. RELATED WORK
In this section, we investigate the recent work in ICWNs.
To address the challenges caused by combining resource
allocation and power adaptation in ICWN, a number of novel
research technologies have been proposed in ICWN. Most
recently, several approaches based on edge service frame-
works have been the popular research topic in ICWNs. Con-
siderable work has been performed on integrating wireless
networks and information-centric networking. For instance,
Liang et al. in [6] proposed an ICWN virtualization archi-
tecture for integrating wireless network virtualization with
information-centric networking (ICN) and developed the key
components of this architecture. TalebiFard et al. in [12] pro-
vided a framework for supporting service-centric networks,
while they considered that the interaction service latency,
customization, and contextualization will be at the network
edge.

Moreover, to fully develop the potential of ICWNs, exploit-
ing MEC, in-network caching, and D2D communication has
become a popular research area. In-network caching is one
of the key features of ICWN. He et al. in [13] consid-
ered the allocation of resources in trust-based MSNs with
MEC, caching and D2D when the conditions of the network
resources vary with time. In addition, a paper studied a novel
device-to-device (D2D)-enabled multihelper MEC system in
which a local user solicits its nearby WDs, serving as helpers
for cooperative computation [14]. They primarily provided
a joint task assignment and resource allocation for D2D-
enabled mobile edge computing.

In the ICWN, since the wireless spectrum is still a bot-
tleneck resource, the research on D2D-enabled MEC is sig-
nificant for efficient wireless access. Specifically, when the
communication resource allocation is resolved in the D2D-
enabled MEC, it is necessary to consider the interference
problem existing in D2D communication. Thus far, D2D
interferencemanagement in traditional D2D communications
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FIGURE 1. A multiuser D2D-enabled MEC system in ICWNs. (The R-LINK is the radio link,
the M-LINK is the connection link of edge server and the C-LINK is the caching link.)

has received much attention. There are three main aspects:
mode selection, resource allocation, and power selection.

To address the issues above, increasingly new methods
have been proposed to reduce communication interference in
D2D communication. In addition to traditional optimization
methods, game theory and RL methods have been become
prevalent methods to address interference management prob-
lem in wireless communication, especially the distributed
decision-making problem and networking management [15],
[16]. Zhang et al. [17] developed a coalitional game with
transferable utility in which each user had the incentive
to cooperate with other users to form a strengthened user
group to increase the opportunity to win their preferred spec-
trum resources. Furthermore, the RL method has been used
to achieve resource allocation, mode selection and power
control by modeling these problems as Markov decision
processes (MDPs). Qiu et al. [18] developed a joint mode
selection and power adaptation approach using a multiagent
Q-learning algorithm based on conjecture. Zhao et al. [19]
proposed power control for D2D communication, which uses
multiagent reinforcement learning (MARL) to maximize sys-
tem throughput by adjusting the transmit power of each D2D
user.

To summarize, there is still a demand to explore and inves-
tigate the proposed communication resource allocation algo-
rithms for D2D-enabled MEC systems in ICWNs. In contrast
to all existing works, in this paper, we focus on communi-
cation resource allocation with deep reinforcement learning
(DRL) in D2D-enabled MEC, enabling mobile users to auto-
matically learn allocation policies based only on their cached
content and channel information.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, the system model used in this paper is
described. We first illustrate the network model description.
Then, we briefly introduce theMEC, in-network caching, and

D2D communications model in ICWN. Finally, we formulate
the optimization problem in detail.

A. NETWORK MODEL
As shown in Fig. 1, the network model consists of N small
cells. The cells are connected to the Internet through the
core network of the cellular communication system [2]. MEC
servers are placed in the BS to provide data services to the
MUE. The set of small cells is denoted byN = {1, 2, . . . ,N },
and we set Mn = {1, 2, . . . ,Mn} to represent the number
of BS and MEC servers. We assume that a BS is associated
with the Kn MUE and an MEC server. The Kn is defined as
Kn = {1, 2, . . . ,Kn}, and Kn refers to the kth MUE in nth
cell.

The D2D-enabled MEC system provides an offloading
method for the core of the cellular network. It can handle tasks
as far away as possible from the core network.We assume that
distributed MEC nodes can cooperate with content caching
in ICWNs and allow D2D communication. In this scenario,
both theMEC server and theMUE deployed on the BS have a
content caching capability. EachMUE can offload the cached
content by selecting a communication mode, including cellu-
lar mode andD2Dmode. The D2Dmode can be implemented
by D2D communication, and it can perform tasks without
involving a cellular network [7].

In the communication network architecture, when anMUE
requests data content, it can usually be implemented in two
communication modes. 1) D2D mode: the D2D user in the
communication range has buffered the requested content and
then directly transmits it to the requesting user through the
D2D link. 2) Cellular mode: the local cell’s MEC server
buffer has the requested content and can then be sent to the
user. Generally, the MUE sends a request by broadcast to
determine whether the local MUE has cached the content.
D2D communication mode achieves low latency, reduces the
traffic load through the network, and improves the coopera-
tion of MUE at the edge of the network.
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FIGURE 2. The communication mode of the D2D-enabled MEC system. ((a) D2D communication mode (b) cellular
communication mode.)

B. SYSTEM MODEL
In this work, we focus on the communication model, con-
sidering a joint channel and power allocation algorithm with
DRL, which can be used to solve the resource allocation prob-
lem in the D2D-enabled MEC system. Specifically, we con-
sider resource allocation in the D2D communication mode
and the cellular communicationmode. As illustrated in Fig. 2,
we describe the scenario of two communication modes. Each
mode includes aD2D link, a cache link, a communication link
and an interference link. In each cell, we assume that there are
Kn MUE, denoted asKn = {1, 2, . . . ,Kn}. These MUEs can
choose whether to become a D2D transmission user depend-
ing on the content cache. Fig. 2(a) is the D2D communication
mode, and Fig. 2(b) is a cellular communication mode. When
an MUE requests data content, it can usually be implemented
in two communication modes. We describe these modes as
follows:

1) CELLULAR MODE
Mobile user equipment communicates with another MUE
through the BS. In this mode, the local cell’s MEC server
buffer has the requested content and can then be sent to the
user.

2) D2D MODE
Mobile user equipment communicates directly with another
MUE through direct traffic [20]. In this mode, the D2D user in
the communication range has buffered the requested content
and then directly transmits it to the requesting user through
the D2D link.

Moreover, we assume that 1) in D2D communication,
cellular users utilize the downlink (DL) resources of the
cell, while D2D pairs reuse the downlink resources non-
orthogonally; 2) a cellular user and D2D pairs share the
same resource block and each resource block is allocated to
one cellular user and shared with multiple D2D pairs. Here,
we assume that D2D pairs reuse the downlink resource in

the central cell. Therefore, there are three types of interfer-
ence: D2D-to-cellular interference, cellular-to-D2D interfer-
ence and D2D-to-D2D interference [21].

C. PROBLEM FORMULATION
We assume that the BS can use the resource scheduler to
allocate D2D users to different channels and that the user
can select different powers to avoid interference. Let B

denote the channel bandwidth of the D2D-enabled MEC
system, which can be divided into H PRBs. Each PRB is
expressed as =

B
H
, ∈ {1, 2, . . . ,H}. In this scenario,

we consider the problem of choosing a mode. Let V =
{ c, d } denote the communication mode of MUE. Next,
we refer to one assumption for mode selection [22]. The
data center provides H different contents, denoted as C =
{c1, c2, . . . , cL}. The content caching matrix is defined as
X = {xk,f ∈ (0, 1) |uk ∈ U, cf ∈ C}. xk,f = 1 indicates
that the content cf is cached in the MUE and xk,f = 0
indicates that the content cf is cached in the local MEC
server. When a mobile user sends a content request, we first
need to determine if it is satisfied by the D2D user or theMEC
service.

In addition, in D2D communication mode, we assume that
a D2D pair can reuse multiple channels to ensure successful
transmission of packets while meeting the QoS requirements
of the entire communication system with minimum power
consumption. We assume that there are mobile users
choosing to become D2D users and mobile users choos-
ing to became cellular users. Let γ denote the interference
plus noise ratio (SINR) of the cellular user. For successful
transmission, the SINR is higher than γ ∗:

γ > γ ∗, ∀ ∈ N (1)

where γ ∗ is a threshold of SINR to maintain communication.
Generally, the SINR of the `th cellular user on the th channel
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is denoted as:

γ` =
Pil · h`

I +
∑m
=1 P`, · h`,

(2)

where P` is the transmission power of the `th cellular user
of the th channel, and h` is the link gain of the `th cellular
user. Here, we denote h` = · d− , is the pathloss, and
is the constant. P`

,
denotes the transmission power of the

th D2D user that reuses the th channel. The link gain of
the D2D user is denoted as h`

,
= · d− , and is the

pathloss, is the constant. Here, I represents the power of
the additive white Gaussian noise (AWGN). We assume that
there is no interference from neighboring cells because we
assume that the neighboring cells use channel resources of
different bandwidths. Let the SINR of the th D2D links on
the th channel be:

γ =
Pi
`,
hi
`,

I + (P` · h` +
∑ ′
6=
′
∈

P ′
,
· h ′

,
)

(3)

where h
`,

is the link gain of the th D2D user reusing the
th channel, h` is the link gain of the `th cellular user in ith
channel, and P

`,
is the transmission power of the th D2D

user. P ′
,
is the transmission power of the

′
th D2D user of

the th channel, and P` is the transmission power of the `th
cellular user of the th channel. Similarly, I denotes the power
of the AWGN. In a communication system, we define the
capacity of a cellular user in the D2D-enabled MEC system
as follows:

Cc = log2
(
1+ γ`

)
(4)

In addition, the capacity of D2D users is given by

Cd = log2
(
1+ γ

)
(5)

The total system capacity of MUE is defined as:

C = Cc + Cd (6)

Therefore, in both modes of communication, our optimiza-
tion goal is to make allocation decisions based on chan-
nel quality between mobile users and BSs and interference
between D2D users while maximizing total system capacity.

IV. RESOURCE ALLOCATION ALGORITHM
In the previous section, we formulated the optimization prob-
lem in the communication mode of the D2D-enabled MEC
system. Here, we devise a resource allocation method based
on a policy gradient algorithm to address the proposed prob-
lem. We divided the method into two subtasks as follows.

1) In the first subtask, we design the selection mechanism
of the communication mode according to the cache
matrix. When there is cached content in the MUE,
the MUE selects the D2D communication mode. Oth-
erwise, the cellular communication mode is selected.

2) In the second subtask, when the mobile users select
the D2D communication mode, the D2D users aid
the mobile user in offloading content. Here, since
D2D users reuse channels, the increase in transmission
power causes more interference for cellular users. We
design each D2D pair to adaptively learn multichan-
nel selection and power control strategies to maximize
the capacity of the system and minimize interference.
When the cached content is on the MEC server side,
our optimization goal is also to optimize the system
capacity of mobile cellular users.

A. DEEP REINFORCEMENT LEARNING
We use Markov decision processes (MDP) to model the opti-
mization problem mentioned in the previous section. Gener-
ally, an MDP can be defined as a tuple {S,A,P,R, ϒ} where
S is a state space, A is an action space, P is a state transition
probability, R is a reward function, andϒ is a discount factor.
In MUE environments, the state transition probabilities and
expected rewards for all states are usually unknown. Hence,
we formulate that the resource allocation problem in a D2D-
enabled MEC system is a model-free reinforcement frame-
work in which the MDP has a continuous state and action
space. The target of MDP is to find the optimal policy and
then solve the decision-making problem to maximize the
expected reward. In a reinforcement framework, the agent
learns policy by interacting with the environment. We define
the state and action of the environment as st ∈ S, at ∈ A,
respectively. Generally, the agent takes action at from the
current state st to a new state st+1 ∈ S and obtains an
immediate reward rt ∈ R.

In this paper, we mainly adopt policy-based reinforcement
learning. The method is considered to learn a parameterized
policy rather than selecting actions by consulting value func-
tions. Value functions are mainly used for policy parameter
learning, not for action selection [23]. In the process, the goal
of the agent is to choose a policy to maximize the expected
reward. The policy is defined as πθ (a |s ) = P(at = a |st =
s, θt = θ ) ≈ π (a |s ). In the decision-making epoch, data are
generated through the interaction between the agent and the
environment to optimize the policy. Generally, the long-term
expected reward is expressed as:

Gt= rt+1+ϒrt+2 + · · ·=
∑∞

k=0
ϒkrt+k+1, (r∈R) (7)

where γ ∈ [0, 1] denotes the discount factor. In the policy
gradient method, the optimization goal is defined as follows:

J (θ) = Vπθ (s) = Eπθ (Gt) (8)

where Vπθ (s) is the value function of πθ , the policy deter-
mined by θ . Here, the goal is to maximize the reward under
this distribution J (θ):

J (θ) =
1
N

N∑
i=1

[(
∑T

t=0
logπθ (ai,t |st ))(

∑T

t=0
r(st , at ))]

(9)
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FIGURE 3. The policy gradient learning for D2D-enabled MEC
communication networks.

Furthermore, the agent learns an optimal policy π∗, which
is denoted as:

π∗ = argmaxEτ∼πθ (Gt) (10)

where the τ represents a trace obtained by using a policy inter-
action. Generally, the sample approximation to the gradient is
given by

∇θJ(θ)=
1
N

∑N

i=1
[(

T∑
t=0

∇θ logπθ (ai,t |st ))(
∑T

t=0
r(st , at ))]

(11)

where ∇θ logπθ (ai,t |st ) is the score function. The gradient
is a partial derivative of J (θ) about θ . The above equation
provides us with an unbiased gradient calculation formula.
However, it may have a large difference, so we employ the
gradient with a baseline as follows:

∇θJ (θ) =
1
N

∑N

i=1
[(

T∑
t=0

∇θ logπθ (ai,t |st ))

× (
∑T

t=0
r (st , at)− bt )] (12)

where the bt is a baseline. The bt is varied in the environ-
ment state during the learning process. We use a network to
estimate its value. The learning rule of RL is also known
as the reinforce rule [24], and it can adjust the parameters
of the agent to reinforce the action with high cumulative
reward [25]. Therefore, there is a high baseline to acquire
higher valued actions under the reinforce rule. Conversely,
the baselines of low-value actions are low [26].

B. RESOURCE ALLOCATION AND POWER CONTROL
METHOD
The DRL framework of the D2D-enabled MEC system is
illustrated in Fig. 2. There are many MUE and D2D users
in one cell. During the interaction between agents and the
environment, the D2D transmitter takes action, including the
select channel and power level. Next, the state, action space,
reward function and update rule of channel allocation and
power control problem are described in detail.

Agent: Here, each active D2D link is designed as an agent.
The agent learns and makes decisions by interacting with the
environment.
State: The system states mainly include three components:

the communication mode of MUE Mm,i, the channel state
Cc,i, the power level Pp,i, and i refers to ith subchannel.
Therefore, the system state is defined as a matrix:

S (t) = {Mm,i (t) ,Cc,i (t) ,Pp,i (t)} (13)

where the vectors Mm,i, Cc,i, Pp,i are explained in detail as
follows. Mm is defined as Mm(t) = [MD(t),MC (t)], and
MD ∈ {0, 1}, MC (t) ∈ {0, 1}. If the MUE selects the D2D
mode, MD (t) = 1, MC (t) = 0, otherwise MD (t) = 0,
MC (t) = 1. Cc,i(t) is defined as:

Cc,i (t) =

 C1,1 (t) · · · C1,K (t)
...

. . .
...

CM ,1 (t) · · · CM ,K (t)

 (14)

Here, Cc,i (t) indicates whether the channel is used by
MUE. If yes Cc,i (t) = 1; otherwise, Cc,i (t) = 0. In addi-
tion, Pp,i (t) ε[0, 24 dB] represents the power level in the ith
subchannel, which is a continuous variable. It is defined as:

Pp,i (t) =

 P1,1 (t) · · · P1,K (t)
...

. . .
...

PM ,1 (t) · · · PM ,K (t)

 (15)

Action: In each learning process, there are two actions that
are defined as:

A(t) = {A1(t),A2(t)} (16)

where A1(t) selects a channel, and A2(t) represents selecting
the power level. The actions depend on the interaction with
the environment. More specifically, in our learning model,
the action is two-objective. The channel selection uses a
softmax output. In addition, the action of power selection
is chosen stochastically from a distribution parameterized at
time t by the network. Here, we adopt a Gaussian distribution.
Reward Function: Generally, the agent receives an imme-

diate reward rt+1 and a new environment state st+1. In our
work, there are D2D communicationmodes and cellular com-
munication modes. However, in these communication modes,
the reward function can be given as:

rt =

{
1, if the constraints are satisfied
0, otherwise.

(17)

Here, the proposed approach is based on different cached
content types C of users to guarantee their communica-
tion requests and meet the QoS demands of cellular users.
We define the constraints as follows:

γ > γ ∗,

Wc,i ≥Wc,s,

WD,i ≥WD,s,

(18)

where γ is the SINR of the cellular user, andγ ∗ is the
threshold of SINR. To ensure the communication quality
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of the cellular link, we consider the impact on the cellular
user SINR when a D2D user reuses the spectrum resource.
When the SINR is greater than a threshold γ ∗, the maximum
power at this time is set to the transmit power of the D2D user.
The Wc represents the transmission rate requirements of the
different cached contents. It is defined as:

Wc,i = bi · log2(1+ γ
m
i ) (19)

In addition, the transmission rate of a D2D user is given by

WD,i = bi · log2(1+ γ
n
i ) (20)

The demand for data rate is different when the requirement
arrives at each time. Therefore, the agent will learn how
many subchannels and how much power should be allocated
to the D2D user. Our approach not only ensures the normal
communication of cellular users but also maximizes the reuse
of channel resources and optimizes system capacity. When
the above conditions are met, the reward is 1; otherwise, a
penalty is given.

C. TRAINING ALGORITHM
We adopt a policy gradient algorithm to learn resource allo-
cation and power control. In the policy gradient algorithm,
the policy parameters are updated sequentially. The deep
neural network is used to train data. In the D2D-enabledMEC
system, the D2D transmitter is set as an agent. The agent
interacts with the environment and then takes action. Dur-
ing the learning process, the agent continuously updates the
policy according to the policy gradient algorithm until the
optimal strategy is learned. Our approach first determines
the communication mode and then combines the channel
selection and power selection where the agent has two dif-
ferent actions to achieve a goal. Training the core network is
illustrated in Fig. 3. We define the number of hidden layers as
2 and the number of neurons as 256. The state S (t) is the input
of the network, and the output is the probability distribution
over all possible actions of channel selection and power
selection. The mode selection is a two-label classification
problem according to different contents. When the content
cache xk,f = 1, the content is cached in the MUE where the
agent selects the D2Dmode. In addition, the xk,f = 0 denotes
that the content cf is cached in the local MEC server, and the
agent selects the cellular mode. In each episode, themain goal
of the agent is to learn the policies of the channel selection and
power selection. In the training process, the optimal actions
are unknown, and the good or bad learning result is provided
via the reward. Furthermore, there are three loss functions,
and the loss of the baseline is given by

Lb =
1
2

∑N

i=1

∑Tn

t=0
[bit − r

i
t ]
2

(21)

where bit is the estimated value of the reward, and r it repre-
sents the one-step reward. N denotes the number of samples,
T represents the length of the trace, and i denotes the ith trace.

The loss function of channel selection is

Lc =
1
N

∑N

i=1

∑Tn

t=0
π i1,t [a

i
t

∣∣∣sit ]r it (22)

where π i1,t denotes the probability of selecting a channel,
and r it is the one-step reward. The loss function of the power
selection is

Lp =
1
N

∑N

i=1

∑Tn

t=0
π i2,t [a

i
t

∣∣∣sit ]r it (23)

where π i2,t denotes the probability of selecting a power. The
total loss is given by

L = Lb + Lc + Lp (24)

We optimize the cross-entropy loss to train the action network
and backpropagate the gradients through the core network.
The update rules are shown in Algorithm 1 and Algorithm 2.
Algorithm 1 shows the procedure of resource allocation and
power control. Algorithm 2 mainly describes the update steps
of the policy gradient. In Algorithm 1, we run Algorithm 2 to
learn channel selection and power control policies. The D2D
user’s method of selecting the channel and power can ensure
the edged cache of the MUE and avoid the interference of the
D2D-enabled MEC system.

V. EXPERIMENT AND EVALUATION
In this section, we present experiments to evaluate our pro-
posed joint channel selection and power control method. The
experiments are conducted in an Ubuntu operating system
(CPU Intel core i7-4790 3.6 GHz; memory 16GB, GPU
NVIDIA Quadro K2200, which contains 640 CUDA com-
puting core units and 4GB graphics memory).

As illustrated in Fig. 2, we consider a cell where the
MUEs are deployed based on the spatial Poisson process.
The D2D mode and cellular mode are selected among the
active mobile devices, and each MUE can construct one D2D
link or cellular link. In addition, we adopt the Manhattan case
detailed in 3GPP TR 36.885 to set the simulation [27]. In one
time-slot (0.5 ms), the radio resource is organized in a number
of downlink RBs with 180 kHz per RB. In addition, we set

FIGURE 4. The convergence performance of different learning rate.

VOLUME 7, 2019 114941



D. Wang et al.: Resource Allocation in Information-Centric Wireless Networking With D2D-Enabled MEC: A DRL Approach

Algorithm 1 Channel Allocation and Power Control
Method
begin

Initialization:
For t = 0, t = (t1, ..., tN )
Randomly create a state matrix: S (t)
Create an action matrix: A (t) = 0

Initialize D2D-enabled MEC system model
parameter

Determine the communication mode of MUE
according to cached content

D2D mode (if xk,f = 1)
Cellular mode (if xk,f = 0)

D2D user randomly select a first channel and
power level

End for
Processing:
Loop:
For t in T , do

(1) Selected channel C and power P
(2) Calculate:

γ` of the ith channel of the cellular user
γ of the ith D2D pair
System capacity

(3) Check SINR to guarantee QoS of users
according to Constraints

(4) Run Algorithm 2, learning channel and
power selection policy
(5) If the D2D transmission restarts in this time

slot
End if

End for
Set t = t + 1
Create a new potential state matrix: S (t + 1)
End loop

end

the number of PRBs to 10. Generally, there are two types of
D2D communication, namely, in-band or out-band commu-
nication. In all simulations, we set the D2D communication
distance to 50m. Hence, the type of D2D communication
is in-band communication. In addition, the D2D communi-
cation connections are supported through cellular (Uu) and
sidelink radio interfaces, respectively. In this experiment,
the deep neural network for each agent consists of 2 hidden
layers, whose number of neurons is 256. In our D2D-enabled
MEC system, the MEC mainly performs content caching and
content forwarding. The MEC server is mainly deployed in
the base station and provides various functions through the
mobile edge computing application. The MEC server here
is mainly a multi-user single server because only one MEC
edge server is arranged after each cell base station. The main
simulation parameters are presented in Table 1. We evaluate
our approach on the above parameter settings.

Algorithm 2 Learning Algorithm of the Policy Gradient

begin
Initialization:

t = 0, the network parameter θ
At is the action of D2D user, St is the

environment state
for i in N do

Observe St , and initialize D2D transmitter
power
For t = 0, . . . ,Tn do
Select channel according π i1,t [a

i
t

∣∣sit ]
Select power according π i2,t [a

i
t

∣∣sit ]
Obtain the trace r it and observe state sit+1
according to system capacity
Repeat this process for next state st+1
End

end
Calculate loss Lb,Lc,Lp
Calculate total loss L

Use a gradient descent to update parameter θ
and

minimize loss L
end

TABLE 1. The parameter of the simulation [28].

First, we carry out numerical experiments under various
settings of learning rates to validate the proposed work.
We set that the number of MUEs to 5. According to the cache
requirement, one MUE is selected to become a D2D user,
which reuses the channel of one cellular user. We assume that
the power level is in the range of (0, 24) (dB). As shown
in Fig. 4, we study the convergence performance of the
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FIGURE 5. The convergence performance of different batch size.

proposed algorithm at different learning rates. The learning
rates are 0.01, 0.001, 0.0001, and 0.0001. It can be seen
that there is a similar trend in Fig. 4. When the MUE is
in the D2D communication mode, the figure shows that the
learning rate causes the algorithm to converge to an optimum.
The convergence time is different in different learning rates.
As seen from the figure, when the learning rate is 0.0001,
the convergence performance is the best. Hence, in the fol-
lowing simulations, we set the learning rate to 0.0001 because
its convergence performance is better than the others. In this
figure, the initially expected reward is low because the agent
explores the optimal strategy, and then all curves gradually
rise and tend to stabilize.

As shown in Fig. 5, we compare the expected rewards of
users in four batch sizes. We set the learning rate to 0.0001,
and the batch sizes to 20, 50, 100, and 200, respectively.
It is shown in the figure that the expected reward on dif-
ferent batch sizes is increased. However, the small or large
batch size does not regularly affect the expected reward.
Additionally, under these conditions, the convergence time
is different. Since a different batch size requires different
training duration and convergence speed, we adopt the batch
size (= 50) in the following experiment because under this
batch, the expected reward is the largest, and it consumes less
time.

Fig. 6 depicts the cross-entropy loss function L of our
policy gradient network. Here, we set the learning rate is
0.0001 and the batch size is 50. In the figure, we enable to
observe the simulated variations in the loss function defined
as in (24), which reveals that the convergence of our proposed
algorithm can be ensured. When the learning network first
started training, the value of the loss was relatively large, and
the network was in the update phase. As the number of train-
ing processes increases, the value of loss gradually decreases.
Specifically, the training loss L gradually decreases and sta-
bilizes after training 200 interactions, whose fluctuation is
mainly due to the random sampling of training data. It means
that our algorithm automatically updates its decision policy
and converge to the new optimal value. The figure shows

FIGURE 6. The training loss of the policy gradient network.

FIGURE 7. The system capacity of different algorithms.

that the policy gradient method has good convergence in joint
resource allocation and power selection, and the convergence
time is short.

In Fig. 7, we further show the system capacity in different
resource allocation algorithms s at each step in the same
episode. Two algorithms are also simulated for comparison.
They are the proposed policy gradient algorithm and the
deep Q-network (DQN) algorithm. Here, we set the learning
rate to 0.0001. In our proposed algorithm, the batch sizes
are 20, 50, 100, 200. By making a comparison between
our proposed algorithm and the DQN algorithm in the same
conditions, it can be found that the performance of former
outperforms the latter. Our method shows its effectiveness
on maximizing the system capacity faced with dynamic and
complex wireless environments because our power selection
method is a decision made in a continuous state space, but
DQN is a choice made on discrete power. Hence, our method
can learn more power control strategies. We observe that
even though the proposed method has a batch size of 200,
resulting in the lowest system capacity, it achieves better
performance than DQN. It demonstrates that our approach
allows to significantly reinforce policy learning when the
agent interacts actively with the environment. Furthermore,
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the Gaussian distribution is used as the parameterized policy
to generate stochastic actions of power selection, and softmax
is used to perform channel selection. In continuous value
states and action variables, we use a policy-gradient approach
to learn the optimal policy through interacting with the
environment.

The experiments prove that cellular communication and
D2D communication can coexist and share RBs for their
data transmissions. The proposed joint resource allocation
and power selection method can maximize system capacity
while avoiding interference. During the learning process,
the agent continuously updates the strategy to learn how to
allocate resources and select power. Based on the simula-
tion results, each agent can learn how to meet the cellular
communication constraints while avoiding interference with
D2D-enabled MEC communications and maximizing the
total system capacity.

VI. CONCLUSION
Information-centric wireless networking (ICWN) has
become one of the most important networking paradigms in
future 5G wireless networks. In the recent ICWN paradigm,
D2D-enabled MECs can collaboratively cache popular con-
tent on a variety of nearby devices, which helps to improve
spectral efficiency and reduce traffic congestion. This paper
introduced a novel resource allocation and power control
method with the policy gradient in a comprehensive D2D-
enabled MEC system of IWCN. Specifically, we have mod-
eled this problem as model-free reinforcement learning.
In addition, due to the unknown channel environment and
ever-changing transmission power, we updated the parame-
ters with the regular policy gradient method. The Gaussian
distribution was used as the parameterized policy to generate
stochastic actions of power selection, and softmax was used
to perform channel selection. Numerical results show that the
method has good convergence.
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