
Received February 1, 2019, accepted February 17, 2019, date of publication February 21, 2019, date of current version March 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2900708

Location-Based Seeds Selection for Influence
Blocking Maximization in Social Networks
WENLONG ZHU 1,2, WU YANG1, SHICHANG XUAN 1, DAPENG MAN 1, WEI WANG1,
XIAOJIANG DU 3, (Senior Member, IEEE), AND MOHSEN GUIZANI 4, (Fellow, IEEE)
1Information Security Research Center, Harbin Engineering University, Harbin 165001, China
2College of Computer and Control Engineering, Qiqihar University, Qiqihar 165301, China
3Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
4College of Engineering, Qatar University, Doha 2713, Qatar

Corresponding author: Wu Yang (yangwu@hrbeu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572459 and Grant 61672180, in part
by the Basic Scientific Research Project of Heilongjiang Education Department under Grant 135309469, and in part by the Teaching and
Scientific Research Project of Qiqihar University under Grant 2016086 and Grant 201803.

ABSTRACT Influence blocking maximization (IBM) is a key problem for viral marketing in competitive
social networks. Although the IBM problem has been extensively studied, existing works neglect the fact
that the location information can play an important role in influence propagation. In this paper, we study
the location-based seeds selection for IBM problem, which aims to find a positive seed set in a given query
region to block the negative influence propagation in a given block region as much as possible. In order
to overcome the low efficiency of the simulation-based greedy algorithm, we propose a heuristic algorithm
IS-LSS and its improved version IS-LSS+, both of which are based on the maximum influence arborescence
structure and Quadtree index, while IS-LSS+ further improves the efficiency of IS-LSS by using an upper
bound method and Quadtree cell lists. The experimental results on real-world datasets demonstrate that our
proposed algorithms are able to achieve matching blocking effect to the greedy algorithm as the increase in
the number of positive seeds and often better than other heuristic algorithms, whereas they are four orders
of magnitude faster than the greedy algorithm.

INDEX TERMS Influence blocking maximization, location-based, competitive social networks.

I. INTRODUCTION
Influence maximization (IM) is a fundamental social net-
work problem which finds top-k optimal seeds to maximize
the set of the influenced users in a given social network.
It is first formulated as a discrete optimization problem by
Kempe et al. [1]. In recent decades, the IM problem has been
widely studied and applied in many applications, such as
viral marketing [2], rumor control [3], and recommendation
system [4]. However, Most of the studies only consider social
influence for a single opinion or idea. In fact, it is often the
case that different opinions and even opposite opinions are
propagating in a social network simultaneously. A natural
question is how to block the influence diffusion of competi-
tors as much as possible when the two competitors are prop-
agating influence of themselves simultaneously. We refer to
this as the influence blocking maximization (IBM) problem.

The associate editor coordinating the review of this manuscript and
approving it for publication was M. Shamim Hossain.

He et al. [5] formulate the IBM problem for the first time
and some researchers also consider this topic from different
aspects [3], [6]–[8].

Although the IBM problem meets many real-world appli-
cations such as product promotion, rumor control, etc.,
it neglects the fact that location information can play an
important role in selecting the proper seeds. As an example
which is shown in Fig. 1, the edges between nodes denote
the direction of influence. Rectangle RQ1 or RQ2 which is
represented by a dotted line denotes a geographical query
region and rectangle RB1 or RB2 denotes a geographical
block region. Suppose user N is the rumor starter and we
want to select two seeds from a query region to start truth
campaign for blocking rumor campaign in a block region.
If there is no query region restriction, we will select P1 and P4
which prevent the most users from being influenced by the
rumor N. However, if the query region is restricted to RQ1,
P1 and P3 will be selected rather than P1 and P4. If the query
region is restricted to RQ2 and the block region is restricted

27272
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-6538-9905
https://orcid.org/0000-0003-0332-0686
https://orcid.org/0000-0002-8291-8768
https://orcid.org/0000-0003-4235-9671
https://orcid.org/0000-0002-8972-8094


W. Zhu et al.: LSS-IBM in Social Networks

FIGURE 1. An example of location-based seeds selection for influence
blocking maximization.

TABLE 1. Seeds selection under different region limitation in Fig. 1.

to RB2, P3 and P4 will be selected. We show the details of
seeds selection under different region limitation in Table 1.
As can be seen from the table, different regional queries leads
to different results, so it is very important to consider location
information for the optimal selection of seeds in competitive
social networks.

In this paper, we focus on researching the problem of how
to select the optimal seeds in different region information
for IBM, or called location-based seeds selection for the influ-
ence blocking maximization (LSSIBM) problem. Given a
location-aware social network, a competitive influence prop-
agation model, a negative seed set SN , a query region RQ

and a block region RB, the goal of LSSIBM is to identify
the optimal positive seed set SP of size at most k in RQ

such that the blocked negative influence spread inRB caused
by SP is maximized. We prove that the LSSIBM problem
is NP-hard and the influence function is monotone and
submodular under the homogeneous competitive indepen-
dent cascade model. Leveraging the monotonicity and sub-
modularity of influence function, we can use the greedy
algorithm [9] to solve the LSSIBM problem. However,
the time complexity of the greedy algorithm is O(knmr),
where k is the number of positive seeds, n is the number of
nodes in the query region, m is the edge set size in the social
network, and r is the number of simulations.

To overcome the low efficiency of the Monte Carlo based
greedy algorithm, we design a heuristic algorithm called

IS-LSS which is based on influence set (IS) to solve the
LSSIBM problem. In IS-LSS, we use the homogeneous com-
petitive independent cascade model [10] to simulate influ-
ence propagation and run the algorithm in two steps. In the
first step, we use a Quadtree index structure to store loca-
tion information of nodes and a depth-first order search
method to identify candidates located in a given query region.
In the second step, we first use a max-heap to store can-
didates and their blocked negative influence. Then, we use
the maximum influence arborescence (MIA) structure which
is proposed by Chen et al. [11] to calculate the influence
set of each candidate and run a dynamic programming
algorithm [8] to calculate the blocked negative influence for
all of the candidates. Further, we iteratively pop the candidate
which has the maximum value in the max-heap as a positive
seed.

The IS-LSS algorithm treats all nodes in the given query
region equally and considers all nodes as candidates for seeds
selection. In fact, many candidates are insignificant and will
not be selected as seeds, so we want to avoid these unnec-
essary computations. To this end, we propose IS-LSS + to
improve upon IS-LSS. IS-LSS + also utilizes a max-heap to
store candidates and their blocked negative influence, but it
employs an upper bound method and Quadtree cell lists to
eliminate insignificant candidates.

Finally, we evaluate the performance of the proposed algo-
rithms on three real-world datasets. The results show that both
algorithms can achievematching blocking effect to the greedy
algorithm as the increase in the number of positive seeds,
while run over four orders of magnitude faster than the greedy
algorithm. Moreover, our algorithms are more effective than
the other baseline algorithms. Meanwhile, compared with
IS-LSS, IS-LSS+ is more efficiency while has similar block-
ing effect.

Our main contributions in this paper are summarized as
follows:
• We propose the LSSIBM problem for the first time and
prove that it is NP-hard and the influence function is
monotone and submodular.

• We devise IS-LSS and IS-LSS+ algorithms which are
based on the MIA structure and Quadtree index to solve
the LSSIBM problem.

• We demonstrate the effectiveness and efficiency of the
proposed IS-LSS and IS-LSS+ algorithms by extensive
experimental results on real-world datasets.

The remainder of this paper is organized as follows. Section II
reviews related studies. Section III introduces some prelim-
inaries. We formulate the LSSIBM problem in Section IV.
Section V describes the IS-LSS algorithm and Section VI
describes IS-LSS + algorithms. Experimental results are
reported in Section VII. Finally, Section VIII summarizes the
study and concludes the paper.

II. RELATED WORK
Many researchers have studied the network from different
issues [12]–[14]. Influence maximization is one of the most

VOLUME 7, 2019 27273



W. Zhu et al.: LSS-IBM in Social Networks

popular issue and has been investigated for many years.
We review the literature related to this work from three
areas, namely traditional influence maximization, location-
aware influence maximization and influence blocking
maximization.

A. TRADITIONAL INFLUENCE MAXIMIZATION
The IM problem is first studied as an algorithmic
problem by Domingos and Richardson [15] and
Richardson and Domingos [16]. Kempe et al. formulate it as
a combinatorial optimization problem and present the formal
definition for the first time. They prove that the IM problem
is NP-hard under the classic independent cascade (IC) model
and the linear threshold (LT) model, and propose a standard
greedy algorithmwith (1−1/e−ε) approximation guarantee.
Chen et al. [17] and Wang et al. [18] further prove that the
IM problem is #P-hard under the LT model and the IC model
separately. To improve the low efficiency of the Monte Carlo
based greedy algorithm, Leskovec et al. [19] propose the
cost-effective lazy forward (CELF) algorithm based on the
diminishing return of marginal gain. Experimental results
show that CELF achieves 700 times speedup compared to the
greedy algorithm. Goyal et al. [20] propose the CELF ++
algorithm to further improve efficiency of CELF. Recently,
Melo and Vignatti [21] propose a preselection algorithm to
reduce simulation times of CELF under power law graphs.

Instead of using Monte Carlo simulations, many state-
of-the-art heuristic algorithms [11], [17], [18], [22]–[25]
are proposed to further improve the efficiency but sacrifice
(1 − 1/e − ε) approximation guarantee. Most of these
algorithms are designed based on the maximum influence
arborescence structure which is proposed by Chen et al. [11].
In this paper, we also use MIA to effectively approximate the
blocked negative influence of nodes.

Another solution to IM is based on the reverse influ-
ence sampling (RIS) technology, which is proposed by
Borgs et al. [26]. The main idea of RIS is not to estimate
the influence from seed nodes, but to randomly sample nodes
and run Monte Carlo simulations in opposite direction to
search the nodes which can influence the sampled nodes.
This motivates many studies to further improve the sampling
technology [27]–[30] and memory consumption [31], [32].

B. LOCATION-AWARE INFLUENCE MAXIMIZATION
Recently, the location information plays an increasingly
important role in social networks. Li et al. [33] are the first to
consider the location information in the IM problem. The goal
of their problem is to find a seed set to maximize the influence
spread in the given query region. They use the PMIA [11]
model to estimate influence propagation and further propose
two efficient algorithms with ε(1−1/e) approximation guar-
antee. Zhou et al. [34] devise a two-phase (TP) model and
propose two heuristic algorithms to solve the location-aware
IM problem under the Online to Offline (O2O) environ-
ment. Wang et al. [35] propose the distance-aware influence
maximization (DAIM) model which combines two factors:

influence spread and users’ distance from the query region.
Further, they devise an anchor point (AP) based algorithm to
solve location-aware promotion problem. Li et al. [36] con-
sider community-based seeds selection problem in location-
aware social networks and propose a community-based seeds
selection algorithm based on community detection and MIA.
Su et al. [37] consider both topic and geographical prefer-
ences on IM problem. Zhu et al. [38] study the location-aware
propagation probability problem by considering check-ins of
users.

C. INFLUENCE BLOCKING MAXIMIZATION
There are also many research efforts on competitive influence
maximization (CIM) problem [39]–[41], which consider the
situation that some competitors propagate their influence in
the social network simultaneously. The goal of CIM is to
maximize the influence of one entity and the same time to
block the influence of its competitors as much as possible.
Different from the CIM problem, IBM aims to find a strategy
for an entity to minimize the influence of its competitors or to
maximize the blocking effect on its competitors.

The IBM problem is first formulated by He et al. [5].
They prove that the IBM problem is NP-hard and influence
function is monotone and submodular under the CLT model.
Further, they adopt the local directed acyclic graph (LDAG)
structure [17] and propose an efficient heuristic algorithm
for the IBM problem. Budak et al. [3] also consider the
IBM problem under the competitive social networks, which
they called the eventual influence limitation (EIL) prob-
lem. Wu and Pan [6] consider the IBM problem under two
extended IC models and design two heuristic algorithms
based on MIA. Lv et al. [42] devise a heuristic algorithm
based on the community structure of the network for the
IBM problem. Song et al. [7] consider IBM problem with
time delays. Zhu et al. [8] propose two heuristic algo-
rithms LIBM-H and LIBM-C to solve the location-aware
IBM problem.

III. PRELIMINARIES
To clearly introduce the LSSIBM problem, we first introduce
some preliminaries. Table 2 summarizes the frequently used
notations throughout the paper.

A. PROPAGATION MODEL
A competitive social network can be modeled as a directed
graph G= (V, E), where V is the set of nodes and E is the set
of edges. In the context of influence propagation, V can be
viewed as the users of the social network and E can be viewed
as the relationships of the users. A user u is a neighbor of a
user v if and only if there is an edge eu,v ∈ E . In addition,
we assign two weights ppu,v and pnu,v to each edge eu,v ∈ E
to model the positive and negative influence of the user u to
the user v.

Although the IC model and the LT model are the most
popular models in traditional IM problem, these models are
not suitable for competitive influence propagation. Instead,

27274 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

TABLE 2. Frequently used notations.

the competitive independent cascade (CIC) model [10] and
the competitive liner threshold (CLT) model [10] are well
used for competitive social networks. In this paper, we use
the homogeneous CIC [10] model which is an extension
of the CIC model to simulate influence propagation under
competitive social networks.

Given a competitive social networkG = (V, E), the initial
negative seed set SN ⊂ V and positive seed set SP ⊂ V ,
the CIC model works as follows. Let SNt and SPt be the
set of nodes that are positively and negatively activated at
step t respectively, with t ≥0, SN0 = SN and SP0 = SP.
At step t+1, each node u ∈ SNt has a single chance to nega-
tively activate its inactive neighbor v with probability pnu,v
and each node u ∈ SPt has a single chance to positively
activate its inactive neighbor v with probability ppu,v. The
process ends at a step t with SNt = ∅ and SPt = ∅.
If in step t, v is activated by both positive propagation and
negative propagation, then negative propagation dominates
and v is negatively activated. The negative dominance rule
matches the common sense that rumors are usually hard to
fight with. We say the CIC model is homogeneous if each
edge eu,v ∈ E ,pnu,v =ppu,v. Hereafter, when there is no
ambiguity, we use pu,v to represent both positive and negative
propagation probability of u to v.

B. THE MIA STRUCTURE
The MIA structure is first proposed by Chen et al. [11]. The
basic idea of MIA is to use the maximum influence path
(MIP) to estimate the influence from one node to another. For
a path P =< u = w1,w2,. . . , wm = v >, the propagation

probability of the path is defined as pp(P) =
∏m−1

i=1 pwi,wi+1 .
For a node pair u and v, there are many paths from u to v.
The maximum influence path from u to v is defined as
MIPu,v = argmax pp(P). If we translate pwi,wi+1 to a dis-
tance weight − log pwi,wi+1 , then MIP is simply the shortest
path from u to v, and can be computed by efficient algo-
rithms such as Dijkstra algorithm. Further, Chen et al. [11]
define maximum influence in-arborescence (MIIA) and
maximum influence out-arborescence (MIOA). For a node
v ∈ V , MIIA(v, θ) is the union of MIP from other nodes
to v,MIOA(v, θ) is the union of MIP from v to other nodes
and θ is an influence threshold to eliminate MIPs that have
too small propagation probabilities. i.e.,

MIIA(v, θ) =
⋃

u∈V ,pp(MIPu,v)≥θ
MIPu,v (1)

MIOA(v, θ) =
⋃

u∈V ,pp(MIPv,u)≥θ
MIPv,u (2)

We can see that MIIA(v, θ) and MIOA(v, θ) give the local
influence regions of v, and θ controls the size of these influ-
ence regions.

C. INFLUENCE BLOCKING MAXIMIZATION
He et al. [5] formulate the IBM problem for the first time.
In this part, we first define the influence blocking set (IBS),
then we define the blocked negative influence (BNI), finally,
we define the IBM problem.
Definition 1 (Influence Blocking Set): Given a competitive

social networkG = (V, E), a negative seed set SN and a
competitive propagation model, the influence blocking set of
a positive seed set SP, denoted as IBS(SP, SN ), is defined
as the set of nodes that would be negatively activated if the
positive seed set is empty, while are not negatively activated
if the positive seed set is SP.
Definition 2 (Blocked Negative Influence): Given a com-

petitive social network G = (V, E), a negative seed set SN

and a competitive propagation mode, the blocked negative
influence of a positive seed set SP, denoted as σ (SP, SN ),
is defined as the expected size of IBS(SP, SN ). i.e.,

σ (SP, SN ) = E(
∣∣∣IBS(SP, SN )∣∣∣) (3)

Definition 3 (Influence Blocking Maximization): Given a
competitive social networkG= (V, E), a negative seed set SN

and a competitive propagation mode, the influence blocking
maximization problem aims to find a positive seed set SP∗ of
size at most k to initiate positive propagation competing with
negative propagation such that the blocked negative influence
σ (SP, SN ) is maximized. i.e.,

SP∗ = argmax
SP⊂V\SN ,|SP|≤k

σ (SP, SN ) (4)

IV. LSSIBM PROBLEM AND THE GREEDY ALGORITHM
In this section, we first define region-constrained influence
blocking set (RIBS) and region-constrained blocked negative
influence (RBNI). Then, we define the LSSIBM problem.
Finally, we prove that the LSSIBM problem is NP-hard and

VOLUME 7, 2019 27275



W. Zhu et al.: LSS-IBM in Social Networks

the influence function has characteristics of monotonicity
and submodularity under the homogeneous CIC model, and
propose the greedy algorithm to solve the LSSIBM problem.

In a location-based competitive social network, each node
v ∈ V has a geographical location (x, y), where x is longitude
and y is latitude. Given a query Q = (RQ,RB, k),RQ is
a query region for positive seeds selection, RB is a block
region for blocking the influence propagation of negative
seeds and k is the size of positive seed set. We define the
region-constrained influence blocking set as follows.
Definition 4 (Region-Constrained Influence Blocking Set):

Given a competitive social networkG = (V, E), a nega-
tive seed set SN , a competitive propagation model, a query
region RQ and a block region RB, the region-constrained
influence blocking set of SP, denoted as RIBS(SP, SN ,
RQ,RB), is defined as the set of nodes located in RB that
would be negatively activated if the positive seed set is empty,
while are not negatively activated if the positive seed set is SP,
with the seeds of SP located inRQ.
Definition 5 (Region-Constrained Blocked Negative

Influence): Given a competitive social network G = (V, E),
a negative seed set SN , a competitive propagation model,
a query region RQ and a block region RB, the region-
constrained blocked negative influence of a positive seed
set SP, denoted as σ (SP, SN ,RQ,RB), is defined as the
expected size of RIBS(SP, SN ,RQ,RB). i.e.,

σ (SP, SN ,RQ,RB) = E(
∣∣∣RIBS(SP, SN ,RQ,RB)

∣∣∣) (5)

Now we formally define the LSSIBM problem as follows.
Definition 6 (Location-Based Seeds Selection For

Influence Blocking Maximization): Given a competitive
social network G = (V, E), a competitive propagation model,
for a query Q = (RQ,RB, k), LSSIBM is the problem
of finding a positive seed set SP∗ of size at most k , with
nodes in SP∗ located in the query region RQ, such that the
region-constrained blocked negative influence in the block
region RB is maximized. i.e.,

SP∗ = argmax
SP⊂RQ\SN ,RQ⊂V ,|SP|≤k

σ (SP, SN ,RQ,RB) (6)

Example 1. Fig. 2 shows a location-based competitive social
network with 27 nodes and 35 edges. The number on each
directed edge eu,v is positive and negative influence prop-
agation probability pu,v. The value of pu,v is set to 1/d(v),
where d(v) is the in-degree of v. We randomly select 2 nodes
as negative seeds, e.g., nodes 15 and 18. Given a query
Q = (RQ,RB, k) with the dotted rectangle (e.g., RQ

=

RQ1,RB
= RB1) and k = 3. The goal of LSSIBM is to

find at most 3 positive seeds located inRQ1 to block the neg-
ative influence propagation of nodes 15 and 18 in the block
region RB1 as much as possible.
Theorem 1: Under the homogeneous CIC model,

the LSSIBM problem is NP-hard.
Proof: We prove the hardness of LSSIBM by consid-

ering a simple case that SP = ∅ and both of RQ and RB

cover all nodes in V . In this situation, the LSSIBM problem

FIGURE 2. A running example.

becomes a traditional IBM problem which is proved NP-hard
by Wei et al. [10]. Therefore, the LSSIBM problem
is NP-hard.

To overcome theNP-hardness result of Theorem 1, we look
for approximation algorithms. TheMonte Carlo based greedy
algorithm is well used in the IM problem. In order to use the
greedy algorithm to solve the LSSIBMproblem, the influence
function σ (·) must satisfy the characteristics of monotonicity
and submodularity. We say that an influence function σ :
2V → R is monotone if it satisfies σ (S) ≤ σ (T ) for any
S ⊆ T ⊆ V . Moreover, we say that an influence function
σ : 2V → R is submodular if it satisfies σ (S ∪ {v})−σ (S) ≥
σ (T ∪ {v}) − σ (T ) for any subset S ⊆ T ⊆ V and any
element v ∈ V\T . Intuitively, submodularity means that
σ (·) has a diminishing marginal return. On this basis, we have
the following theorem.
Theorem 2: In the LSSIBM problem, the influence function

σ (SP, SN ,RQ,RB) is monotone and submodular under the
homogeneous CIC model.

Proof: It is easy to see that the influence function
σ (SP, SN ,RQ,RB) is monotone. We prove the charac-
ter of submodularity by a contradiction method. In [10],
it is proved that the influence spread function σ (SP, SN )
is submodular under the homogeneous CIC model for the
IBM problem. We can easily show that the influence function
σ (SP, SN ,RQ,RB) of LSSIBM problem under the homoge-
neous CIC model is a reduction from the IBM problem by
setting RQ and RB covers all of nodes in the given social
network. If σ (SP, SN ,RQ,RB) is not submodular, then
σ (SP, SN ) will not be submodular. So σ (SP, SN ,RQ,RB) is
submodular.

Based on the characteristics of monotonicity and submod-
ularity, we propose the greedy algorithm. The pseudocode

27276 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

of the greedy algorithm is shown as Algorithm 1. In each
iteration, the greedy algorithm simulates influence propa-
gation under the homogeneous CIC model and selects the
seed which has the largest marginal value as the current seed
until the positive seed set size is k . However, the greedy
algorithm uses Monte Carlo simulations to select optimal
seeds, evenwith the start-of-the-art optimizationmethod such
as CELF [19], the greedy algorithm takes more than twenty
hours for the social network of four thousand nodes as we
show in our experiments. We address this efficiency issue
with our new algorithm IS-LSS in the next section.

Algorithm 1 Greedy

Input : G = (V ,E), SN ,Q = (RQ,RB, k)
Output : SP

1: SP = ∅;
2: for i = 1 to k do
3: u = argmax

v∈RQ\(SP∪SN )
(σ (SP ∪ {v}, SN ,RQ,RB)

−σ (SP, SN ,RQ,RB))
4: SP = SP ∪ {u};
5: end for
6: returnSP;

V. IS-LSS ALGORITHM
In this section, we first introduce Quadtree and the influence
set. Then, we propose the IS-LSS algorithm. Finally, we anal-
yse the complexity of our algorithm.

A. THE QUADTREE STRUCTURE
Quadtree is a very useful index method for two-dimensional
point data. In Quadtree, each Quadtree cell is formed
as < Cid ,M , NSET, SE, SW, NE, NW>. Cid is a Quadtree
cell number. M is the minimum bounding rectangle (MBR)
of location within this cell, e.g., M = [(x, y), (xlim, ylim)],
more precisely, x and y are the longitude and latitude of the
bounding center of M , xlim and ylim are half the length
and width of M . NSET is the set of nodes located in M .
SE,SW,NE,NW are pointers to sub cells. Moreover, Quadtree
has a cell capacity c that limits themaximum number of nodes
in each cell. When a cell contains more than c nodes after
insertion, the cell splits into four cells based on the quadrants
of its MBR.

In IS-LSS, to clearly identify the nodes in the query region
and block region, we build a Quadtree according to the
location information of nodes in the given social network
and utilize the Quadtree to search the set of nodes in the
given region. Given a region R, we use N (R) to represent
the nodes located in R. The searching process is described
in Algorithm 2. Starting from the root cell, the algorithm
recursively traverses all nodes overlapped with R. When
traversing a cell qt, if the MBR of it is not overlapped withR,
which means that nodes in qt and its sub cells are not located
in R, we ignore qt and do not check sub cells rooted at qt.
Otherwise, we check each node in qt, if the node is located

in R, we add it to N (R). We repeat this process recur-
sively until we identify all cells in the Quadtree and take the
final N (R) as the return value. We provide an example of
Quadtree structure and searching method in Example 2.

Algorithm 2 SearchNodeInRegion
Input : Quadtree cell qt,R : A region.
Output : N(R)
1: if R is not overlapped with qt.MBR then
2: return;
3: end if
4: for each u ∈ qt.MBR do
5: if u is located inR then
6: add u to N (R);
7: end if
8: end for
9: SearchNodeInRegion( qt.SE,R);
10: SearchNodeInRegion(qt.SW ,R);
11: SearchNodeInRegion( qt.NE,R);
12: SearchNodeInRegion( qt.NW ,R);
13: return N (R);

Example 2. Fig. 3 shows the Quadtree structure of the
location-based social network in Fig. 2 and we set cell capac-
ity c= 3. The value in a circle represents Cid , e.g., C0 means
Quadtree cell 0, and the values in the rectangle represent
nodes located in the corresponding MBR, e.g., nodes 24,
25, 26 are located in the cell C20. We also list the location
information of each cell under the corresponding rectangle.
Next, given a region, we show how to search nodes in the
Quadtree, e.g., RQ1

= [(−70, 45), (70, 40)]. Starting from
the root cell, we check whether the MBR of the root is over-
lapped with RQ1. Because the root is overlapped with RQ1,
we check each node in the root and find node 0 is located
inRQ1. Then, we check C1 and ignore it and its sub cells for
the reason that C1 is not overlapped with RQ1. Then, we do
the same operations on C2 and C3. We further check C4, find
nodes 4, 10 and 11, check C6, find node 12, check C7,C8
and find nodes 14, 13. Finally, we get the set N (RQ1) =
{0, 4, 10, 11, 12, 14, 13} as the final result.

B. THE INFLUENCE SET
Social influence is reflected by the path of the connected
nodes. Inspired by the MIA structure [11], we utilize the
influence set in our algorithms. The influence set contains
two parts, named the influencee set and the influencer set.
The definitions are as follows.
Definition 7 (Influencee Set): The influencee set of a

node u, denoted as Ie(u), is the set of nodes influenced by u
under the MIA structure. i.e.,

Ie(u) = {v|v ∈ MIOA(u, θ)} (7)

Definition 8 (Influencer Set): The influencer set of a node u,
denoted as Ir (u), is the set of nodes that can influence u under

VOLUME 7, 2019 27277



W. Zhu et al.: LSS-IBM in Social Networks

FIGURE 3. The Quadtree structure of Fig. 2.

the MIA structure. i.e.,

Ir (u) = {v|v ∈ MIIA(u, θ)} (8)

The influencee set of u can be naturally extended to a set
of users. Let S be a set of users, the influencee sets of S is
defined as the union of the influencee set of each node
in S, i.e., Ie(S) = ∪u∈S Ie(u). The concept of influencer sets
of S can be defined similarly, i.e., Ir (S) = ∪u∈S Ir (u).

Further, we propose the region-constrained influencee set
and region-constrained influencer set for LSSIBM. The for-
mal definitions are as follows.
Definition 9 (Region-Constrained Influencee Set): Given

a region R = [(x, y), (xlim, ylim)], the region-constrained
influencee set, denoted as Ie(u,R), is a subset of Ie(u) con-
sisting of the users located in the region R. The concept of
region-constrained influencee sets of a set of users can be
defined similarly, i.e., Ie(S,R) = ∪u∈S Ie(u,R).
Definition 10 (Region-Constrained Influencer Set): Given

a region R = [(x, y), (xlim, ylim)], the region-constrained
influencer set, denoted as Ir (u,R), is a subset of Ir (u) con-
sisting of the users located in the region R. The concept of
region-constrained influencer sets of a set of users can be
defined similarly, i.e., Ir (S,R) = ∪u∈S Ir (u,R).
Example 3: Considering node 0 and node 3 in Fig. 2,

we show how to compute Ie(0,RB1) and Ir (3,RQ1) with
θ = 0.01. For Ie(0,RB1), we should get Ie(0) and take
the set of nodes in Ie(0) while located in RB1 as the
final result. We achieve this by follows. First, we construct
MIOA(0, 0.01), as shown in Fig. 4 (a). After finishing the con-
struction, we get Ie(0) = {1, 2, 3, 6, 22, 25, 26}. Then, we use
Algorithm 2 to find the set of nodes located in RB1, denoted
as N (RB1) and get N (RB1) = {2, 3, 7, 19, 24, 25, 26}.
Finally, we check whether the nodes in Ie(0) are in N (RB1)
and get the final result set Ie(0,RB1) = {2, 3, 25, 26}. For
Ir (3,RQ1), we first construct MIIA(3, 0.01) and get Ir (3).
Then, we get N (RQ1) based on Example 2. Finally, we check

FIGURE 4. The MIA structure. (a) MIOA (0, 0.01). (b) MIIA (3, 0.01).

whether the nodes in Ir (3) are in N (RQ1) and get the final
result set Ir (3,RQ1) = {0, 4, 10, 11, 12, 13, 14}.

C. INFLUENCE SET BASED ALGORITHM
We use the dynamic programming algorithm proposed in
our previous work [8] to calculate the negative activation
probability of a node u, denoted as ap(u, SP, SN ), under the
negative seed set SN and positive seed set SP. The basic
idea of the dynamic programming algorithm is to simulate
the negative and positive influence propagation simultane-
ously under the MIA structure. One can see more details
in [8, Algorithm 4].

For the LSSIBM problem, we want to select the
seeds located in the query region RQ to maximize the
region-constrained blocked negative influence in the block
regionRB. To achieve this, for each node u located inRQ,we
should first calculate the region-constrained blocked negative
influence of u to nodes located in RB after adding u to
the positive seed set SP. Then, we select the node with the
maximum region-constrained blocked negative influence as
the seed. In the absence of ambiguity, we use blocked negative
influence (BNI) to represent region-constrained blocked neg-
ative influence (RBNI) for simplicity in the following work.

Accordingly, we use DecInc(u, v) to represent the blocked
negative influence of u to v after adding u to SP. More
precisely, DecInc(u, v) is the negative influence reduction of
v caused by adding u to the positive seed set SP. i.e.,

DecInc(u, v) = ap(v, SN , SP)− ap(v, SN , SP ∪ {u}) (9)

Then, we useDecInc(u,RB) to represent the blocked negative
influence of u in RB. More precisely, DecInc(u,RB) is the
blocked negative influence of u to nodes located in RB after
adding u to the positive seed set SP. i.e.,

DecInc(u,RB) =
∑

v∈RB\(SN∪SP)
DecInc(u, v) (10)

Since the influence propagates through the MIA structure,
only the nodes in the influencee set of u can cause negative
influence reduction. i.e.,

DecInc(u,RB) =
∑

v∈Ie(u,RB)\(SN∪SP)
DecInc(u, v) (11)

27278 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

Example 4. Considering node 0 in Fig. 2, we show how
to compute DecInc(0,RB1), with SP = ∅. According
to Example 3, we get Ie(0,RB1) = {2, 3, 25, 26}. Then,
DecInc(0,RB1) = DecInc(0, 2) +DecInc(0, 3) +DecInc(0,
25)+ DecInc(0, 26). Based on [8, eq. (10) and Algorithm 4],
we can getDecInc(0, 2) = 0.0150, DecInc(0, 3) = 0.0312,
DecInc(0, 25) = 0.0186, DecInc(0, 26) = 0.0546. Finally,
we can get DecInc(0,RB1) = 0.1194 as the final result.

Once we have computed DecInc(u,RB) for each node u
located in RQ. We can iteratively select the top-k seeds. For
simplicity, we useDecInc(u) to representDecInc(u,RB). The
full pseudocode of IS-LSS is described in Algorithm 3.

The algorithm consists of two steps: offline step and online
step. The goal of the offline step is to reduce the time-
consuming of online step. In the offline step, for each node
u, we preconstruct its MIA structure and get its influence set,
then we precompute the initial negative activation probability
of u based on [8, Algorithm 4 (lines 1–5)]. In the online step,
given a query Q = (RQ,RB, k), we first use Algorithm 2 to
get candidates located in RQ (line 6). Then, we use a max-
heap H to store the candidates and their blocked negative
influence in RB. It is easy to see that the candidates are the
nodes that can be selected as positive seeds. Next, we calcu-
late the initial value of DecInc(u,RB) for each candidate u
based on (11 and 9) with SP = ∅ and push< u,DecInc(u) >
into H (lines 7-13). In each iteration, we pop the top node
inH as the next positive seed for the reason that the top node
has the maximum blocked negative influence in all of the
candidates (line 16). Once u is selected as a positive seed,
only the candidates that have relations with u need to update
their blocked negative influence. Based on theMIA structure,
each node w ∈ Ir (v,RQ) with v ∈ Ie(u,RB) has old relation
with u. So, we do the updating process by first minus the old
blocked negative influence of w to each node v ∈ Ie(u,RB),
update < w,DecInc(w) > in H(lines 17-24). Then, we add
the new seed u to SP and update the MIA structures and influ-
ence sets of nodes which have relations with u(lines 25-28).
Then, we add the new blocked negative influence of w to
each node v ∈ Ie(u,RB) and update < w,DecInc(w) > in H
(lines 27-34). Finally, we return SP as the final positive seed
set when all iterations are finished or there is no candidate
in H.

D. COMPLEXITY ANALYSIS
Let n = |V | , nN =

∣∣SN ∣∣ , nQ = N (RQ), tθ be the maxi-
mum time of construction ofMIIA(v, θ) orMIOA(v, θ),mθ =
maxv{|Ir (v)| , |Ie(v)|}. Since the construction of MIA has lin-
ear time complexity with its size, letmθ = O(tθ ) and the time
complexity of ap(u, SP, SN ) is O(mθ ) = O(tθ )[8]. We first
analyze the time complexity of IS-LSS as follows.

In the offline step, for each node u, it takes O(tθ ) to
construct the MIA structure and the influence set of u
can be obtained during this time. Calculating ap(u, SP, SN )
takes O(tθ ). Overall, the offline step takes O(ntθ ). In the
online step, Algorithm 2 takesO(n). Initializing themax-heap
takes O(nQ). So lines 7-13 take O(nQ(mθ + mθ tθ )) which

Algorithm 3 IS-LSS

Input : G = (V ,E), SN ,Q = (RQ,RB, k)
Output : SP

//Offline step
1: for each node u ∈ Vdo
2: construct MIIA(u, θ), getIr (u);
3: construct MIOA(u, θ), getIe(u);
4: Inc(u) = ap(u, SN ,∅),DecInc(u) = 0;
5: end for
//Online step, for each queryQ = (RQ,RB, k)
6: get N (RQ) base on Algorithm 2, SP = ∅,H = ∅;
7: for each node u ∈ N (RQ)\SNdo
8: get Ie(u,RB);
9: for each node v ∈ Ie(u,RB)\SN do
10: DecInc(u)+ = Inc(v)− ap(v, SN , SP ∪ {u});
11: push <u,DecInc(u) > into H;
12: end for
13: end for
14: for i = 1 to k do
15: ifH.top() = ∅ thenreturnSP;
16: u = H.pop();
17: for each node v ∈ Ie (u,RB)\(SP ∪ SN ) do
18: getIr (v,RQ);
19: Inc(v) = ap(v, SN , SP);
20: for each node w ∈ Ir (v,RQ)\(SP ∪ SN ) do
21: DecInc(w)− = Inc(v)− ap(v, SN , SP ∪ {w})
22: update < w,DecInc(w) > in H;
23: end for
24: end for
25: SP = SP ∪ u;
26: update MIOA (u, θ) and Ie (u,RB);
27: for each node v ∈ Ie(u,RB)\(SP ∪ SN ) do
28: update MIIA(v, θ) and Ir (v,RQ);
29: Inc(v) = ap(v, SN , SP);
30: for each node w ∈ Ir (v,RQ)\(SP ∪ SN ) do
31: DecInc(w)+ = Inc(v)− ap(v, SN , SP ∪ {w})
32: update < w,DecInc(w) > in H;
33: end for
34: end for
35: end for
36: returnSP;

can be simplified as O(nQt2θ ). For each iteration, updating
the max-heap takes O(log nQ). Lines 17-24 and lines 27-34
take O(mθ (mθ + mθ + mθ (tθ + log nQ))) which can be
simplified as O(t3θ + t2θ log nQ). Line 26 takes O(tθ ). Thus,
all iterations take O(kt3θ + kt

2
θ log nQ). Thus, the online step

takes O(kt3θ + (nQ + k log nQ)t2θ + n). Overall, the total time
complexity of IS-LSS is O(kt3θ + (nQ + k log nQ)t2θ + ntθ ).
For space complexity, if the capacity of each cell is c in

a Quadtree, then the space complexity of the Quadtree is
O(n + 4n/c). A max-heap is used to store DecInc(u) and it
takesO(nQ). ConstructingMIA structures takesO(nmθ ). The
influence set can be obtained based on MIA structures, so it

VOLUME 7, 2019 27279



W. Zhu et al.: LSS-IBM in Social Networks

does not take space. Overall, the total space complexity of
IS-LSS is O(nmθ ).

VI. IS-LSS+ ALGORITHM
For each candidate located in the query region RQ, we need
to calculate the blocked negative influence of the candidate
in IS-LSS. In fact, most of the candidates are insignifi-
cant and should not be calculated during seeds selection.
In this section, we propose IS-LSS+, an improved version
of IS-LSS. We propose an upper bound method based on
Quadtree cells and the MIA structure to prune insignificant
candidates with small influence.

A. CELL INDEX AND CELL LISTS
Cell index L. For each Quadtree cell Ci, we precompute the
influencer set Ir (v) for each node v in Ci, and take the union
of the influencer set of nodes in Ci, denoted as Ir (Ci). i.e.,

Ir (Ci) = ∪v∈Ci.NSET Ir (v) (12)

Then we use a list LCi to maintain each node u in Ir (Ci)
with its blocked negative influence to nodes located in Ci and
sorted by descending order. i.e.,

LCi = {< u, decInc(u,Ci) > |u ∈ Ir (Ci)} (13)

More precisely, since the influence propagates in the
MIA structure, LCi stores the nodes that have influence to
nodes in Ci and their blocked negative influence. We use
decInc(u,Ci) to represent the blocked negative influence of
node u to nodes in Ci. i.e.,

decInc(u,Ci) =
∑

v∈Ci.NSET\(SN∪SP)
DecInc(u, v) (14)

Given a query Q = (RQ,RB, k), we first identify the set of
Quadtree cells that are fully covered byRB, denoted as CF =
{C1,C2 . . . ,Cr

}, and the set of nodes whose corresponding
cells are not fully covered by RB, denoted as C0. For each
C j
∈ CF , we identify the corresponding cell list LCi from

the cell index L. It is worth mentioning that only the nodes
located inRQ are candidates, whilemany nodes inLCi are not
located in RQ, so we combine these lists and only compute
the blocked negative influence of candidates in CF , denoted
by decInc(u,CF ). That is,

decInc(u,CF ) =
∑

1≤j≤r
decInc(u,C j) (15)

Next, for C0, we on the fly generate a sorted list of nodes
based on their blocked negative influence in C0, denoted as
LC0 = {< u, decInc(u,C0) >}.We getLC0 by follows: First,
we compute the region-constrained influencer sets of C0,
denoted as Ir (C0,RQ). Then, for each node u in Ir (C0,RQ),
we get region-constrained influencee set of u in C0, denoted
as Ie(u,C0). Then, we compute the blocked negative influ-
ence of u based on Ie(u,C0) and (9). i.e.,

decInc(u,C0) =
∑

v∈Ie(u,C0)\(SN∪SP)
DecInc(u, v) (16)

Finally, we add 2-tuples < u, decInc(u,C0) > to the cell
list LC0 . It is easy to see that LC0 stores the candidates that

can block the negative influence to nodes located in C0 and
their blocked negative influence.

Now, we have a set of cell lists, denoted as LRB =
{LC0 ,LC1 , ...,LCr }. Using this set of cell lists, given a query
Q = (RQ,RB, k), for each candidate u in RQ, we can
compute its blocked negative influence in RB, denoted as
decInc(u,RB), as follows.

decInc(u,RB) = decInc(u,C0)+ decInc(u,CF ) (17)

Based on (17) and corresponding (14-16, and 9), we can
easily compute each candidate’s blocked negative influence
in RB.
Example 5: Also considering node 0 in Fig. 2, we show

how to compute decInc(0,RB1) by using cell lists. Based
on Fig. 3, we can get the fully covered set of cells CF =
{C19,C20}. For C19, we get decInc(0,C19) = 0 from LC19 .
For C20, we get decInc(0,C20) = 0.0732 from LC20 . Thus,
decInc(0,CF ) = 0.0732. Next, we can get the set of nodes
in C0 whose corresponding cells are not fully covered by
RB1,C0

= {2, 3, 7, 19}. Then, we can get Ir (C0,RQ) =
{0, 4, 10, 12, 13, 14}. Because node 0 is a candidate seed,
based on (16) and Ie(0,C0) = {2, 3}, we get decInc(0,C0) =
decInc(0, 2) + decInc(0, 3) = 0.0150 + 0.0312 = 0.0462.
Finally, we can get decInc(0,RB1) = decInc(0,CF )+
decInc(0,C0) = 0.1194 as the final result. We can see that
this result is equal to the result in Example 4 in IS-LSS.

B. IMPROVED ALGORITHM
On this basis, we devise an improved algorithm IS-LSS+.
The full pseudocode of IS-LSS+ is in Algorithm 4. In the
offline step, comparing with IS-LSS, we precompute cell
list LCi for each Quadtree cell Ci (lines 6). In the online step,
given a query Q = (RQ,RB, k), we get corresponding cell
lists LC1 ,LC2 , . . .LCr from L based on N (RQ) (lines 7-8),
and compute LC0 for nodes whose corresponding cells are
not fully covered byRB(line 9). In the iteration step, we also
use a max-heap to identify positive seeds. Different from the
IS-LSS algorithm, we do not insert all candidates into the
max-heap, but add candidates as follows.

1) SELECTING THE FIRST SEED
As nodes in LC0 ,LC1 ,LC2 , . . .LCr are sorted by their

blocked negative influence in descending order, we first
check the first node of each cell list. Notice that many of
nodes in the fully covered cells are not candidates, we ignore
them from the list until we get a candidate node (line 15).
For the first candidate ui in each cell LC i , we compute
decInc(ui,RB) based on (17) and add< ui, decInc(ui,RB) >
into the max-heap H. Let < u,Umax > be the first
2-tuples in H, it is easy to see that Umax is the maximum
blocked negative influence of visited candidates. Let Bmax =∑

0≤i≤r decInc(ui,C
i), where decInc(ui,C i) is kept in the

list LC i . Obviously, Bmax is an upper bound of the blocked
negative influence of unvisited candidates. If Umax > Bmax ,
the top node in H must be the seed and we terminate this
iteration. Otherwise, we check the second candidate of each

27280 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

Algorithm 4 IS-LSS+

Input : G = (V ,E), SN ,Q = (RQ,RB, k)
Output : SP

//Offline step
1: for each node u ∈ V do
2: construct MIIA(u, θ), getIr (u);
3: construct MIOA(u, θ), getIe(u);
4: Inc(u) = ap(u, SN ,∅);
5: end for
6: Precompute cell listLCi for each cellCi;
//Online step, for each queryQ = (RQ,RB, k)
7: get N (RQ) baseon Algorithm 2, SP = ∅,H = ∅;
8: identify LC1 ,LC2 , ...,LCr from cell index L
9: compute LC0;

10: Umax = −1,Bmax = 0;
11: while Umax < Bmax do
12: Bmax = 0;
13: if ∪0≤i≤r LC i = ∅ then break;
14: for i = 1to r do
15: pop real candidate ui from LC i;
16: if status (ui) = 0 then
17: compute decInc(ui,RB)based on (17);
18: else
19: compute decInc(ui,RB)based on (11);
20: end if
21: push <ui, decInc(ui,RB) > intoH;
22: Bmax+=decInc(ui,RB)
23: end for
24: get <u,Umax > from H;
25: if Umax > Bmax then
26: if State(u) = 0||State(u) = 2 then
27: set State(w)=1 for each w ∈ Aff (u)
28: pop <u,Umax > from H;
29: SP = SP ∪ u;
30: update MIOA(u, θ) and Ie (u,RB);
31: foreach nodev ∈ Ie(u,RB)\(SP ∪ SN )do
32: updateMIIA(v, θ)andIr (v,RQ);
33: end for
34: else if State(u) = 1 then
35: compute decInc(u,RB) based on (11);
36: push < ui, decInc(u,RB) > into H;
37: State(u) = 2;
38: end if
39: end if
40: end while
41: return SP;

cell LC i , update Bmax by using the sum of the blocked
negative influence of the second candidate in each cell list,
and insert all second candidates and their blocked negative
influence into the max-heap.

2) SELECTING OTHER SEEDS
Selecting other seeds is different from selecting the first
seed because once a candidate u is selected, some nodes

which have co-influence with u will be affected and we need
to update their blocked negative influence. To achieve this,
we use Aff (u) to represent the set of nodes which has co-
influence with u, i.e.,Aff (u) = {w|w ∈ MIIA(v, θ), v ∈
MIOA(u, θ)}. Then, we use State(u) to represent the relation-
ship between u and the current seed. State(u) = 0 means that
u has no co-influence with the current seed and we can use
prepared cell lists to get the blocked negative influence of u.
State(u) = 1 means that u is affected by the current seed and
the original blocked negative influence of u is outdated, so
we need to recompute the blocked negative influence of u.
State(u) = 2 means that u is affected by the current seed and
the blocked negative influence of u has been recomputed.

On this basis, we select other seeds iteratively as follows.
When Umax < Bmax , it means that we need to add new
candidates into H. We check the state of the next candi-
date in each cell list, if State(u) = 0, we use the same
method as mentioned in selecting the first seed to update H.
Otherwise, we recalculate the blocked negative influence
based on (11) and do the same other operations as selecting
the first seed. When Umax > Bmax , we get the top node u
from H. If State(u) = 0 or State(u) = 2, then u is indeed
a seed. So we select u as the next seed, pop it from H and
add it to SP. If State(u) = 1, then we recalculate the blocked
negative influence of u based on (11), update its value and set
State(u) = 2. If State(u) = 2, it means the blocked negative
influence of u is really the largest one in H. We select u as
the next seed, pop it from H and add it to SP. Whenever
we select a new seed u, we set State(w) = 1 and update the
MIA structures and influence sets for all w ∈ Aff (u). Finally,
if we find k positive seeds or we have checked all of the nodes
in cell lists LRB , we stop iteration and return SP as the final
result.

C. COMPLEXITY ANALYSIS
For time complexity, let the maximum number of nodes in the
cell list LC0 be nQ, n1 be the maximum number of nodes in
cell lists LCi , i.e., n1 = max(

∣∣LCi ∣∣), nc be the number of cell
lists. In the offline step, lines 1-5 take O(ntθ ), building LCi
takesO(n1 log n1). Thus, line 6 takesO(ncn1tθ+ncn1 log n1).
Overall, the offline step takes O((n+ ncn1)tθ + ncn1 log n1).
In the online step, line 7 takes O(n), line 8 takes O(log n).
For C0, it takes O(n) to identify nodes in C0 and needs to
compute decInc(u,C0) for at most nQ nodes. Each node takes
O(t2θ ) to calculate the blocked negative influence. Building
LC0 takes O(nQ log nQ). Thus, line 9 takes O(n + nQt2θ +
nQ log nQ). In the iteration step, there are at most nQ1
candidates in the max-heap, so initializing the max-heap
takes O(nQ1). Based on the IS-LSS + algorithm, we can see
that nQ1 is much smaller than nQ. Updating the max-heap
takes O(log nQ1). Calculating Umax and Bmax takes constant
time. Thus, lines 14-23 takeO(t2θ + log nQ1), lines 26-33 take
O(t2θ ), lines 35-37 take O(t2θ ). Overall, all of the iterations
take O(k(t2θ + log nQ1)). Thus, the online step takes O(n +
log n + nQt2θ + nQ log nQ + k(t2θ + log nQ1)) which can be
simplified asO((k+nQ)t2θ+n+nQ log nQ). Overall, the total

VOLUME 7, 2019 27281



W. Zhu et al.: LSS-IBM in Social Networks

TABLE 3. Statistics of the real-world networks.

time complexity of IS-LSS+ is O((k + nQ)t2θ + (n+ ncn1)tθ
+nQ log nQ + ncn1 log n1).

For space complexity, the construction of the Quadtree
takesO(n+4n/c). ConstructingMIA structures takesO(nmθ ).
For each LCi , we need to insert n1 nodes, which
takes O(n1). For LC0 , we need to insert nQ nodes, which
takes O(nQ). Thus, the space complexity of cell lists is
O(nQ + ncn1). Constructing max-heap takes O(nQ). Overall,
the total space complexity of IS-LSS + is O(nmθ + ncn1).

VII. EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency
of our proposed algorithms on three real-world datasets.
All of the experiments are implemented in C++ and con-
ducted on a Linux server with 1400MHz AMDOpteron(TM)
Processor 6320 and 16G memory.

A. EXPERIMENTAL SETUP
1) DATASETS
We use the following three real-world datasets in our
experiments.
• Ego-Facebook: Ego-Facebook is a small social graph
derived from Facebook app. In Ego-Facebook, every
node corresponds to a user and the edges between users
correspond to friendly relations. This dataset is used for
experiments compared with the greedy algorithm.

• Brightkite: Brightkite was once a location-based social
networking service provider where users shared their
locations by checking-in. The Brightkite dataset was
collected using their public API.

• Gowalla: Gowalla is a social networking website where
users share their locations by checking-in. The Gowalla
dataset was collected using their public API.

All of the datasets can be downloaded from website
http://snap.stanford.edu/data. The user location is the place
the user most frequently check in. All of the datasets are undi-
rected graphs and some basic statistics are given in Table 3.

2) EVALUATED ALGORITHMS AND METRICS
We compare the performance of the following algorithms.
• IS-LSS and IS-LSS+: Our algorithms with θ = 0.01.
• Greedy: Algorithm 1 in our work with the lazy-forward
optimization of [19], and we run 10000 simulations to
obtain an accurate estimate.

• Random: A heuristic algorithm, simply selecting nodes
in the query region at random as positive seeds.

TABLE 4. Index sizes and time on Gowalla (MB).

• Degree: A heuristic algorithm, simply selecting top-k
nodes located in the query region with largest degrees
as positive seeds.

• Degree Discount (DD): A heuristic algorithm proposed
in [43] with a propagation probability of 0.01, selecting
top-k nodes located in the query region.

• Proximity: A heuristic algorithm proposed in [5], select-
ing the direct out-neighbors of negative seeds as positive
seeds to block the negative influence.

We evaluate the efficiency in terms of running time and utilize
region-constrained blocked negative influence to evaluate the
effectiveness of these algorithms.

3) SETTINGS
We utilize the weighted cascade model [1] to generate
influence propagation probability for each edge. In this
model, we set pu,v = 1/d(v), where d(v) is the in-degree
of v.

We select 50 nodes with the largest degree as negative
seeds. For the positive seed set size, we vary k from 0 to 200
and take 200 as the default value. For Quadtree, the cell’s
capacity is set to 200. For the region size, we range the
number of nodes in the given region from 1000 to 5000 and
take 3000 as the default value. One important issue is how
to generate the query region and the block region with the
given region number. To achieve this, we randomly generate a
bounding center (x, y), and enlarge xlim and ylim step by step,
once the number of nodes located in the generated region is
larger than the expected number, we return the corresponding
[(x, y), (xlim, ylim)] as the result.

Since the homogeneous CIC model is a probabilistic
model, when we evaluate the negatively activated nodes in
a given query region for any negative and positive seed sets,
we run the propagation simulation 1000 times and take their
average as the result.

4) INDEX SIZES AND OFFLINE TIME
Due to limited space, we only report index sizes and offline
time on Gowalla dataset. The details are shown in Table 4.
All algorithms utilize Quadtree and the MIA structure.
IS-LSS + uses cell index L to improve efficiency. To sup-
port efficient queries, we preconstruct these structures in the
offline step and we only report the running time of the online
step in our following experiments.

27282 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

FIGURE 5. Results with the greedy algorithm on Ego-Facebook network.

B. RESULTS WITH THE GREEDY ALGORITHM
Since the greedy algorithm runs slowly in large networks,
we run experiments on Ego-Facebook dataset to include the
comparison with the greedy algorithm. For the reason that
nodes in Ego-Facebook have no location information, we use
the location of nodes in Brightkite as the location of nodes
in Ego-Facebook. The query region and the block region are
set to contain all nodes in the network. We select 50 nodes
with highest degrees as negative seeds and vary positive seeds
from 0 to 400 to block the negative influence. The results are
shown in Fig. 5.

From Fig. 5 (a), we see that the blocked negative influence
increases gradually with the increase in the number of pos-
itive seeds. Proximity performs better than Degree, DD and
Random. Among all of the algorithms, our algorithms have
the best performance in effectiveness except the theoretically
optimal greedy algorithm. When the size of the positive seed
set is small, the blocking effect of our algorithms is slightly
worse than that of the greedy algorithm. However, with the
increase in the size of the positive seed set, the blocking
effect of our algorithms is more and more close to that of the
greedy algorithm, e.g., our algorithms achieve 45% blocking
effect of the greedy algorithm when the number of positive

FIGURE 6. Varyingk on Brightkite network.

seeds is 80 and up to more than 80% blocking effect of the
greedy algorithm when the number of positive seeds is 400.
Although the greedy algorithm has the best blocking effect
in all algorithms, from Fig. 5 (b), we see that the greedy
algorithm takes more than 49 hours to select 400 positive
seeds. In contrast, IS-LSS takes 34.4 seconds and IS-LSS +
only takes 5.36 seconds for selecting 400 positive seeds.
That is to say, our algorithms are more than four orders of
magnitude faster than the greedy algorithm.

C. RESULTS WITH THE QUERY REGION EQUALS TO THE
BLOCK REGION
In this section, to evaluate the performance of our algorithms,
we first let RB

= RQ
= R, which means selecting the opti-

mal positive seeds located in R to block the negative influ-
ence propagation inR. This is a typical application for rumor
control and viral marketing. Then, we generate the query
region and block region based on the method mentioned
above and set bounding centers to (1.0, 20.0) and (26.0, 43.0)
for Gowalla and Brightkite datasets respectively. Since the
greedy algorithm cannot return results within 48 hours
on Brightkite dataset, it is not included in the following
experiments.

1) VARYING K
We evaluate different methods by varying positive seeds from
0 to 200. Fig. 6 shows the results on Brightkite dataset and
Fig. 7 shows the results on Gowalla dataset. From Fig. 6 (a)
and Fig. 7 (a), we have the following observations. First,
with the increase of positive seeds, the blocking effect of all
algorithms performs better and better except the Proximity.
This is because Proximity selects the direct out-neighbors
of negative seeds as positive seeds, when these seeds are
far from the block region, they may have no blocking effect
at all. Second, Degree and DD have similar blocking effect
and perform better than Random because they both select
nodes with the largest degrees as positive seeds in the query
region. Third, we see that when the positive seed set size
is smaller than 80, the blocking effect of our algorithms
is smaller than that of the degree-based algorithms. This is
because that our algorithms use local-basedMIA structures to
select optimal seeds, while Degree and DD use global-based
degrees to select optimal seeds. When the size of the positive
seed set is small, the seeds selected by global-based Degree

VOLUME 7, 2019 27283



W. Zhu et al.: LSS-IBM in Social Networks

FIGURE 7. Varyingk on Gowalla network.

FIGURE 8. Varying region size on Brightkite network.

FIGURE 9. Varying region size on Gowalla network.

and DDmay have better blocking effect than that of the seeds
selected by our local-based algorithms. However, with the
increase in the number of positive seeds, the blocking effect
of our algorithms performs better and better than Degree
and DD.

Fig. 6 (b) and Fig. 7 (b), we see that with the increase
of positive seed set size, the running time of our algorithms
increases on both datasets, because the more seeds there
are, the more time to calculate the blocked negative influ-
ence. However, IS-LSS+ significantly improves the effi-
ciency of IS-LSS, e.g., IS-LSS+ only takes 35% and 71%
running time of IS-LSS to select 200 positive seeds on
Brightkite and Gowalla datasets respectively. This is because
IS-LSS+ uses the upper bound method and cell lists to
eliminate many insignificant candidates with small blocked
negative influence.

2) VARYING REGION SIZE
We evaluate different methods by varying the region size
from 1000 to 500 to find 200 positive seeds to block the
negative influence. The results are shown in Fig. 8 and Fig. 9.
We observe that IS-LSS gives the best performance in

FIGURE 10. Varying negative seeds on Brightkite network.

effectiveness in all datasets. IS-LSS+ performs slightly
poorer than IS-LSS in effectiveness because it utilizes the
upper bound method to eliminate many candidates with small
blocked negative influence. This method may cause some
real candidates not be selected as positive seeds. However,
IS-LSS+ still outperforms the closest Degree 25% and 10%
in Gowalla and Brightkite datasets respectively. Random per-
forms poorly because it does not consider the structure of the
network. Proximity still has the worst performance for the
reason mentioned above.

For efficiency, we observe that the running time of IS-LSS
increases with the increase in region size. This is because that
IS-LSS takes all of the nodes in the query region as candidates
and recomputes the blocked negative influence for all candi-
dates that have co-influence with the current seed. In contrast,
IS-LSS+ is more robust to the region size, e.g., when the
region expanded from 3000 to 5000 in Gowalla network,
the running time of IS-LSS+ reduces from 0.82 to 0.44. The
reason is that IS-LSS+ is based on cell lists and utilizes
the upper bound method to select optimal seeds. With the
expansion of the region, new candidates are pushed into cell
lists and the computation cost of these new candidates is less
than that of the old candidates.

3) VARYING NEGATIVE SEEDS
We conduct experiments by varying the number of neg-
ative seeds from 10 to 90 to find 200 positive seeds to
block the negative influence. Experiment results are shown
in Fig. 10 and Fig. 11. We have the following observa-
tions. First, our algorithms have the best blocking effect
in all of the algorithms. ISS-LSS performs better than IS-
LSS+ in terms of effectiveness, while it performs worse than
IS-LSS+ in terms of efficiency for the reason mentioned
above. Second, with the increase in the number of negative
seeds, the increase in the blocked negative influence becomes
smaller and smaller. The reason is that more negative seeds
have more paths to propagate negative influence, once we
block the influence propagation of negative seeds from one
path, the negative seeds would choose another path to forward
influence again. Last, the increase in the number of negative
seeds has little effect on the running time of our algorithms.
This is because that the query region and the block region are
unchanged, and we still calculate the blocked influence in the
original region.

27284 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

FIGURE 11. Varying negative seeds on Gowalla network.

FIGURE 12. Varying query region size on Brightkite network.

D. RESULTS WITH THE QUERY REGION NOT EQUALS TO
THE BLOCK REGION
In this section, we test the efficiency and effectiveness of our
algorithms whenRB

6= RQ. A natural method is to randomly
generate a query region and a block query. However, we find
thismethod is useless in practice. This is because that nodes in
randomly generated regions have little connections, so there
is almost no blocking effects. To solve this, we set the two
regions have the same bounding center and one region is
covered by the other. We use the same bounding centers as
previous experiments.

1) VARYING QUERY REGION SIZE
In this set of experiments, we evaluate different methods by
varying the size of the query region from 1000 to 5000 to find
200 positive seeds to block the negative influence. The size
of the block region is set to 5000. Fig. 12 and Fig. 13 show
the results on Brightkite and Gowalla datasets respectively.

The observations are as follows. First, different query
regions can cause different positive seeds selection results.
With the increase in the region size, we can select more
influential nodes to block the negative influence. Therefore,
the blocked negative influence of our algorithms increases.
Second, again, IS-LSS has the best performance in all
datasets. Degree and DD algorithms perform well because
as the size of query region increases, they also choose more
influential nodes with largest degrees. Radom does not con-
sider the effect of different regions on seeds selection, when
the query region size increases, the blocking effect of Random
may decrease, e.g., when the query region expands from
4000 to 5000, the blocked negative influence of Random
decreases from 51.2 to 43.9 in Fig. 12 (a). The main reason is
that Random may choose new seeds in the enlarged region
whose blocking effect is worse than that of the old seeds.

FIGURE 13. Varying query region size on Gowalla network.

FIGURE 14. Varying block region size on Brightkite network.

FIGURE 15. Varying block region size on Gowalla network.

Third, the performance of IS-LSS+ is still better than that
of IS-LSS in terms of efficiency, and it is more robust to the
region size for the reason mentioned above.

2) VARYING BLOCK REGION SIZE
In this set of experiments, to valuate different methods,
we vary the size of the block region from 1000 to 5000 to find
200 positive seeds to block the negative influence. We set the
size of the query region to 5000. Fig. 14 shows the result on
Brightkite dataset and Fig. 15 shows the result on Gowalla
dataset respectively.

From the figures, we observe that our algorithms also
perform better than other algorithms. We also see that with
the increase in the block region size, the blocking effect
of degree-based algorithms is getting closer and closer to
our algorithms. The reason is that our algorithms use the
local-basedMIA structure to compute blocked negative influ-
ence and select the best seeds, these locally optimal seeds
may not be the globally optimal seeds as the size of the
region becomes larger and larger. Another interesting obser-
vation is in Fig. 15 (b), we find that the running time of
IS-LSS does not always increase, e.g., the running time of
IS-LSS decreases from 1.47 to 1.23 when the size of the block
region increases from 3000 to 4000. Our interpretation is that

VOLUME 7, 2019 27285



W. Zhu et al.: LSS-IBM in Social Networks

when the size of the block region increases, we can find new
candidates which have relations with the nodes located in the
expanded block region, and the computation cost of these new
candidates is less than that of the old candidates.

VIII. CONCLUSION
In this paper, we study location-based seeds selection for
influence blocking maximization under competitive social
networks. We formally define the LSSIBM problem and
prove that the LSSIBM problem is NP-hard and the influence
function is monotone and submodular. To improve the low
efficiency of the greedy algorithm, we formally define the
influence set and region-constrained influence set based on
the MIA structure. Then, we propose the IS-LSS algorithm.
The algorithm utilizes Quadtree to store location information
of nodes, and computes the blocked negative influence of
candidates based on the region-constrained influence set and
a dynamic programming method. In IS-LSS, many insignif-
icant candidates are computed when updating the blocked
negative influence of candidates which have co-influence
with the current seed. To improve the efficiency of IS-LSS,
we devise IS-LSS + to eliminate insignificant candidates.
IS-LSS+ estimates the upper bound of the influence of nodes
by using Quadtree cell lists and only computes the blocked
negative influence of candidates which are added to the max-
heap by the upper bound method. Experimental results show
that our algorithms are four orders of magnitude faster than
the greedy algorithm and often have a better blocking effect
than many other baseline algorithms.

REFERENCES
[1] D. Kempe, J. Kleinberg, and É. Tardos, ‘‘Maximizing the spread of influ-

ence through a social network,’’ in Proc. 9th ACM SIGKDD Int. Conf.
Knowl. Discovery DataMining (KDD),Washington, DC, USA,Aug. 2003,
pp. 137–146.

[2] H. T. Nguyen, M. T. Thai, and T. N. Dinh, ‘‘A billion-scale approximation
algorithm for maximizing benefit in viral marketing,’’ IEEE/ACM Trans.
Netw., vol. 25, no. 4, pp. 2419–2429, Aug. 2017.

[3] C. Budak, D. Agrawal, and A. El Abbadi, ‘‘Limiting the spread of misin-
formation in social networks,’’ presented at the 20th Int. Conf. WorldWide
Web, Hyderabad, India, 2011.

[4] B. Guler, K. Tutuncuoglu, and A. Yener, ‘‘Maximizing recommender’s
influence in a social network: An information theoretic perspec-
tive,’’ in Proc. IEEE Inf. Theory Workshop-Fall (Itw), Oct. 2015,
pp. 262–266.

[5] X. He, G. Song, W. Chen, and Q. Jiang, ‘‘Influence blocking maximization
in social networks under the competitive linear threshold model,’’ in Proc.
SIAM Int. Conf. Data Mining, 2012, pp. 463–474.

[6] P. Wu and L. Pan, ‘‘Scalable influence blocking maximization in social
networks under competitive independent cascade models,’’Comput. Netw.,
vol. 123, pp. 38–50, Aug. 2017.

[7] C. Song, W. Hsu, and M. L. Lee, ‘‘Temporal influence blocking: Minimiz-
ing the effect of misinformation in social networks,’’ in Proc. IEEE 33rd
Int. Conf. Data Eng. (ICDE), Apr. 2017, pp. 847–858.

[8] W. Zhu,W. Yang, S. Xuan, D.Man,W.Wang, and X. Du, ‘‘Location-aware
influence blocking maximization in social networks,’’ IEEE Access, vol. 6,
pp. 61462–61477, 2018.

[9] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, ‘‘An analysis of approx-
imations for maximizing submodular set functions-I,’’ Math. Programm.,
vol. 14, no. 1, pp. 265–294, Dec. 1978.

[10] L. V. S. Lakshmanan, C. Castillo, and W. Chen, Information and Influence
Propagation in Social Networks. San Rafael, CA, USA: Morgan & Clay-
pool, 2013, p. 177.

[11] W. Chen, C. Wang, and Y. Wang, ‘‘Scalable influence maximization for
prevalent viral marketing in large-scale social networks,’’ presented at the
16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Washing-
ton, DC, USA, 2010.

[12] Y. Xiao, X. Du, J. Zhang, and S. Guizani, ‘‘Internet protocol television
(IPTV): The killer application for the next generation Internet,’’ IEEE
Commun. Mag., vol. 45, no. 11, pp. 126–134, Nov. 2007.

[13] X. Du, M. Guizani, Y. Xiao, and H.-H. Chen, ‘‘A routing-driven ellip-
tic curve cryptography based key management scheme for heteroge-
neous sensor networks,’’ IEEE Trans. Wireless Commun., vol. 8, no. 3,
pp. 1223–1229, Mar. 2009.

[14] X. Du, Y. Xiao, M. Guizani, and H.-H. Chen, ‘‘An effective key manage-
ment scheme for heterogeneous sensor networks,’’ Ad Hoc Netw., vol. 5,
no. 1, pp. 24–34, Jan. 2007.

[15] P. Domingos and M. Richardson, ‘‘Mining the network value of cus-
tomers,’’ presented at the 7th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, San Francisco, CA, USA, 2001.

[16] M. Richardson and P. Domingos, ‘‘Mining knowledge-sharing sites for
viral marketing,’’ presented at the 8th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Edmonton, AB, Canada, 2002.

[17] W. Chen, Y. Yuan, and L. Zhang, ‘‘Scalable influence maximization in
social networks under the linear threshold model,’’ presented at the IEEE
Int. Conf. Data Mining, Dec. 2010.

[18] C. Wang, W. Chen, and Y. Wang, ‘‘Scalable influence maximization for
independent cascade model in large-scale social networks,’’ Data Mining
Knowl. Discovery, vol. 25, no. 3, pp. 545–576, Nov. 2012.

[19] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, ‘‘Cost-effective outbreak detection in networks,’’ presented
at the 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Jose, CA, USA, 2007.

[20] A. Goyal, W. Lu, and L. V. S. Lakshmanan, ‘‘CELF++: Optimizing
the greedy algorithm for influence maximization in social networks,’’
presented at the 20th Int. Conf. Companion World Wide Web, Hyderabad,
India, 2011.

[21] R. S. Melo and A. L. Vignatti, ‘‘A preselection algorithm for the influence
maximization problem in power law graphs,’’ presented at the 33rd Annu.
ACM Symp. Appl. Comput., Pau, France, 2018.

[22] K. Jung, W. Heo, and W. Chen, ‘‘IRIE: Scalable and robust influence
maximization in social networks,’’ in Proc. 12th IEEE Int. Conf. Data
Mining, Dec. 2012, pp. 918–923.

[23] A. Goyal, W. Lu, and L. V. S. Lakshmanan, ‘‘SIMPATH: An efficient
algorithm for influence maximization under the linear threshold model,’’
in Proc. IEEE 11th Int. Conf. Data Mining, Dec. 2011, pp. 211–220.

[24] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng, ‘‘IMRank: Influ-
ence maximization via finding self-consistent ranking,’’ presented at the
37th Int. ACM SIGIR Conf. Res., Develop. Inf. Retr., Gold Coast, QLD,
Australia, 2014.

[25] S. Galhotra, A. Arora, and S. Roy, ‘‘Holistic influencemaximization: Com-
bining scalability and efficiency with opinion-aware models,’’ presented at
the Int. Conf. Manage. Data, San Francisco, CA, USA, 2016.

[26] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, ‘‘Maximizing social
influence in nearly optimal time,’’ presented at the 25th Annu. ACM-SIAM
Symp. Discrete Algorithms, Portland, OR, USA, 2014.

[27] Y. Tang, X. Xiao, and Y. Shi, ‘‘Influence maximization: Near-optimal time
complexity meets practical efficiency,’’ presented at the ACM SIGMOD
Int. Conf. Manage. Data, Snowbird, UH, USA, 2014.

[28] G. Tong, W. Wu, S. Tang, and D. Du, ‘‘Adaptive influence maximization
in dynamic social networks,’’ IEEE/ACM Trans. Netw., vol. 25, no. 1,
pp. 112–125, Feb. 2017.

[29] H. T. Nguyen, M. T. Thai, and T. N. Dinh, ‘‘Stop-and-stare: Optimal sam-
pling algorithms for viral marketing in billion-scale networks,’’ presented
at the Int. Conf. Manage. Data, San Francisco, CA, USA, 2016.

[30] H. T. Nguyen, T. P. Nguyen, N. Phan, and T. N. Dinh, ‘‘Importance
sketching of influence dynamics in billion-scale networks,’’ in Proc. IEEE
Int. Conf. Data Mining (ICDM), Nov. 2017, pp. 337–346.

[31] N. Ohsaka, T. Sonobe, S. Fujita, and K.-I. Kawarabayashi, ‘‘Coarsening
massive influence networks for scalable diffusion analysis,’’ in Proc. ACM
Int. Conf. Manage. Data, 2017, pp. 635–650.

[32] D. Popova, N. Ohsaka, K.-I. Kawarabayashi, and A. Thomo, ‘‘NoSingles:
A space-efficient algorithm for influence maximization,’’ presented at the
30th Int. Conf. Sci. Stat. Database Manage., Bozen-Bolzano, Italy, 2018.

[33] G. Li, S. Chen, J. Feng, K.-L. Tan, and W.-S. Li, ‘‘Efficient location-aware
influence maximization,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Snowbird, UT, USA, 2014, pp. 87–98.

27286 VOLUME 7, 2019



W. Zhu et al.: LSS-IBM in Social Networks

[34] T. Zhou, J. Cao, B. Liu, S. Xu, Z. Zhu, and J. Luo, ‘‘Location-based
influence maximization in social networks,’’ presented at the 24th ACM
Int. Conf. Inf. Knowl. Manage., Melbourne, VIC, Australia, 2015.

[35] X. Y. Wang, Y. Zhang, W. J. Zhang, and X. M. Lin, ‘‘Distance-aware
influence maximization in geo-social network,’’ in Proc. 32nd IEEE Int.
Conf. Data Eng., May 2016, pp. 1–12.

[36] X. Li, X. Cheng, S. Su, and C. Sun, ‘‘Community-based seeds selection
algorithm for location aware influence maximization,’’ Neurocomputing,
vol. 275, pp. 1601–1613, Jan. 2018.

[37] S. Su, X. Li, X. Cheng, and C. Sun, ‘‘Location-aware targeted influence
maximization in social networks,’’ J. Assoc. Inf. Sci. Technol., vol. 69, no. 2,
pp. 229–241, 2018.

[38] W.-Y. Zhu, W.-C. Peng, L.-J. Chen, K. Zheng, and X. Zhou, ‘‘Modeling
user mobility for location promotion in location-based social networks,’’
presented at the 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Sydney, NSW, Australia, 2015.

[39] S. Bharathi, D. Kempe, and M. Salek, ‘‘Competitive influence maximiza-
tion in social networks,’’ presented at the 3rd Int. Conf. Internet Netw.
Econ., San Diego, CA, USA, 2007.

[40] T. Carnes, C. Nagarajan, S.M.Wild, and A. V. Zuylen, ‘‘Maximizing influ-
ence in a competitive social network: A follower’s perspective,’’ presented
at the 9th Int. Conf. Electron. Commerce, Minneapolis, MN, USA, 2007.

[41] A. Borodin, Y. Filmus, and J. Oren, ‘‘Threshold models for competitive
influence in social networks,’’ in Internet and Network Economics. Berlin,
Germany: Springer, 2010, pp. 539–550.

[42] J. Lv, B. Yang, Z. Yang, and W. Zhang, ‘‘A community-based algorithm
for influence blockingmaximization in social networks,’’Cluster Comput.,
vol. 17, no. 1, pp. 1–16, Nov. 2017.

[43] W. Chen, Y. Wang, and S. Yang, ‘‘Efficient influence maximization in
social networks,’’ presented at the 15th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Paris, France, 2009.

WENLONG ZHU received the M.E. degree from
the Department of Computer Science and Tech-
nology, Harbin Engineering University, Harbin,
China, in 2010, where he is currently pursuing the
Ph.D. degree. His main research interests include
social networks and data mining.

WU YANG received the Ph.D. degree in computer
system architecture from the Computer Science
and Technology School, Harbin Institute of Tech-
nology. He is currently a Professor and a Doctoral
Supervisor with Harbin Engineering University.
His main research interests include wireless sensor
networks, peer-to-peer networks, and information
security. He is a member of ACM and a Senior
Member of CCF.

SHICHANG XUAN received the Ph.D. degree
in computer science and technology from Harbin
Engineering University, in 2017, where he is cur-
rently a Lecturer. His main research interests
include social networks and information security.

DAPENG MAN received the Ph.D. degree in com-
puter science and technology from Harbin Engi-
neering University, in 2009, where he is currently
an Assistant Professor. His main research inter-
ests include wireless sensor networks and mobile
computing.

WEI WANG received the Ph.D. degree in com-
puter system architecture from the Computer Sci-
ence and Technology School, Harbin Institute
of Technology. He is currently a Professor with
Harbin Engineering University. His main research
interests include social networks and information
security. He is a member of CCF.

XIAOJIANG DU (SM’09) received the B.S.
and M.S. degrees in electrical engineering from
Tsinghua University, China, in 1996 and 1998,
respectively, and the Ph.D. degree in electri-
cal engineering from the University of Maryland
at College Park, in 2003. He is currently a
Professor with the Department of Computer
and Information Sciences, Temple University,
Philadelphia, USA. His research interests include
security, wireless networks, and systems. He has

authored over 240 journal and conference papers in these areas. He is a Life
Member of ACM.

MOHSEN GUIZANI (S’85–M’89–SM’99–F’09)
received the bachelor’s (Hons.) and master’s
degrees in electrical engineering and the mas-
ter’s and Ph.D. degrees in computer engineering
from Syracuse University, Syracuse, NY, USA,
in 1984, 1986, 1987, and 1990, respectively. He
served as the Associate Vice President of Graduate
Studies with Qatar University, the Chair of the
Computer Science Department, Western Michigan
University, and the Chair of the Computer Science

Department, University of West Florida. He also served in academic posi-
tions at the University of Missouri-Kansas City, the University of Colorado
at Boulder, Syracuse University, and Kuwait University. He is currently a
Professor and the ECE Department Chair with the University of Idaho. His
research interests include wireless communications and mobile computing,
computer networks, mobile cloud computing, security, and smart grid.

VOLUME 7, 2019 27287


	INTRODUCTION
	RELATED WORK
	TRADITIONAL INFLUENCE MAXIMIZATION
	LOCATION-AWARE INFLUENCE MAXIMIZATION
	INFLUENCE BLOCKING MAXIMIZATION

	PRELIMINARIES
	PROPAGATION MODEL
	THE MIA STRUCTURE
	INFLUENCE BLOCKING MAXIMIZATION

	LSSIBM PROBLEM AND THE GREEDY ALGORITHM
	IS-LSS ALGORITHM
	THE QUADTREE STRUCTURE
	THE INFLUENCE SET
	INFLUENCE SET BASED ALGORITHM
	COMPLEXITY ANALYSIS

	IS-LSS+ ALGORITHM
	CELL INDEX AND CELL LISTS
	IMPROVED ALGORITHM
	SELECTING THE FIRST SEED
	SELECTING OTHER SEEDS

	COMPLEXITY ANALYSIS

	EXPERIMENTS
	EXPERIMENTAL SETUP
	DATASETS
	EVALUATED ALGORITHMS AND METRICS
	SETTINGS
	INDEX SIZES AND OFFLINE TIME

	RESULTS WITH THE GREEDY ALGORITHM
	RESULTS WITH THE QUERY REGION EQUALS TO THE BLOCK REGION
	VARYING K
	VARYING REGION SIZE
	VARYING NEGATIVE SEEDS

	RESULTS WITH THE QUERY REGION NOT EQUALS TO THE BLOCK REGION
	VARYING QUERY REGION SIZE
	VARYING BLOCK REGION SIZE


	CONCLUSION
	REFERENCES
	Biographies
	WENLONG ZHU
	WU YANG
	SHICHANG XUAN
	DAPENG MAN
	WEI WANG
	XIAOJIANG DU
	MOHSEN GUIZANI


