
SPECIAL SECTION ON SECURITY AND
PRIVACY FOR CLOUD AND IOT

Received March 31, 2019, accepted April 3, 2019, date of publication May 1, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911202

Privacy Leakage in Smart Homes and Its
Mitigation: IFTTT as a Case Study
RIXIN XU 1, QIANG ZENG2, LIEHUANG ZHU 1, HAOTIAN CHI3,
XIAOJIANG DU 3, (Senior Member, IEEE), AND MOHSEN GUIZANI4, (Fellow, IEEE)
1School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
2Computer Science and Engineering Department, University of South Carolina, Columbia, SC 29208, USA
3Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
4Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar

Corresponding author: Qiang Zeng (zeng1@cse.sc.edu)

ABSTRACT The combination of smart home platforms and automation apps introduce many conveniences
to smart home users. However, this also brings the potential of privacy leakage. If a smart home platform
is permitted to collect all the events of a user day and night, then the platform will learn the behavior
patterns of this user before long. In this paper, we investigate how IFTTT, one of the most popular smart
home platforms, has the capability of monitoring the daily life of a user in a variety of ways that are
hardly noticeable. Moreover, we propose multiple ideas for mitigating privacy leakages, which all together
form a ‘‘Filter-and-Fuzz’’ (F&F) process: first, it filters out events unneeded by the IFTTT platform. Then,
it fuzzifies the values and frequencies of the remaining events. We evaluate the F&F process and the results
show that the proposed solution makes the IFTTT unable to recognize any of the user’s behavior patterns.

INDEX TERMS IFTTT, privacy leakage, smart home, SmartThings.

I. INTRODUCTION
A Smart Home, a typical application of Internet of Things
(IoTs), has become increasingly popular in recent years.
Smart home devices, such as various sensors and appliances,
have been changing the way people interact with their homes.
One can monitor remotely the state information (e.g., tem-
perature, humidity, occupancy, etc.) or control smart appli-
ances (e.g., turn on/off a lock, configure the routine of a
thermostat, etc.) in a smart home. The devices in early stages
were heterogeneous, so they could only work in a scattered
manner due to limited interoperability. Emerging IoT plat-
forms provide a revolution to the smart home. A platform
provides a new ecosystem, which typically comprises various
smart devices, a local hub, and a backend cloud. Some plat-
forms also provide a programming framework for third-party
developers to contribute novel intelligence to smart homes
by publishing IoT apps; such platforms are called appified
platforms. The users choose IoT apps to control their devices
contextually and automatically, known as home automation.
Samsung’s SmartThings [1], Google’s Weave/Brillo [2], and
Apple’s HomeKit [3] are several dominant examples of
appified platforms.

The associate editor coordinating the review of this manuscript and
approving it for publication was SK Hafizul Islam.

To support more services, devices, and user interfaces,
IoT platforms also integrate third-party services by exposing
cloud APIs. This allows distinct services, clouds, and appli-
cations to manage a smart home collaboratively.

For instance, SmartThings provides endpoints in its
IoT apps (a.k.a., SmartApps) to allow third-party ser-
vices/applications (e.g., IFTTT) to gain access to the devices
in its system. IFTTT (‘‘If This, Then That’’) is a free web ser-
vice to create chains of simple conditional statements which
are also called applets. ‘‘This’’ and ‘‘That’’ are the trigger and
action of an applet, respectively. In other words, an IFTTT
app (applet) works in the way that ‘‘If a trigger is observed,
then perform an action’’. IFTTT can also concatenate dif-
ferent popular Internet services, such as Gmail, Instagram,
Facebook, and SmartThings. By integrating SmartThings and
IFTTT, users are able to gain more intelligence by installing
IoT apps from both SmartThings and IFTTT.

However, the risk of a privacy breach is also increased by
these Trigger-Action IoT platforms. This is because multiple
platforms gain access to the users’ devices. Despite support-
ing various services, the device data (e.g., sensor readings,
appliance status) are tightly related to user activities, daily
routines and the revelation of some sensitive data can cause
privacy threats to users.

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

63457

https://orcid.org/0000-0002-6521-5534
https://orcid.org/0000-0003-3277-3887
https://orcid.org/0000-0003-4235-9671

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

In this paper, we analyzed the workflows of several typical
3rd-party platforms and found that they share similarities
in their potential to monitor a user’s daily life excessively
in three ways: 1) they can obtain the states of the devices
that are not related to any apps; 2) they can get redundant
state records, though many records cannot trigger any apps;
3) most third-party apps do not need the accurate values of a
numeric sensor measurement, but they continuously receive
these values.

We chose to analyze SmartThings (which connects IoT
devices and provides services) and some prevalent 3rd-party
platforms (which provide services) due to the large user base
they have. There are more apps in the SmartThings plat-
form than the competing platforms such as Weavo/Brillo and
HomeKit [4]. For IFTTT, there are 11 million users running
over 1 billion apps on its server [5]. IFTTT developed aWeb
Service SmartApp running on SmartThings as an agent,
which exposes web endpoints and allows the IFTTT server
to access devices in the SmartThings system [6].

To prove the redundancy of the event records that are
uploaded to 3rd-party platforms, we proposed a mechanism
called ‘‘Filter&Fuzz’’ (F&F) to filter the record events. The
essential idea of F&F is that an event does not always have to
be uploaded to the 3rd-party apps, and even if it is required,
it can be filtered and fuzzed. This significantly reduces the
events uploaded to the remote 3rd parties and thus, they can
barely recognize a user’s behavior pattern. We experimented
with F&F for two agent SmartApps for an identical 3rd-party
platform. One is the original agent that monitors and uploads
all user events, while the other is customized to only upload
events filtered and fuzzed by F&F. The comparative exper-
iment proved that the whole system can still work properly
while most event records have been filtered.

However, only filtering the event records is insufficient
as the statistical character of the event records can still be
calculated to infer users’ life patterns. Therefore, other than
filtering the records, we proposed a new protocol between the
smart home and 3rd-party platforms to hide the true statistical
character of a smart home’s event records.

Our contributions are summarized as follows:
1) We investigate how the integration of several 3rd-party

platforms may cause privacy threats to SmartThings
users by learning the agent SmartApps of these plat-
forms. We use IFTTT as a representative example to
illustrate how these 3rd-party platforms can monitor a
user in several ways which are hardly noticeable.

2) We propose a mechanism to prove the redundancy
of the event records that uploaded to the 3rd-party
platforms. We prove that, the integration of 3rd-party
platforms can still work properly if most event records
have been filtered.

3) To completely hide the statistical character of the fil-
tered event records, we propose a component for data
shared between a major smart home platform and a
3rd-party platform. This component runs on a smart
home platform and prevents a Trigger-Action 3rd-party

platform from obtaining the pattern of the filtered event
records.

II. BACKGROUND AND RELATED WORK
A. THE ARCHITECTURE OF SMARTTHINGS PLATFORM
To use the SmartThings service, a user must buy a Smart-
Things hub and several end devices. All the end devices
are connected via ZigBee, Z-Wave, or Wi-Fi to a hub
which maintains an SSL-protected link to the cloud back-
end. The end devices can be divided into two categories:
sensors and actuators. The role of sensors in the Smart-
Things ecosystem is to gather the state of the house, for
example, the presence of the user, the illuminance value
of a room, the lock state of a smart lock, the power con-
sumption of an apartment, and so forth. When a sensor
detects state changes, the new state will be uploaded to the
cloud backend via the hub. These new states are treated as
‘‘events’’. Other than sensors, actuators are devices that can
‘‘act’’—they perform some specific commands such as ‘‘turn-
ing on a switch’’ (switch.on()) or ‘‘locking the door’’
(lock.close()). Every device in a house is represented
by a SmartDevice running on the cloud backend. As the vir-
tual representation of a physical device, SmartDevice trans-
lates raw data generated by an end device to events or com-
mands that are suitable for SmartApps. The architecture of the
SmartThings platform is shown in Fig. 1. A user can browse
the app market and install SmartApps using the companion
app. SmartApps run on the cloud backend, but SmartThings
enables the latest hub to run SmartApps. The user can grant
a SmartApp a subscription to several end devices, enabling
that SmartApp to monitor events generated by sensors and
operate actuators by sending commands. For example, a user
may install an air conditioner control SmartApp which can be
summarized to ‘‘Turn on the air conditioner when the temper-
ature is higher than 30◦C’’ and grant this SmartApp a temper-
ature sensor and an air conditioner. The temperature sensor
will upload temperature readings to the cloud, and when this
value turns to be above 30◦C, this SmartApp will send the
command to the air conditioner to turn it on. This example
also illustrates how SmartThings automatically manipulate
devices as the users wish.

B. WEBSERVICE SMARTAPPS AND THE 3RD-PARTY APP
In order to grab market share and offer more flexibility
to developers, SmartThings supports the WebService Smar-
tApps. These SmartApps expose a URL and some defined
endpoints, enabling themselves as a tiny web service.
A developer can implement a WebService SmartApp and
develop a remote 3rd-party app, which runs on a mobile
phone or a web server. Granted by a user, the 3rd-party
app can obtain an OAuth token released by SmartThings as
the credentials to communicate with the corresponding Web-
Service SmartApp via HTTP GET, PUT, POST and DELETE
methods. In other words, the 3rd-party app can access the
state of, or operate the end devices that are subscribed to the

63458 VOLUME 7, 2019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

FIGURE 1. The architecture of SmartThings platform.

WebService SmartApps with those credentials. The OAuth
process between the 3rd-party app and the cloud backend is
beyond the scope of this paper. In this scenario, the WebSer-
vice SmartApp is essentially an agent SmartApp between
the 3rd-party app and the end devices. This workflow differs
from the regular SmartApps because the developers move
the functionality of a regular SmartApp to the 3rd-party app,
leaving the WebService SmartApp solely responsible for the
communications between the 3rd-party apps and the end
devices.

1) A 3RD-PARTY APP SENDS MESSAGES TO THE SMARTAPP
If a developer wants to enable a 3rd-party app to refresh
the state of some devices or send an operation command to
an actuator, the mappings declaration in the WebService
SmartApp code allows this SmartApp to expose the HTTP
endpoints and map the various supported HTTP operations
to the associated handlers.

Listing 1. Map the HTTP operations to corresponding handlers.

The snippet in Listing 1 shows a typical WebService
SmartApp supporting two endpoints. The /switches end-
point will support the GET (line 4) requests. It will call the
listSwitches() method and then send back the return

value. The /switches/:command endpoint enables the
SmartApp to handle the PUT requests (line 10). This dif-
fers from handling the GET requests as it can deliver the
command as a parameter to updateSwithes().

2) THE WEBSERVICE SMARTAPP UPLOADS A NEW EVENT
When the WebService SmartApp receives an event, it should
send this event to the 3rd-party app immediately. This
procedure is also completed by HTTP methods, such as
httpGet() and httpPostJson().

C. SMARTTHINGS WORKING WITH THE
TRIGGER-ACTION APPS
Developers, including those from 3rd-parties, Samsung, and
the users themselves, have published or deployed numerous
apps on various 3rd-party platforms. To authorize a 3rd-party
service to his own devices, a user should first grant his
3rd-party account to access ‘‘resources’’ of his SmartThings
account. Then, SmartThings will automatically deploy a cor-
responding agent SmartApp to cooperate with the 3rd-party
service. Of course, this corresponding agent SmartApp is
developed and uploaded by the 3rd-party. After these steps,
the 3rd-party service is permitted to communicate with the
user’s end devices.

D. IFTTT: IF THIS, THEN THAT
IFTTT is a free cloud computing service whosemain function
is to offer a platform that links different web services and
enable them to work together, and this type of linked service
is also known as the Applets. At present, many prevalent
web service such as Google, Facebook, Instagram and Smart-
Things, have joined IFTTT. ‘‘This’’ part of an IFTTT applet
is the item that can invoke this applet, then this applet will
execute a command, or namely the action. Action is specified
by ‘‘that’’ part of the IFTTT applets. All the applets are
the connections between triggers (‘‘this’’ part) and actions
(‘‘that’’ part), if ‘‘this’’ part is triggered, then this applet

VOLUME 7, 2019 63459

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

will do ‘‘that’’ part. For example, if a user likes a picture
on Facebook (trigger), then this applet can send the photo
to his Instagram account (action). Like the other services,
SmartThings has joined IFTTT for a long time, and the
SmartThings related applets are very popular on IFTTT as
they are intuitive for the users: ‘‘This’’ and ‘‘That’’ parts of
the applets easy to follow because they correspond to a sensor
and an actuator. One user may set up an applet just in a few
minutes as he wishes, rather than searching an applet on the
SmartThings app market. IFTTT has been released for about
9 years and has been one of the most popular services on the
Internet.

So, it is quite worthy to put efforts on the security and
privacy aspects of the combination of IFTTT and Smart-
Things. Nowadays, IFTTT has gained over 54 million users
all around the world, many of these users also use the services
of SmartThings.

E. THE POPULARITY AND NECESSITY OF
TRIGGER-ACTION APPS
Though there have been numerous SmartApps published on
SmartThings, the demands on the automatic functionality
varies from user to user and this makes that it quite difficult
to find an app which is entirely suitable for a user. Most apps
can be described with a Trigger-Condition-Action model:
When a new event is triggered, if all the current conditions
have been satisfied, then the app will be invoked to execute
the action. These sophisticated apps must be created by the
developers or teams with sufficient professional knowledge,
such as Groovy language and the workflow of SmartThings.
However, these prerequisites are extremely difficult for an
ordinary smart home user. Therefore, what most users actu-
ally need is a platform that is easy to follow and can satisfy
as many as various environments as it can.

The Trigger-Action (TA) platforms emerged and have been
welcomed rapidly; using these platforms does not rely on
an amount of technical depth and offers much more flexible
choices to the users. With these TA platforms, what a user
needs to do is just connect the trigger device and actuators
to deploy an app. These apps are quite simple but can cover
most cases in daily life. These apps do not need any expert
knowledge about the smart home and their functionalities are
very intuitive to the user. The TA platforms offer so many
conveniences that research on TA 3rd-party platforms is quite
neccessary.

F. RELATED WORK
As a research field shares a large overlap with the Inter-
net of Things, the security of smart home platforms and
devices has also received wide attention [7]–[10]. Especially,
Zhang et al. [11] proposed a fog-based privacy-preserving
truth discovery scheme to find the truths from the sensory
data provided by various IoT devices.

At present, lots of papers have paid attention to the security
of smart home, including the platform and devices. One of
the most influential papers is the one published in 2016 by

Fernandes et al. [4], it is the first comprehensive review of
the security vulnerabilities of the smart home platforms repre-
sented by SmartThings. Those vulnerabilities include coarse-
grained access control mechanisms, inadequate protection
of event data, flaws by integrating the 3rd party apps, and
potential threats by Groovy dynamic method calls. Aiming
at the problem that the access control of the smart devices is
too coarse on the platforms such as SmartThings and open-
HAB, Lee et al. [12] designed and implemented the FACT,
the essence of which is the virtualization of the capabilities of
the smart devices. The representation of the smart deviceswill
be no longer a separate device but as the separate capabilities.
The purpose of SmartAuth [13] is to compare the function-
alities that a smart home application claims to the user and
its actual behavior, using the comparison between the appli-
cation description, annotation, and the actual workflows of
the SmartApps. Then ContexIoT [14], considering that smart
home applications may face more complicated scenarios,
put forward more granular constraints on SmartApps when
they are operating the actuators. Ali et al. [15] conducted
a comprehensive survey of potential threats to smart home
devices, and have predicted the threats and potential attacks
are expected for the next few years. [16] proposed a logic
based security algorithm to enhance smart home security. The
algorithm in this paper is implemented to differentiate normal
and suspicious user behavior. Additionally, Blockchain has
been applied to enhance the security of the smart home. For
example, [17] shows an approach to provide decentralized
security and privacy and solves overhead issues that are not
suitable for resources and power constrained IoT devices.

A lot of papers have also been published on the privacy pro-
tection issues come with the smart home devices. Although
manufacturers have deployed various measurements of their
platforms, some papers still found flaws leaking users’
privacy on various platforms [18]–[21]. There have been
many papers showing how to compromise a user’s privacy
via the flaws of cloud [22]–[25], protocols, voice interface
[26], or even traffic analysis. These efforts cover the privacy
breaches that can be caused to users by various platforms in
a smart home environment. At present, it seems that these
research on privacy leakage disclosure and protection can be
roughly divided into three categories in terms of technology.

1) OBTAIN USER PRIVACY THROUGH THE PHYSICAL
CHARACTERISTICS OR VULNERABILITIES OF THE DEVICES
The attacks that obtain user privacy through the physical
characteristics of the smart devices are similar to the side
channel attack to the devices. This kind of attack observes the
external physical characteristics, such as sound and tempera-
ture, during the runtime of a device, and then infer the user’s
behavior pattern and privacy. For example, Xu et al. [27] can
know the TV content accurately at a distance of more than
50 meters in no more than 10 seconds, and the side channel
information used in this scenario is the change of light during
TV’s working. Similarly, there have been instances of attacks
against smart meters to infer the user’s living patterns because

63460 VOLUME 7, 2019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

of themeters’ high-accurate readings [28], they also proposed
several ways to protect the privacy by adding noise to the
actual power consumption.

In recent years, a number of representative attacks on home
smart speakers have also emerged. Zhang et al. [29] have
investigated the vulnerability of Amazon Alexa and Google
Home Smart speakers to a highly similar voice command
which allows an attacker to impersonate a fake voice instruc-
tion as a normal one, which enables the attackers to eavesdrop
and steal users’ conversations. In addition, the smart speakers
of different manufacturers are always working all day and
connected to the back-end cloud platform, therefore, how
to exploit and prevent these devices to monitor the users’
conversations has become a research hotspot in this field.

2) USING THE CHARACTERISTICS OF THE ENCRYPTED
TRAFFIC TO SPECULATE ON USER BEHAVIOR PATTERNS
Nowadays, most of the smart devices use SSL to ensure
the confidentiality of the communications between them and
the cloud. But it also faces the threat of traffic analysis.
Traffic analysis is already a common attack method on the
traditional computing platforms, and there have been many
papers that apply the traffic analysis to the flaw exploiting and
security evaluation of the smart devices. The traffic patterns
of most smart devices are relatively static and simple, leaving
the attackers with vulnerabilities that can be exploited. For
example, the work of Copos et al. [30] proves that the traffic
pattern of many devices, including the Nest thermostat, can
be analyzed to infer to obtain the sensitive privacy informa-
tion inside the room. Yoshigoe et al. [31] have proved that
the traffic characteristics of several devices compatible with
SmartThings are very distinct and different. When different
smart devices start to communicate with the cloud, the hand-
shake and keep-live processes demonstrate different charac-
teristics. By observing these traffic, third parties, including
the ISPs, can exactly infer what the actions the users have
done. To solve this problem, they proposed a comprehensive
packet injection (Synthetic Packet Injection) mechanism to
mask the real traffic characteristics between the smart devices
and the cloud. Two papers published by Apthorpe et al. [32],
[33] also focus on the privacy leaks come with network traffic
patterns of the smart devices. In these articles, they com-
prehensively evaluated several protection strategies against
network traffic analysis aiming at protecting user privacy and
gave comparative results. The research of Amar et al. [34]
is to construct the corresponding fingerprint characteristics
for various smart devices, in order to evaluate the risk of
privacy leakage of these devices. These fingerprint features
are constructed based on the network traffic pattern of the
corresponding devices. DeMarinis and Fonseca [35] built a
framework to limit malicious traffic to protect the security of
smart home in terms of the network layer.

More and more smart devices have been connected to the
network to communicate with the cloud. However, due to the
simple functionalities and fixed traffic patterns of these smart
devices, it is inevitable that the mature and powerful traffic

analysis will be applied to infer the users’ behavior patterns,
which will bring great challenges to the privacy protection
issues of smart home platforms.

3) THE PRIVACY ISSUES COME WITH THE SMART
HOME APPS
After being combined with cloud computing and mobile
computing, the smart home apps have beenmore complicated
and various. These apps come from the smart home platforms,
the 3rd party platforms, and the apps on mobile platforms
such as smart phones. Among all the 3rd party platforms,
IFTTT is the largest one. The work of Fernandes et al.
[36] is to investigate the mechanism of the OAuth processes
on several ‘‘Trigger-Action’’ platforms, they found that if
these OAuth tokens are obtained by the attackers, the smart
devices will be easy to be attacked because of the coarse-
grained access control of the smart devices. For this reason,
they proposes a solution that denies the combination of the
OAuth token and a device but permits the combination of the
token and capabilities. By this method, the negative effects of
leaking the OAuth tokens to an attacker will be constrained
within a certain range. For the SmartApps of SmartThings,
[37] applied the Taint Analysis of the traditional computing
platforms to the smart home applications, which tarnished
the sensitive information and track them, thus mitigating the
leakage of the sensitive data.

Some IoT related research can also be applied to Smart
home security and privacy related topics. Many efforts also
have been put on the security topic of Internet of Things,
mobile computing platforms, and smart home and personal
privacy for a long time [38]–[42]. The existing work has
proved how vital security is in IoT networks and devices [43].
The current IoT security research mainly analyzes the flaws
that come with hardware [44], protocols or key management
[45], and architectures. Sivaraman et al. analyzed threats and
flaws with devices on the market and proposed that SDN
technology can be used to block/quarantine and augment the
device security of the smart home [46].Du et al. proposed
the significance of key management of the communications
between IoT devices [47].

III. PRIVACY LEAKAGE TO IFTTT
In this section, we will prove and demonstrate how the
3rd-party platform acquires more redundant user data than
it actually needs for the functionalities. We use IFTTT as an
example to exploit how a 3rd-party platform can monitor the
privacy data of users in a way that is easily overlooked.

A. PRIVACY LEAKAGE BY UNTRIGGER-DEVICES
We treat the devices that cannot trigger any apps as
‘‘untrigger-devices’’. There are two types of untrigger-
devices: those that have been authorized to the 3rd-party
platform but are not related to any apps (we can also call
these devices ‘‘idle-devices’’), and those related to apps but
as the actuators. These actuators only perform the commands
of the related apps; they cannot trigger them. The states of

VOLUME 7, 2019 63461

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

these devices are unnecessary to any apps, but the 3rd-party
platform will be monitoring all of these devices continuously
anyway.

1) BY THE IDLE-DEVICES
When a user starts to configure to let a 3rd-party platform
access to SmartThings service, they are asked to grant the
authorization to the 3rd-party platform. Most users, if not all
of them, are willing to authorize all devices to the platform at
once, as they are unsure of what kind of apps they will install
and which device the new apps might access to in the future.
In other words, they are reluctant to go through the tedious
authorization process again. However, even if a user triggers
device authorization each time when they log in, there still
exists a possibility of idleness. Suppose a user is installing an
app to be triggered by a switch; when the user deletes this
app, the 3rd-party platform will not give up the permission to
access to this switch. This is how a new idle-device is created
in a way that is easily overlooked.

2) BY THE ACTUATORS
Actuators are another kind of untrigger-device because all
they do is passively receive commands from the 3rd-party
platform. This means the state change of an actuator is unnec-
essary for all the 3rd-party apps. But after the authorization,
the platform gains the permission to access these actuators.
This makes the 3rd-party platform not only able to operate
the actuators, but also to monitor the states of these devices.

3) MONITORING THE UNTRIGGER-DEVICES IN A
PRACTICAL WAY
We reviewed code of the agent SmartApp of IFTTT [48],
webCoRE [49], and SharpTools [50], then we got the details
of how theymonitor the states of untrigger-devices. To exploit
this, we used the agent SmartApp code of IFTTT as a repre-
sentative example.

We start with the HTTP-mapping snippet of the agent
SmartApp, as shown in Listing. 2. It demonstrates that
IFTTT can obtain the states of all devices of the same
type at one time. For example, when the agent receives
an HTTP message of a GET request with the parameter
deviceType as humiditySensors, then the agent will
call listStates() and all numerical values of the humid-
ity sensors will be returned to IFTTT. IFTTT currently sup-
port 11 kinds of devices: switch, motion sensor, contact sen-
sor, presence sensor, temperature sensor, acceleration sensor,
water sensor, light sensor, humidity sensor, alarm, and lock.
In daily life, data from these sensors can profile the user’s
behavior patterns and living environment. But IFTTT does
not care if a device can trigger an app or not. Once a device
is authorized to IFTTT, it will be monitored whenever IFTTT
wants, or even periodically.

B. LEAKING BY REDUNDANT STATE CHANGES
After checking the monitoring approaches via untrigger-
devices, we now focus on ‘‘trigger-devices’’. Each IFTTT

Listing 2. The HTTP methods mapping snippet of the IFTTT agent
SmartApp.

app has a corresponding trigger statement. Every time the
state of a trigger device changes, the agent will upload the
new state (namely, an event) to IFTTT. If the trigger of an
app is satisfied by the event, it will be invoked and executed.

Listing 3. The IFTTT-SmartApp snippet of monitoring and uploading the
new events.

Listing. 3 demonstrates the process before the IFTTT agent
uploads a new event. Line 2 registers deviceHandler()
as the event handler to the attribute of the device.
Meanwhile, line 5 shows that the IFTTT agent does not
subscribe deviceHandler() to a specific attribute
value, but every change of attribute. This can be exem-
plified by the app ‘‘Turn on Hue Lights when Smart-
Things detects that you’ve arrived home’’. When the user
arrives home, his presence sensor connects to the hub.
As a result, the value of presenceSensor.presence
will change from unpresent to present. Next,
deviceHandler() will be invoked and post
presenceSensor.presence == present to IFTTT.
At last, the app will be executed. But when the user
leaves home in the morning, IFTTT will also receive the
event presenceSensor.presence == unpresent
because its value changes. However, presenceSensor.
presence == unpresentwill not trigger any apps. This
means that the unpresent is unnecessary for all the apps.
In other words, this event is redundant. This also implies that
if this redundant event is intercepted before being uploaded
to IFTTT, no app will be distracted and all the apps will
execute normally as long as the next event can trigger it. After
observing thesepresent events for several days, IFTTT can

63462 VOLUME 7, 2019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

obtain the approximate arriving time of the user. If a user has
no choice but to let IFTTT know the exact arriving time, why
should he also let IFTTT know his leaving time?

1) TRIGGER-DEVICES WITH DISCRETE STATE VALUES
A discrete-device is one that has a limited number of possible
states. For example, a presence sensor is a typical discrete-
device since the value of presenceSensor.presence
only contains two possibilities: present and unpresent.
Similarly, contact sensors, locks, and switches are all
discrete-devices. In order to protect the privacy of a user,
we can specify all the trigger values of these devices for all
apps, then the redundant values can be intercepted as they are
uploading to a 3rd-party platform.

2) TRIGGER-DEVICES WITH NUMERIC STATE VALUES
Unlike the discrete-devices, the state of a numeric-device
covers a range of values. Humidity sensors, illuminance sen-
sors, and temperature sensors are all typical devices that
belong to this category. For instance, the state value range of
an illuminance sensor may range from 5lx (a street lamp) to
100,000lx (sunshine). Therefore, the app ‘‘If the illuminance
is exactly 50,000lx, then. . .’’ will not be practically useful.
In most cases, triggering this kind of app corresponds to a
range, not a specific value. A threshold value divides the
possible range into two sub-ranges: the trigger-range and the
untrigger-range. Similar to discrete-devices, all state values
in the untrigger-range are redundant to the app. But by spec-
ifying the trigger-range, we can further protect the user’s
privacy. Actually, we can hide redundant numeric state values
in two aspects. This also can be illustrated by the app ‘‘If the
temperature is above 30◦C, then turn on the switch.’’

1) Suppose the state range of the temperature sensor is
[−20, 80]. The threshold value, 30, divides the whole
temperature range into two sub-ranges: [−20, 30] and
[31, 80].

2) We can hide changes when the values are below 31◦C,
because these states belong to the untrigger-range and
will not trigger this app. This means that the 3rd-party
platform will not be able to monitor the temperature
fluctuation when it is below 31◦C.

3) Even if the latest value is above 30◦C, we can hide
its accurate value. All temperatures above 30◦C will
trigger the app, regardless of whether it is 35◦C or
70◦C. So, why not transfer the actual temperature state
to a random value in the range of [31, 80]?

C. LEAKING BY THE UNNECESSARY TRIGGER VALUE
Now let us focus on ‘‘that’’ of an IFTTT app. The ‘‘that’’
part will perform operations like ‘‘call my phone’’ or ‘‘play a
song from Google music.’’ It can also operate a SmartThings
actuator. When an app operating an actuator is triggered,
it will send an HTTP PUT message to the agent with the
corresponding command parameter. Then, the agent operates
the actuator device. Additionally, the actuator can be oper-

ated automatically or manually by the user. No matter how
the actuator is operated, it will upload its new state to the
SmartThings backend if the operation changes its state. But
sometimes the SmartApp command or manual operation does
not change the state of a device, and the device will simply
discard this command. Let us use the app, ‘‘If the temperature
is above 30◦C, then turn on the switch’’ as an example again.
The switch can be automatically or manually turned on by
the SmartApp or the user. When a switch has been turned
on, it receives a switch.on() command and the switch
does not need to repeat another switch.on() operation,
it will discard it. The switch.on() command in this case
is unnecessary as it changes nothing. This implies that the
app does not have to be invoked. Therefore, we can conclude
that if the current state of the actuator for an app equals the
consequential state value of the command, then the app does
not have to be invoked and the trigger event can be intercepted
before it will be uploaded to IFTTT. But now even if all the
events have been filtered or randomized as we have described
in Sec. III-A and Sec. III-B, there will be still too many
redundant events uploaded to IFTTT.

We also investigated the agent SmartApp code of web-
CoRE and SharpTools; it has been proved that there also
exists potential privacy leakage like IFTTT in these two
platforms.

IV. F&F: THE FILTERING COMPONENT
In this section, we will firstly introduce how F&F filters
redundant events. As for how to eliminate the statistical char-
acter of the events, it will be illustrated in Sec. VI.

A. THE KEY INFORMATION ITEMS OF EVERY APP
We could extract key items that reflect how an IFTTT
app is triggered and what it will do. These items include
the trigger device, trigger state or state
range for a numeric-device, the actuator (if any),
and the consequential state value of the
actuator (if any, CSV for short). There is a one-to-one
mapping between a 3rd-party app and the combination of all
key information. For example, all the key information of ‘‘If
the temperature is above 30◦C, then turn on the switch’’ can
be summarized as {trigger device: temperature sen-
sor, trigger state (range): [31, 100], actuator:
switch, the CSV of the actuator: on}. The first
step of F&F is to extract the key information from the apps
that are in use. If there areD devices subscribed to a user who
has installed A apps, then we will obtain the corresponding A
records, and A ≤ D.

B. EXTRACT THE KEY INFORMATION VIA A CHROME
EXTENSION
A user can manage his 3rd-party service configuration
via a mobile app or a desktop web browser. Take IFTTT
as an example; all apps can be displayed in the page
‘‘https://ifttt.com/my_applets’’ (Fig. 2). Each app in the
browser is labeled by a one-sentence description, from

VOLUME 7, 2019 63463

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

FIGURE 2. The IFTTT website displays all the apps of a user.

which the user can catch the functionality of an app at a
glance. These label sentences are embedded in the HTML
source code of the ‘‘/my_applets’’ page. We can find these
descriptive sentences in the span tags with the class value
‘‘title’’.
To IFTTT, we developed a Chrome extension to extract

these sentences. This Chrome app can transfer all the sen-
tences to a new form where every descriptive sentence is split
into key information items. To the other 3rd-party services,
they also provide a web-based configuration interface. There-
fore, all the key information items can also be extracted in this
way.

C. MERGE THE KEY INFORMATION COLLECTION
This step is transforming the A records to a new form
where all records will be merged by identical trigger-
devices. We denote the list of trigger-devices as T , and
|T | ≤ A because sometimes a trigger-device can be sub-
scribed by several apps. Suppose that the lists of discrete-
devices and numeric-devices are Td and Tn respectively, then
|T | = |Td | + |Tn|.

1) MERGE THE A RECORDS OF DISCRETE-DEVICES
A specific state value of a discrete-device may trigger zero,
one ormultiple apps. To a discrete-device, we assume that this
device corresponds to a actuators. All potential state values of
this discrete-device form a set S with p elements, but only
t of these elements can trigger an app, and t ≤ p. After
checking these a apps triggered by this device, a table can
be generated to show the mapping between every value of S
in a list, which consists of the consequential state of every
actuator, shown in Table. 1. Every row of this table contains
at least one element. For each trigger and discrete-device,
a similar table can be generated.

TABLE 1. Map the state values of a discrete-device to the consequential
states of the actuators that it can trigger.

2) MERGE THE RECORDS OF NUMERIC-DEVICES
A numeric-device triggers apps with a range rather than a
specific value. Like discrete-devices, the current value of a
numeric-device may trigger zero, one, or multiple actuators.
For example: ‘‘If Illuminance sensor detects brightness above
500lx, then switch off SwitchA’’ and ‘‘If Illuminance sensor
detects brightness above 600lx, then switch off SwitchB.’’

Like discrete-devices, the state of a numeric-device may
trigger the operation of one or multiple devices at the same
time (e.g., the brightness is 650lx), or trigger no app (e.g.,
the brightness is 400lx). The corresponding app may be trig-
gered or not depending on whether the current state value
is above or below a threshold value. After checking all the
apps that are triggered by a specific numeric-device, F&Fwill
take threshold values and split the measuring range of this
device into several sub-ranges. If there are t threshold values,
F&F will arrange these t values in ascending order to form
a list. Each element in this list is denoted as Li (1 6 i 6 t),
and L1 6 . . . 6 Lt . Then the measuring range covering min
to max will be divided into t+1 sub-ranges: [min,L1], [L1+
1,L2] . . . [Lt + 1,max]. We also can generate a table for a
trigger and numeric-device, as shown in Table. 2. For each
trigger and numeric-device, a similar table can be generated.

TABLE 2. Map the numeric range of a numeric-device to the
consequential states of the actuators that it can trigger.

D. FILTER AND RANDOMIZE PROCEDURE
After extracting key information from apps and merg-
ing items, the F&F can begin working. The procedure of
F&F consists of intercepting the event from an untrigger-
device, intercepting events that cannot trigger any apps, inter-
cepting events can unnecessarily trigger an app, and finally,
randomizing values within a numeric range.

1) When a new event comes to the agent SmartApp of
F&F, the agent first checks if the event is from a trigger-
device or not. If the corresponding device is not in T ,
then all events from this device should not be uploaded.

63464 VOLUME 7, 2019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

2) F&F has constructed the trigger-state lists for each
trigger-device. After the first step, although this new
event comes from a device that belongs to T , if it does
not belong to the trigger-state lists of this device, it will
also not be uploaded.

3) After the above two steps, F&F will check the current
state value of the corresponding actuator (if there is
a corresponding SmartThings actuator device). If the
current state value equals the consequential state value
of the app, it means that this event will change nothing
if it is uploaded, and this event will be intercepted too.

4) Finally, if the event is to be uploaded, F&F will check
if the event is numeric or not. If it is a numeric event,
F&F will firstly check the sub-range of this value
(Table. 2) and generate a random value within the sub-
range.

An event will not be uploaded until it has been checked by
these steps.

V. REDUNDANCY OF THE ORIGINAL EVENT RECORDS
In this section, we prove the redundancy of the event records
that are uploaded to the 3rd-party platforms.With the filtering
feature of F&F, the amount of the events that are uploaded to
a 3rd-party platforms will be decreased rapidly.

A. CASAS DATASETS OVERVIEW
We analyzed fourCASAS [51] datasets: hh104, hh105, hh110,
and hh111. These datasets are the monitoring records of
different users living in a single apartment over two months,
except hh110, which is for about one month. The event
records in each single-apartment include events generated
by the motion sensors, contact sensors, temperature sensors,
switches, and remaining battery of some devices.

B. SET THE APPLETS FOR EVERY DATASET
We divided all the devices of every dataset into two groups:
trigger-devices and idle-devices. In the trigger-device group,
motion sensors and contact sensors are discrete-devices, and
temperature sensors are numeric-devices. In the idle-device
group, there is an actuator sub-group. We used switches
as actuators because they can be operated both automati-
cally or manually as mentioned above.

We set one app for every switch, and randomly selected
devices from the trigger-device group for every app. Then,
all remaining devices are idle-devices.

1) For discrete-devices, we set the apps as: if the value
of motion sensor is ‘‘active,’’ or if the value of contact
sensor is ‘‘open’’, then the corresponding switch is
turned on.

2) We calculated the average value of every temperature
sensor and set the rules triggered by these temperature
sensors as: if the temperature is above its average value,
then the corresponding switch is turned on.

For each CASAS dataset, we compare the amount of event
records before and after filtering by F&F.

C. COMPARING THE RECORDS AMOUNT
Each event record of a user contains behavior pattern infor-
mation for that user. The more event records IFTTT gets,
the more likely IFTTT is able to discover and recognize the
behavior pattern of a user. So, this leads to one feature of
F&F: filtering as many events are uploaded to IFTTT as
possible. We experimented with the datasets and compared
the results before and after filtering F&F. This is can be
shown in Table. 3. As we can see, for the same dataset,
the F&F significantly reduces the amount of the records
significantly compared to the original dataset. The amount of
event records uploaded to the 3rd-party platform is no more
than 2.2% (hh104) of the original dataset.

TABLE 3. Comparing the amount of event records of original and filtered
datasets (all database starts at 2011-06-15).

D. COMPARING THE NUMERIC RECORDS
For numeric records, F&F filters redundant events and ran-
domizes their values. We believe that these fluctuations can
also reflect a user’s behavior patterns. Then, IFTTT cannot
track the fluctuation of the temperature, humidity, and illumi-
nance in a living environment. Fig. 3 shows the comparison
of the records from selected temperature sensors that are
either filtered by F&F or not. The red line plots the records
accessible to IFTTT, while the green line plots records that
are processed by F&F. This proves that after filtering by F&F,
IFTTT can only get a few records, none of which are accurate
(only the first 10 days’ records are shown).

FIGURE 3. Comparison the numeric values of eight temperature sensors
from different datasets that are uploaded to two datasets.

VOLUME 7, 2019 63465

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

VI. F&F: THE FUZZING COMPONENT
In this section, we will introduce the fuzzing component of
F&F that eliminates the statistical characters of the events that
uploaded to IFTTT or the other TA platforms.

A. BEHAVIOR PATTERN OF A TRIGGER-ACTION USER
For the Trigger-Action model, the 3rd-party platforms can
profile a user’s behavior pattern through raw data. As a
typical representation of 3rd-party platforms, IFTTT can
obtain plenty of information just from the time of the event
records without any sophisticated mechanisms. For exam-
ple, the daily routine (leaving and returning home), physical
health status (activity frequency in the bathroom when it is
late at night), and living environment, etc., by present sensors,
motion sensors, and temperature/humidity/illuminance sen-
sors, respectively. So, we can treat a user’s behavior pattern
as the random variable of events at different time intervals
of a day. After observing a user for several days, we can
get the random variable X = X (h) to denote the average
amount of the events from a specific devices in different
intervals (e.g. if h denotes different hours) of a day. If the
observation time is long enough, each X = X (h) will
approach a static value. Then, each user will own a unique
vector of [X (1), · · · ,X (24)]. In other words, we can treat the
vector [X (1), · · · ,X (24)] as a user’s behavior pattern after
sufficient observation. We use U to denote this vector, then
[X (1), · · · ,X (24)] can also be denoted as [u1, · · · , u24].
After filtering redundant events, we know that the amount

of event records uploaded to IFTTT has been significantly
reduced. Therefore, to the IFTTT platformsome, some infor-
mation relative to the user has been lost (by intercepting the
redundant event records) and this becomes an obstacle for
IFTTT to find some behavior patterns of a user using data
mining or statistics approaches. But after filtering the records,
the event records that have to be uploaded to IFTTT or other
3rd-party platforms can still reveal a user’s behavior patterns.

B. PRIVACY LEAKAGE VIA THE FILTERED EVENT RECORDS
After filtering, each single record that is uploaded to IFTTT
contains information of when it happened (time of day, day
of week, weekend or workday, and so on). For instance,
if a user deployed several sensors and set an app of ‘‘If
any new motion is detected by the motion_sensor , then turn
on the light .’’ After filtering, IFTTT and other 3rd-party
platforms will obtain fewer records because the events from
other sensors will all be intercepted, and the events from
this motion_sensor may be intercepted with a probability.
We can compare the original and filtered event records of the
‘‘turn on the light’’ app after several days. From the original
event records, we can obtain the vector U . At the same time,
we can also obtain F as another vector that contains the
statistical character of the filtered event records. For the i-
th elements in U and F , which denote the mean amount of
the events in the i-the hour of a day, fi is less than ui since
the events in the i-th hour may be intercepted by chance.

Therefore, F = [f1, · · · , f24] = [u1×p1, · · · , u24×p24], and
P = [p1, · · · , p24] is the vector that denotes the probability
of intercepting an event that is to be uploaded to IFTTT in
each hour.

In most cases, pi will be a relatively stable value in P.
Then there will be an extreme high correlation coefficient
between [u1, · · · , u24] and [f1, · · · , f24]. This means that,
just filtering the original event records is not adequate for
preventing IFTTT or other 3rd-party platforms to investigate
a user’s behavior patterns.

We prove this by monitoring a user living in a single
apartment for 10 days. This user deployed several sensors
and actuators, including a contact sensor, twomotion sensors,
and five lights. This user set the app ‘‘If any new motion
is detected by the motion_sensor , then turn on the light’’ to
automatically turn on the light in his restroom. After 10 days
observing, we obtain U and F , which are shown in Fig. 4.

FIGURE 4. Filtered records shows highly relative to original records.

We can observe that although the sum of all items in F
is much less than U , the statistical character of U was quite
similar to F . The behavior patterns inferred from U can be
also obtained from F . This proves that filtering the original
event records still can expose information about a user’s
behavior patterns after a short observation period.

C. FUZZING COMPONENT THAT CONCEALS THE
STATISTICAL CHARATER OF EVENTS
1) MAIN IDEA
Due to the stateless aspect of Trigger-Action IoT apps, IFTTT
and other 3rd-party platforms that run TA apps are only
responsible for replying if the current event comes from the
smart home. When a new event arrives, all IFTTT needs
to do is sent back the corresponding command message (if
any) to the smart home platform. Our goal is to mix some
pseudo-events into the filtered event records. As the 3rd-party
platform cannot distinguish between genuine and pseudo
events, we can use this method to ‘‘fuzz’’ the filtered dataset
and consequently make IFTTT and other 3rd-party platforms
unable to reveal the statistical character of the user’s actual
behavior pattern. If the dataset obtained by IFTTT shows no
correlation to the filtered dataset, IFTTT will learn nothing

63466 VOLUME 7, 2019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

about the filtered event dataset. The same applies for other
3rd-party platforms.

2) THE FUZZING WORKFLOW
We design the fuzzing feature as an additional component
that works between the smart home platform and IFTTT.
The fuzzing component of F&F can preserve the regular
functionality of the apps running on IFTTT and other 3rd-
party platforms, and conceals the user’s behavior patterns.
This component works between a smart home platform S and
several 3rd-party platforms. For a specific 3rd-party platform,
for example, IFTTT, we use T to denote it. For the current
communication between S and T , there are many users who
trigger their sensors and yield events each second, then S will
pack up these events and send them to T . Finally, S waits for
the command messages from T . But the fuzzing component
of F&F modifies this procedure and works as follows.

1) In each second, before sending the ‘‘real’’ events to T ,
S will generate a number of pseudo-events by Fuzz()
and will pack up the real-events and pseudo-events.
Fuzz() can generate pseudo-events corresponding to
any devices of all the users.

2) To differentiate the real and pseudo events, S will
maintain a list in which each item is the state of a
device. Each item is a tuple with the format of [time
stamp, user id, device id, event value,
pseudo-label].

3) Next, after receiving the event list from S, T will send
back a list of commands corresponding the different
apps that triggered by the event records in the event
list. As T cannot distinguish whether the items in the
event list are true or not, it will reply to the whole event
list with a command list. The format of the items in the
command list is [time stamp, user id, device
id, command].

4) Finally, S receives the list of the commands and
only retains the commands that correspond to
actual events by matching the time stamp, user
id, and device id, as well as checking the
pseudo-label. By checking the pseudo-label,
S will decide whether to deliver the command to the
device or just discard it.

By adopting a proper Fuzz(), the actual and pseudo
events are indistinguishable to any 3rd-party platforms,
including IFTTT. Therefore, the statistical character of the
actual events will be harder or even impossible to be extracted
by IFTTT.

D. THE PSEUDO-EVENTS GENERATOR
As the pseudo-events generator, Fuzz() should achieve two
goals at the same time: the pseudo events can efficiently fuzz
IFTTT, and can constrain the extra overhead of smart homes
and IFTTT. For a specific user, the most ideal Fuzz() is
one that can get rid of all the statistical characters for all of
his devices.

1) GENERATING PSEUDO EVENTS IN AN INTUITIVE WAY
To any device of a specific user, an intuitive way of designing
Fuzz() is generating its pseudo events with an arbitrary
possibility that is irrelevant to the behavior patterns of the
user. However, by the law of Large Numbers, we know that
after a long enough period of time, the amount of pseudo
events will form a uniform distribution for each time interval.
Then the distribution of the event records that are obtained
by the 3rd-party platform will be exactly identical to the
event records without any pseudo events. Therefore, Fuzz()
implemented in this way will be meaningless for protecting a
user’s behavior patterns.

2) DYNAMIC FUZZ()

Wedesigned theFuzz() algorithmwith a feature that allows
it to adjust itself by generating pseudo events according to
the actual behavior patterns of a user. By observing the
user’s behavior pattern during several recent days, Fuzz()
can generate pseudo events by adjusting itself so that the
amount of event records obtained by the 3rd-party platform
will remain in a static pattern and carry no information about
a user’s behavior patterns. To achieve this, Fuzz() sets a
target distribution D. Then, Fuzz() will dynamically adjust
itself to generate the pseudo events to make sure the event
records obtained by the 3rd party platform are always dis-
tributed as D. This ensures that the 3rd party learns nothing
from this static distribution.

3) THE STEPS OF DYNAMIC FUZZ()

In order to make the sum of actual and pseudo events equal to
a relatively stable value, the essential dynamic of Fuzz() is
first establishing D, then adjusting the probability of generat-
ing pseudo events as time goes on. We denote the distribution
of the events after filtering as F . F is quite similar to the
original behavior pattern vector U , as we mentioned above.
Then the steps of dynamic Fuzz() are as follows.
1) Monitor a user for p days to obtain/update the behavior

pattern vector F .
2) Establish the target vector D with n elements (e.g. n

= 24). These n elements correspond to n portions of
a whole day and can have arbitrary distributions for
various user behavior patterns, but the max ofD should
equal the max of F . For each di in D:
a) If elements ofD have a uniform distribution, then

d1 = d2 = · · · = dn = max(fi).
b) If elements of D have a Gaussian distribution,

then µ (the expected value of D) is equals
max(fi). According to the 3-σ rule, σ should be
equal or greater than n/6.

3) Get another n-element vector Y . For each element yi in
Y :
a) If di ≥ fi, yi = di − fi;
b) If di < fi, yi = 0.

4) We assume that in each of the n portions, the smart
home platform will send the event records for m times.

VOLUME 7, 2019 63467

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

Then, for each time the smart home platform packs the
records:
a) If there is an actual event, then Fuzz() does

nothing and the smart home will send the actual
event to the 3rd-party platform;

b) If there is no actual event, then Fuzz() will
generate a pseudo event by a probability of yi/m.

5) Adjust F according to the filtered event records during
the past p days and repeat 2 – 4.

E. TWO FUZZ() proposals
We propose two varieties of Fuzz(). For each Fuzz(),
the effects and overheads are different.

1) THE IDEAL FUZZ()
As we know, an array containing fixed elements shows no
correlations to any other arrays. If we make the elements in
D all relatively stable, then it will be more difficult for a 3rd-
party platform to infer the original distribution of a user’s
event records, namely the characters of F or U . In an ideal
scenario, all elements in D will be identical values and the
correlation coefficient between D and F will be 0. In this
case, the elements of D have a uniform distribution. In order
to cover the peak of F , we let d1 = d2 = · · · = dn = max(fi).
This can be illustrated in Fig. 5.

FIGURE 5. Mask() with ideal fuzzification.

2) FUZZ() with a Gaussian distribution
If D is a vector that does not contain fixed but variable
elements, it can also hide the characteristics of F to prevent
the 3rd-party platforms from learning something fromF . This
can be done by making D a static vector. Then, maybe the
relationship coefficient between D and F is greater than it is
between D with uniform a distribution and F , but IFTTT still
cannot infer many characters because various F vectors can
be masked by an identical D vector.

As we can see, for the i-th element in D, the overhead is
yi = di− fi. For all the elements in Y , yi can be reduced if fi is

FIGURE 6. Mask() with a Gaussian distribution.

a relatively small value because di can also be set as a small
value (but cannot be less than fi).
Therefore, we can reduce the overhead by modifying the

elements in D to make them have a Gaussian distribution.
Then µ (the expected value of D) equals max(fi). According
to the 3-σ rule, σ should be equal or greater than n/6. Besides
the peak element, all other elements are less thanmax(fi); this
can makeD a static vector and the sum of all the elements less
than it is with a uniform distribution. This can be illustrated
in Fig. 6.

VII. EVALUATION
In this section, we evaluate Fuzz() by: 1) the amount of
pseudo events generated by Fuzz() and 2) how some rep-
resentative machine learning algorithms can figure out the
characters of a vector.

A. DESIGN OF THE EXPERIMENTS FOR EVALUATION
The main idea of our experiments is evaluating how much
personal profiling information is still contained in the behav-
ior pattern vectors. We used two prevalent machine learning
algorithms, KNN and SVM, to compare the success rate of
identifying a user’s pattern vector before and after mixing
pseudo events. Additionally, we also compare the amount of
the pseudo events by different kinds of Fuzz().

B. DATASET FOR TRAINING AND TESTING
For both the actual and pseudo event records, we all can
obtain the corresponding behavior pattern vectors by days.
After 100 days observing two volunteers who lived in two sin-
gle apartments with identical layouts, we obtained 100 vec-
tors of filtered event records for each of them.We encouraged
them to keep their normal behavior patterns, and two actual
vectors between the two volunteers had a correlation coeffi-
cient of nearly 0.93.

We used all the vectors from each volunteer to obtain a
200-vector dataset, and then tested KNN and SVM. We split
the dataset into training (70%) and testing (30%) portions.
The results showed that though the correlation coefficient
between the behavior pattern vectors of the two volunteers
is as high as 0.93, after more than 10 experiments, the correct
rates of distinguishing a behavior pattern vector were at least
98%. This proved the accuracy and high performance of the
two machine learning algorithms.

C. EVALUATING THE OVERHEAD AND MASKING EFFECT
We evaluated the overhead and fuzzing effect of the two
Fuzz() schemes, corresponding to two privacy protection
levels. As we can see from Fig. 5 and Fig. 6, the amount
of pseudo-records inserted by the ideal fuzzification is more
than that of a Gaussian distribution. But we can also see that
in a Gaussian distribution, some elements of a vector cannot
be masked, and the result is kept as a static character. This
decreases the security of masking with Gaussian distribution
and also lowers the overhead compared to the ideal fuzzifica-
tion. After 100 days, there were 1772 and 2204 event records

63468 VOLUME 7, 2019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

FIGURE 7. Evaluation result (N: Ideal fuzzification; �: Gaussian distribution). (a) The ratio of the amount of records after masking and the
amount of the records after filtering. (b) The correlation coefficient between the records after masking and after filtering. (c) The success rate
of KNN and SVM.

from each of the two users. The comparison results can be
shown in Fig. 7.

1) OVERHEAD
We evaluated how many pseudo records should be inserted
into these two datasets, and after 10 experiments, the ratio
of the amount of records after masking and filtering is shown
in Fig. 7(a). As we can see, the ideal fuzzification needs more
pseudo items to mask the character of the filtered records.

2) CORRELATION BETWEEN THE MASKED RECORDS AND
FILTERED RECORDS
If the Fuzz() adopts the ideal fuzzing algorithm, the cor-
relation coefficient between the masked records and filtered
records is roughly around 0, which means that the masked
records will hardly reveal anything about the filtered records.
But when Fuzz() adopts a Gaussian distribution on the
masked records, this result will increase to 0.68. Fig. 7(b)
shows the results of 10 experiments.

3) SUCCESS RATE OF KNN AND SVM
As we collected the event records from two users, when
Fuzz() showed a stronger effect to eliminate the statistical
character of the users, the successful rate of distinguishing the
two users by a vector would be closer to 0.5. Our experiment
verified the effectiveness of Fuzz() with ideal fuzzing and
Gaussian distribution. As shown in Fig. 7(c), when Fuzz()
adopts a Gaussian distribution, the success rate of KNN and
SVM is about 0.7. Considering the fact that the success
rate will be 0.5 if Fuzz() just randomly determines the
group of a vector, a success rate of 0.7 means these two
machine learning algorithms were ‘‘guessing randomly’’ in
most vectors. The ideal Fuzz() has a success rate close to
0.5, proving its efficiency. This is because it means that no
personal behavioral information is leaked to IFTTT and other
3rd-party platforms.

VIII. CONCLUSION
Security and privacy will be of ongoing interest, especially
in the smart home environment. In this paper, we studied
how IFTTT monitors its smart home users in a hidden way
and proposed F&F for preventing this privacy leakage by:

filtering the redundant event records that are uploaded to
IFTTT and concealing the statistical characters of the events
to fuzz IFTTT. We use IFTTT as the representative target, but
we believe that F&F can also be applied to other integrated
3rd-party services with the same architecture.

REFERENCES
[1] Samsung. (Jul. 2018). Smartthings. Add a Little Smartness to Your Things.

[Online]. Available: https://www.smartthings.com/
[2] Google. (2019).Weave | Nest. [Online]. Available: https://nest.com/weave/
[3] Apple. (2018). iOS—Home—Apple. [Online]. Available:

https://www.apple.com/ios/home/
[4] E. Fernandes, J. Jung, and A. Prakash, ‘‘Security analysis of emerging

smart home applications,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2016, pp. 636–654. [Online]. Available: http://ieeexplore.ieee.org/
document/7546527/

[5] J. A. Martin and M. Finnegan. (Feb. 2018). What is IFTTT? How
to use If This, Then That Services. [Online]. Available: https://www.
computerworld.com/article/3239304/mobile-wireless/what-is-ifttt-how-
to-use-if-this-then-that-services.html

[6] SmartThingsCommunity. (2018). SmartthingscommunityÂů Github.
[Online]. Available: https://github.com/SmartThingsCommunity

[7] X. Du and F. Lin, ‘‘Designing efficient routing protocol for heterogeneous
sensor networks,’’ in Proc. 24th IEEE Int. Perform., Comput., Commun.
Conf., Apr. 2005, pp. 51–58.

[8] X. Du and D. Wu, ‘‘Adaptive cell relay routing protocol for mobile ad
hoc networks,’’ IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 278–285,
Jan. 2006.

[9] X. Du, ‘‘QoS routing based on multi-class nodes for mobile ad hoc net-
works,’’ Ad Hoc Netw., vol. 2, no. 3, pp. 241–254, Jun. 2004.

[10] D. Mandala, X. Du, F. Dai, and C. You, ‘‘Load balance and energy efficient
data gathering in wireless sensor networks,’’ IEEE Wireless Commun.
Mobile Comput., vol. 8, no. 5, pp. 645–659, May 2008.

[11] C. Zhang, L. Zhu, C. Xu, K. Sharif, X. Du, and M. Guizani, ‘‘Future
generation computer systems LPTD: Achieving lightweight and privacy-
preserving truth discovery in CIoT,’’ Future Gener. Comp. Syst., vol. 90,
pp. 175–184, Jan. 2019. doi: 10.1016/j.future.2018.07.064.

[12] S. Lee et al., ‘‘FACT: Functionality-centric access control system for IoT
programming frameworks,’’ in Proc. 22nd ACM Symp. Access Control
Models Technol., Jun. 2017, pp. 43–54. doi: 10.1145/3078861.3078864.

[13] Y. Tian et al., ‘‘SmartAuth: User-centered authorization for the
Internet of Things,’’ in Proc. Usenix, 2017, pp. 361–378. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/tian

[14] Y. J. Jia et al., ‘‘ContexIoT: Towards providing contextual integrity
to appified IoT platforms,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., Mar. 2017, pp. 1–6. [Online]. Available: https://www.ndss-
symposium.org/ndss2017/ndss-2017-programme/contexlot-towards-
providing-contextual-integrity-appified-iot-platforms/

[15] W. Ali, G. Dustgeer, M. Awais, and M. A. Shah, ‘‘IoT based smart home:
Security challenges, security requirements and solutions,’’ in Proc. Int.
Conf. Autom. Comput. (ICAC), Sep. 2017, pp. 1–6.

VOLUME 7, 2019 63469

http://dx.doi.org/10.1016/j.future.2018.07.064
http://dx.doi.org/10.1145/3078861.3078864

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

[16] A. C. Jose and R. Malekian, ‘‘Improving smart home security: Integrat-
ing logical sensing into smart home,’’ IEEE Sensors J., vol. 17, no. 13,
pp. 4269–4286, Jul. 2017.

[17] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘‘Blockchain for
IoT security and privacy: The case study of a smart home,’’ in Proc. IEEE
Int. Conf. Pervas. Comput. Commun. Workshops, Aug. 2017, pp. 618–623.
[Online]. Available: http://ieeexplore.ieee.org/document/7917634/

[18] D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, and
G. Baldini, ‘‘Security and privacy issues for an IoT based smart
home,’’ in Proc. 40th Int. Conv. Inf. Commun. Technol., Electron.
Microelectron. (MIPRO), May 2017, pp. 1292–1297. [Online]. Available:
http://ieeexplore.ieee.org/document/7973622/

[19] L. Wu, X. Du, and J. Wu, ‘‘Effective defense schemes for phishing attacks
on mobile computing platforms,’’ IEEE Trans. Veh. Technol., vol. 65, no. 8,
pp. 6678–6691, Aug. 2016.

[20] Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li, ‘‘Deep learning based inference
of private information using embedded sensors in smart devices’’ IEEE
Netw. Mag., vol. 32, no. 4, pp. 8–14, Jul./Aug. 2018.

[21] Y. Xiao et al., ‘‘A survey of key management schemes in wireless sen-
sor networks,’’ Comput. Commun., vol. 30, nos. 11–12, pp. 2314–2341,
Sep. 2007.

[22] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, andM. Guizani, ‘‘MeD-
Share: Trust-less medical data sharing among cloud service providers via
blockchain,’’ IEEE Access, vol. 5, pp. 14757–14767, 2017.

[23] Z. Zhou, H. Zhang, X. Du, P. Li, and X. Yu, ‘‘Prometheus: Privacy-aware
data retrieval on hybrid cloud,’’ in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2643–2651.

[24] Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani, ‘‘Internet protocol
television (IPTV): The killer application for the next-generation Internet,’’
IEEE Commun. Mag., vol. 45, no. 11, pp. 126–134, Nov. 2007.

[25] X. Du and H.-H. Chen, ‘‘Security in wireless sensor networks,’’ IEEE
Wireless Commun., vol. 15, no. 4, pp. 254–278, Aug. 2008.

[26] Q. Zeng, J. Su, C. Fu, G. Kayas, and L. Luo. (2018). ‘‘A multiversion
programming inspired approach to detecting audio adversarial examples.’’
[Online]. Available: https://arxiv.org/abs/1812.10199

[27] Y. Xu, J.-M. Frahm, and F. Monrose, ‘‘Watching the watchers: Automat-
ically inferring tv content from outdoor light effusions,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2014, pp. 418–428.

[28] P. Barbosa, A. Brito, and H. Almeida, ‘‘Defending against load monitoring
in smart metering data through noise addition,’’ in Proc. 30th Annu. ACM
Symp. Appl. Comput., Apr. 2015, pp. 2218–2224.

[29] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian. (2018).
‘‘Understanding and mitigating the security risks of voice-controlled third-
party skills on amazon alexa and google home.’’ [Online]. Available:
https://arxiv.org/abs/1805.01525

[30] B. Copos, K. Levitt, M. Bishop, and J. Rowe, ‘‘Is anybody home? inferring
activity from smart home network traffic,’’ in Proc. IEEE Secur. Privacy
Workshops (SPW), May 2016, pp. 245–251.

[31] K. Yoshigoe, W. Dai, M. Abramson, and A. Jacobs, ‘‘Overcoming invasion
of privacy in smart home environment with synthetic packet injection,’’ in
Proc. TRON Symp. (TRONSHOW), Dec. 2015, pp. 1–7.

[32] N. Apthorpe, D. Reisman, and N. Feamster. (2017). ‘‘A smart home is no
castle: Privacy vulnerabilities of encrypted iot traffic.’’ [Online]. Available:
https://arxiv.org/abs/1705.06805

[33] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feamster,
‘‘Spying on the smart home: Privacy attacks and defenses on encrypted iot
traffic,’’ arXiv preprint arXiv:1708.05044, 2017.

[34] Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley, and A. Crabtree.
(2018). ‘‘An analysis of home iot network traffic and behaviour.’’ [Online].
Available: https://arxiv.org/abs/1803.05368

[35] N. DeMarinis and R. Fonseca, ‘‘Toward usable network traffic policies for
IoT devices in consumer networks,’’ in Proc. Workshop Internet Things
Secur. Privacy, Apr. 2017, pp. 43–48.

[36] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, ‘‘Decentralized action
integrity for trigger-action IoT platforms,’’ in Proc. 22nd Netw. Distrib.
Secur. Symp., Aug. 2018, pp. 1–9.

[37] Z. B. Celik et al. (2018). ‘‘Sensitive information tracking in commodity
IoT.’’ [Online]. Available: https://arxiv.org/abs/1802.08307

[38] K. Islam, W. Shen, and X. Wang, ‘‘Security and privacy con-
siderations for Wireless Sensor Networks in smart home environ-
ments,’’ Proc. IEEE 16th Int. Conf. Comput. Supported Cooperat.
Work Design (CSCWD), Jul. 2012, pp. 626–633. [Online]. Available:
http://ieeexplore.ieee.org/document/6221884/

[39] C. Lee, L. Zappaterra, K. Choi, and H.-A. Choi, ‘‘Securing smart home:
Technologies, security challenges, and security requirements,’’ in Proc.
IEEE Conf. Commun. Network Secur., Oct. 2014, pp. 67–72.

[40] H. Lin andN.W.Bergmann, ‘‘IoT privacy and security challenges for smart
home environments,’’ Information, vol. 7, no. 3, p. 44, 2016.

[41] B. L. R. Stojkoska and K. V. Trivodaliev, ‘‘A review of Internet of Things
for smart home: Challenges and solutions,’’ J. Cleaner Prod., vol. 140,
no. 3, pp. 1454–1464, 2017.

[42] Z. Cai and X. Zheng, ‘‘A private and efficient mechanism for data upload-
ing in smart cyber-physical systems,’’ IEEE Trans. Netw. Sci. Eng., to be
published.

[43] X. Hei, X. Du, S. Lin, and I. Lee, ‘‘Pipac: Patient infusion pattern based
access control scheme for wireless insulin pump system,’’ in Proc. INFO-
COM, Aug. 2013, pp. 3030–3038.

[44] Y. Cheng, X. Fu, X. Du, B. Luo, and M. Guizani, ‘‘A lightweight live
memory forensic approach based on hardware virtualization,’’ Inf. Sci.,
vol. 379, pp. 23–41, Jul. 2017. doi: 10.1016/j.ins.2016.07.019.

[45] X. Du, Y. Xiao, M. Guizani, and H.-H. Chen, ‘‘An effective key manage-
ment scheme for heterogeneous sensor networks,’’ Ad Hoc Netw., vol. 5,
no. 1, pp. 24–34, 2007.

[46] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, andO.Mehani,
‘‘Network-level security and privacy control for smart-home IoT devices,’’
in Proc. IEEE 11th Int. Conf. Wireless Mobile Comput., Netw. Commun.,
Oct. 2015, pp. 163–167.

[47] X. Du, Y. Xiao, M. Guizani, and H.-H. Chen, ‘‘Transactions papers a
routing-driven elliptic curve cryptography based key management scheme
for heterogeneous sensor networks,’’ IEEE Trans. Wireless Commun.,
vol. 8, no. 3, pp. 1223–1229, Mar. 2009.

[48] SmartThingsCommunity. SmartthingsPublic/ifttt.groovy at master
SmartThingsCommunity/SmartThingsPublic GitHub. [Online]. Available:
https://github.com/SmartThingsCommunity/SmartThingsPublic
/blob/master/smartapps/smartthings/ifttt.src/ifttt.groovy

[49] webCoRE. (2018). webCoRE WiKi—Web-enabled Community’s own Rule
Engine. [Online]. Available: https://wiki.webcore.co/

[50] SharpTools. (2017). SmartApp—Installation. [Online]. Available:
http://sharptools.boshdirect.com/installation-instructions/smartapp

[51] CASAS. (2015). Datasets for Advanced Studies in Adaptive Systems of
WSU. [Online]. Available: http://casas.wsu.edu/datasets/

RIXIN XU received the B.S. degree from the
Harbin Institute of Technology, and the M.S.
degree from Peking University, both in software
engineering. He is currently pursuing the Ph.D.
degree in computer science with the Beijing Insti-
tute of Technology. His research interests include
the IoT and smart home security.

QIANG ZENG received the bachelor’s and mas-
ter’s degrees in computer science and engineer-
ing from Beihang University, Beijing, China,
in 2005 and 2008, respectively, and the Ph.D.
degree in computer science and engineering from
the Pennsylvania State University, in 2014. He is
currently a Tenure-Track Assistant Professor with
the Department of Computer Science and Engi-
neering, University of South Carolina. His main
research interests include systems and software
security.

LIEHUANG ZHU is currently a Professor with
the Department of Computer Science, Beijing
Institute of Technology. He is selected into the
Program for the New Century Excellent Talents
in University from the Ministry of Education,
China. His research interests include the Internet
of Things, cloud computing security, and the Inter-
net and mobile security.

63470 VOLUME 7, 2019

http://dx.doi.org/10.1016/j.ins.2016.07.019

R. Xu et al.: Privacy Leakage in Smart Homes and Its Mitigation: IFTTT as a Case Study

HAOTIAN CHI received the B.S. degree in infor-
mation engineering and the M.Eng. degree in
electronics and communications engineering from
Xidian University, Xi’an, China, in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree with the Department of Computer
and Information Sciences, Temple University,
Philadelphia, PA, USA. His research focuses on
the Internet of Things security.

XIAOJIANG DU received the B.S. and M.S.
degrees in electrical engineering from theAutoma-
tion Department, Tsinghua University, Beijing,
China, in 1996 and 1998, respectively, and the
M.S. and Ph.D. degrees in electrical engineering
from the University of Maryland College Park,
in 2002 and 2003, respectively. He is currently
a tenured Full Professor and the Director of the
Security And Networking (SAN) Lab, Department
of Computer and Information Sciences, Temple

University, Philadelphia, PA, USA. His research interests are security, wire-
less networks, and systems.

MOHSEN GUIZANI (S’85–M’89–SM’99–F’09)
received the B.S. (Hons.) and M.S. degrees in
electrical engineering, and the M.S. and Ph.D.
degrees in computer engineering from Syracuse
University, Syracuse, NY, USA, in 1984, 1986,
1987, and 1990, respectively. He is currently a
Professor with the Computer Science and Engi-
neering Department, Qatar University, Qatar. Pre-
viously, he has served in different academic and
administrative positions at the University of Idaho,

Western Michigan University, University of West Florida, University of
Missouri-Kansas City, University of Colorado-Boulder, and Syracuse Uni-
versity. His research interests include wireless communications and mobile
computing, computer networks, mobile cloud computing, security, and smart
grid. He is the author of nine books and over 500 publications in refereed
journals and conferences. He has guest edited a number of special issues
in the IEEE journals and magazines. He is a Senior Member of the ACM.
He has also served as a member, the Chair, and the General Chair for a
number of international conferences. Throughout his career, he has received
three teaching awards and four research awards. He has also received the
2017 IEEE Communications SocietyWTCRecognition Award as well as the
2018 AdHoc Technical Committee Recognition Award for his contribution
to outstanding research in wireless communications and Ad-Hoc Sensor
networks. He was the Chair of the IEEE Communications Society Wireless
Technical Committee and the Chair of the TAOS Technical Committee. He
is currently the Editor-in-Chief of the IEEE Network Magazine, and serves
on the editorial boards of several international technical journals. He is the
Founder and Editor-in-Chief of the Wireless Communications and Mobile
Computing Journal (Wiley). He has served as the IEEE Computer Society
Distinguished Speaker and is currently the IEEE ComSoc Distinguished
Lecturer.

VOLUME 7, 2019 63471

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	THE ARCHITECTURE OF SMARTTHINGS PLATFORM
	WEBSERVICE SMARTAPPS AND THE 3RD-PARTY APP
	A 3RD-PARTY APP SENDS MESSAGES TO THE SMARTAPP
	THE WEBSERVICE SMARTAPP UPLOADS A NEW EVENT

	SMARTTHINGS WORKING WITH THE TRIGGER-ACTION APPS
	IFTTT: IF THIS, THEN THAT
	THE POPULARITY AND NECESSITY OF TRIGGER-ACTION APPS
	RELATED WORK
	OBTAIN USER PRIVACY THROUGH THE PHYSICAL CHARACTERISTICS OR VULNERABILITIES OF THE DEVICES
	USING THE CHARACTERISTICS OF THE ENCRYPTED TRAFFIC TO SPECULATE ON USER BEHAVIOR PATTERNS
	THE PRIVACY ISSUES COME WITH THE SMART HOME APPS

	PRIVACY LEAKAGE TO IFTTT
	PRIVACY LEAKAGE BY UNTRIGGER-DEVICES
	BY THE IDLE-DEVICES
	BY THE ACTUATORS
	MONITORING THE UNTRIGGER-DEVICES IN A PRACTICAL WAY

	LEAKING BY REDUNDANT STATE CHANGES
	TRIGGER-DEVICES WITH DISCRETE STATE VALUES
	TRIGGER-DEVICES WITH NUMERIC STATE VALUES

	LEAKING BY THE UNNECESSARY TRIGGER VALUE

	F&F: THE FILTERING COMPONENT
	THE KEY INFORMATION ITEMS OF EVERY APP
	EXTRACT THE KEY INFORMATION VIA A CHROME EXTENSION
	MERGE THE KEY INFORMATION COLLECTION
	MERGE THE A RECORDS OF DISCRETE-DEVICES
	MERGE THE RECORDS OF NUMERIC-DEVICES

	FILTER AND RANDOMIZE PROCEDURE

	REDUNDANCY OF THE ORIGINAL EVENT RECORDS
	CASAS DATASETS OVERVIEW
	SET THE APPLETS FOR EVERY DATASET
	COMPARING THE RECORDS AMOUNT
	COMPARING THE NUMERIC RECORDS

	F&F: THE FUZZING COMPONENT
	BEHAVIOR PATTERN OF A TRIGGER-ACTION USER
	PRIVACY LEAKAGE VIA THE FILTERED EVENT RECORDS
	FUZZING COMPONENT THAT CONCEALS THE STATISTICAL CHARATER OF EVENTS
	MAIN IDEA
	THE FUZZING WORKFLOW

	THE PSEUDO-EVENTS GENERATOR
	GENERATING PSEUDO EVENTS IN AN INTUITIVE WAY
	DYNAMIC FUZZ()
	THE STEPS OF DYNAMIC FUZZ()

	TWO FUZZ() proposals
	THE IDEAL FUZZ()
	FUZZ() with a Gaussian distribution

	EVALUATION
	DESIGN OF THE EXPERIMENTS FOR EVALUATION
	DATASET FOR TRAINING AND TESTING
	EVALUATING THE OVERHEAD AND MASKING EFFECT
	OVERHEAD
	CORRELATION BETWEEN THE MASKED RECORDS AND FILTERED RECORDS
	SUCCESS RATE OF KNN AND SVM

	CONCLUSION
	REFERENCES
	Biographies
	RIXIN XU
	QIANG ZENG
	LIEHUANG ZHU
	HAOTIAN CHI
	XIAOJIANG DU
	MOHSEN GUIZANI

