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Abstract— This paper proposes a Bayesian approach for angle-
based hybrid beamforming and tracking that is robust to
uncertain or erroneous direction-of-arrival (DOA) estimation
in millimeter wave (mmWave) multiple input multiple output
(MIMO) systems. Because the resolution of the phase shifters
is finite and typically adjustable through a digital control,
the DOA can be modeled as a discrete random variable with
a prior distribution defined over a discrete set of candidate
DOAs, and the variance of this distribution can be introduced
to describe the level of uncertainty. The estimation problem of
DOA is thereby formulated as a weighted sum of previously
observed DOA values, where the weights are chosen according
to a posteriori probability density function (pdf) of the DOA.
To alleviate the computational complexity and cost, we present
a motion trajectory-constrained a priori probability approxima-
tion method. It suggests that within a specific spatial region,
a directional estimate can be close to true DOA with a high
probability and sufficient to ensure trustworthiness. We show
that the proposed approach has the advantage of robustness to
uncertain DOA, and the beam tracking problem can be solved
by incorporating the Bayesian approach with an expectation-
maximization (EM) algorithm. Simulation results validate the
theoretical analysis and demonstrate that the proposed solution
outperforms a number of state-of-the-art benchmarks.
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I. INTRODUCTION

M ILLIMETER wave (mmWave) systems offer a promis-
ing solution, through which high data rates (Giga-bit)

can be achieved in next-generation mobile communication
networks [1]–[5]. To significantly alleviate the destructive
effects of path loss of mmWave links, highly directional
beamforming at both the transmitter and receiver are required.
Meanwhile, the shorter wavelength associated with the higher
frequency also enables massive antenna arrays to contain more
elements within the same physical dimension, and large-scale
antenna arrays, as well as various multiple input multiple
output (MIMO) configurations, provide a high antenna array
gain and spectral efficiency for mmWave communications [4].
Mobile mmWave communication systems will likely operate
over wideband channels with frequency selectivity. Never-
theless, orthogonal frequency-division multiplexing (OFDM)
modulation can be employed to effectively combat the chan-
nel’s frequency selectivity. It divides the wideband signal
into many slowly modulated narrowband subcarriers, and the
subchannel can be approximated as flat fading within each
subcarrier’s passband. It is worth noting that in the mmWave
bands such as above 28 GHz, the main lobe created by
directional beamforming has a narrower beamwidth, and high-
gain narrow-beam, boosting the strength of certain paths,
is essential to mitigate the high path loss. This is very different
from the bands below 3 GHz and/or the bands between 3 GHz
and 6 GHz (Sub-6) with a beam of broadening, which is
prone to providing more flexible beam tracking. However,
narrow mmWave beams must be precisely aligned to afford
a feasible transmission link margin. To maintain high-quality
transmission links, an efficient approach for beam training
and tracking is crucial to determine suitable directions of
transmission and reception [6], [7].

To mitigate severe propagation loss in the mmWave band,
many recent studies have demonstrated that the hybrid analog/
digital beamformer is a cost-effective alternative. Typically,
mmWave communication systems that incorporate a hybrid
beamforming architecture, is constructed by concatenation of
a digital baseband (BB) precoder and an analog beamformer.
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The baseband digital part of the hybrid architecture is designed
for modifying the data streams, multiplexing as well as reduc-
ing the inter-stream interference, and the RF analog part is
designed for the spatial focusing gain to compensate/cover up
for the higher propagation losses. As a result, it is normally
able to achieve significant beamforming gains and synthesize
a highly directional beam, as well as to boost spectral effi-
ciency and transmission rates [8]–[15]. Since the emergence of
large-scale antenna arrays and analog beamforming, methods
for designing a hybrid precoder and combiner have been a
research focus with problems in the physical layer or with
signal processing aspects, as reported in [3], [15].

In [3], channel estimation and hybrid analog/digital precod-
ing algorithms were proposed to enable multi-stream multi-
plexing in mmWave systems, with which the authors designed
an adaptive compressed sensing (CS)-based channel estimation
algorithm as well as a multi-resolution codebook for the
training precoder. It is also shown in [15]–[19] that the
design of a hierarchical multi-resolution codebook is critical
when seeking to improve data rate, including tracking the
direction of a mmWave path. Some studies focus on the use
of low-complexity hybrid beamforming schemes to achieve
the optimal channel capacity, assuming that perfect channel
knowledge is available at the receiver. However, such an
idealistic assumption rarely holds in practice [4]. In particular,
for very high bandwidth channels, high-precision analog-to-
digital converters (ADCs) are too costly and power-hungry,
whereas low-resolution (e.g., 1-bit) ADCs offer a realistic
solution due to its low power consumption and low hardware
complexity. However, because of the nonlinearity of quanti-
zation, channel estimation with these low-resolution ADCs
becomes challenging [20].

Most of the hybrid beamforming schemes require full
channel state information (CSI), which includes the estima-
tion of the directions of dominant propagation paths. These
directions can be further used to identify important paths
for transmission and reception [4], [14], [21]. Due to the
spatial sparsity and high directional property of mmWave
channels [22], [23], a typical mmWave channel is dominated
by a few paths. Implementation of large-scale antenna arrays
will lead to a much better resolvability of multiple paths
[10], [23]. Accordingly, the problem of mmWave channel
estimation and beamforming can be naturally formulated by
the angular and delay representation of the channel and can
thus be simplified as a straightforward approach to estimate
the dominant direction of arrival (DOA) and the corresponding
path gains of larger power [10], [11], [20], [24]–[26]. In these
studies, the spatial channel is generally decomposed according
to the DOA information and the corresponding complex path
coefficients. As a result,1 the angles-of-arrival (AOAs) θ
and angles-of-departure (AODs) φ can be estimated using a
traditional beam training procedure [3], [25].

1Strictly speaking, DOA and AOA are the same measurement, which can
be used for various purposes. The Tx-Rx beam pairs are generally specified
as AOD and AOA of the desired path in the angular space, while DOA can be
a better choice to emphasize the direction of the incident wave with respect
to the receiver.

In the mobile mmWave channel, as a result of user
mobility—especially in high-mobility applications, such as
in connected vehicles, uncertain DOAs are directly reflected
into the received signal. Accordingly, when using mmWave
systems for highly directional communications, even a slight
beam misalignment between two communicating devices can
lead to a significant signal drop [7], [8], [11], [12]. To address
this issue, many Bayesian frameworks for adaptive and blind
beamforming algorithms have been developed to combat the
DOA uncertainty, where the DOA is modeled as a random
variable with a prior distribution defined over a candidate set
that describes the level of uncertainty, in accordance with a
quantitative or parametric description of uncertainty [16], [17],
[26]–[32]. Most recently, Tiwari et al. introduced the concept
of beam entropy that is used to quantify sparse MIMO channel
randomness in beamspace, and investigated the quantitative
description of channel randomness as well as the typical values
of beam entropy [33]. Classical direction learning techniques,
such as MUSIC [34] and ESPRIT [35], diagonal loading, lin-
early constrained minimum variance (LCMV), and covariance
matrix taper methods have been used to enhance the DOA
robustness [28], [30]. When using directional beamforming
in the context of mobile communications, an efficient channel
tracking scheme for mmWave systems relies on DOA accuracy
and steering vector estimation to identify the direction of
the dominant paths and capture the angle variations [36].
It is noticeable that there has been also considerable research
interest in static mmWave scenarios, where beamforming also
plays a key role in order to enable long-time sustained high-
capacity links [37]–[39].

In this paper, we investigate the robust beamforming for
mobile mmWave channel tracking in a downlink MIMO-
OFDM system with low-resolution ADCs. We propose a
Bayesian-based parameter estimation method to mitigate the
performance degradation subject to the DOA uncertainty.
Since the resolution of the phase shifter is limited, the phase
shifts corresponding to DOA actually change the steering
direction by a discrete number of steps [8], [16]. Taking this
factor into consideration, the DOA parameter at each time
instant can be approximately modeled as a discrete random
variable. With our proposed Bayesian framework, a statistical
inference approach is formulated to address the uncertainty
of DOA estimation. The main contributions of this paper are
summarized as follows:

• We formulate the Bayesian framework to provide a statis-
tical inference method that mitigates the DOA mismatch
problem. The indeterminate DOA is modeled as a set
of random variables with a known a priori probability
density function (pdf). Accordingly, the final DOA esti-
mate can be determined by a weighted sum of DOA
values, where the weights are obtained by means of
a posteriori estimator, that is, a maximum a posteriori
probability (MAP) estimator. Compared to the methods
in the existing literature, our method is robust to uncertain
DOA and has a higher estimation accuracy.

• By exploiting the characteristics of the motion trajectory
of a reference receiver, we propose an approximation
method using a priori probability. The advantage of this
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Fig. 1. A downlink mmWave MIMO-OFDM system with hybrid beamforming architecture.

method is that the calculation of a posteriori probability
only needs to be performed within a range where the
actual DOA occurrence probability is high. Therefore,
it is not necessary to calculate the posterior probability of
all DOA candidate combinations in the DOA parameter
space. This results in a significant reduction in degree
of freedom and computational complexity. Simulation
results show that the proposed method demonstrates a
higher parameter estimation accuracy.

• We propose and implement an effective beam tracking
algorithm with limited feedback that uses a Bayesian
model with the MAP estimation criterion. Considering
the need for hyperparameter estimation in the Bayesian
framework, we develop an iterative hyperparameter esti-
mation approach, where a posteriori DOA mean and
covariance can be estimated to provide high-quality
CSI by incorporating the Bayesian approach with the
estimation-maximization (EM) algorithm.

• From the view of implementation in the frequency
domain, we establish a wideband DOA signal detection
model corresponding to the beamforming processing and
channel tracking. The proposed model introduced herein
can be easily extended to multi-user MIMO-OFDM
systems.

The rest of the paper is organized in the following.
In Section II, we present the system and signal transmission
models, as well as the channel model. Section III expati-
ates on the problem statement and discusses key technical
considerations. In Section IV, we mathematically formulate
the Bayesian beamformer and introduce the beam tracking
method. Sections V and VI present simulation results and
conclusions of this work, respectively.

Notations: Throughout this paper, small normal letters are
used for scalars; lower-case boldface x and upper-case bold-
face X denote vectors and matrices, respectively; (·)∗, (·)T and
(·)H denote complex conjugation, transpose, and conjugate
transpose, respectively. We use C to denote the field of
complex numbers and Cm×n denotes an m by n dimensional
complex space. Further, we use Tr(·), log(·), E(·), and || · || to
denote the trace, the natural logarithm, expected value of the
enclosed argument, and the the vector 2-norm (or the matrix
Frobenius norm), respectively; CN (0; σ2) represents the cir-
cularly symmetric zero-mean complex Gaussian distribution
with variance σ2.

II. SYSTEM MODEL

A. System Framework and Signal Transmission Procedure

Consider a wideband downlink mmWave MIMO-OFDM
system with Nt transmit antennas and Nr receive antennas,
which is constructed by a two-stage hybrid analog/digital
beamforming architecture as shown in Fig. 1. We assume that
both the transmitter and receiver have a uniform linear array
(ULA) with identical antenna elements spacing. From the view
of implementation in the frequency domain, the transmitted
data symbols for the uth mobile station (MS) are organized
into frequency vectors su[k] ∈ CNs×1, k = 1, . . . , K , and the
individual data stream is transmitted via Ns K-length data
symbols with the property E[su[k]su[k]H ] = INs . Within the
hybrid architecture, a base station (BS) using Nt,u < Nt

antennas and Mt,u < Mt RF chains communicates with
the uth MS with Nr antennas and Mr RF chains, given
Ns ≤ Mt,u ≤ Nt,u, Ns ≤ Mr ≤ Nr ≤ Nt,u and
Mr ≤Mt,u [4], [6].

As shown in Fig. 1, we use the sets of the matrices
{VBBu

[k]}Uu=1 and {VRFu
}Uu=1 to denote the multiple digital

precoders and analog precoders, respectively. To perform
hybrid beamforming for user u, the BS first applies a digital
baseband precoder VBBu

[k] ∈ CMt,u×Ns to modify the Ns

data symbols su[k] over the kth subcarrier, and the baseband
data is fed directly into the OFDM Tx module, which is
then transformed to the time domain using Mt,u numbers
of K-point IFFT. Note that Fig. 1 shows a simplified signal
chain in the frequency domain. Typically, the implementation
of OFDM at Tx and Rx consists of parallel-to-serial and
serial-to-parallel conversions. At Tx, a block of symbols
is serial-to-parallel converted onto K subcarriers, and the
receiver decodes each frequency bin separately. Additionally,
the LNA, mixer, ADC, and variable gain amplifier (VGA) are
also referred to as the RF chain. After that, an RF (analog)
precoder VRFu

∈ CNt,u×Mt,u is implemented using analog
phase shifters to support multiple directional beamers in down-
link for multiple users. Similarly, the hybrid beamforming
architecture at the receiver is constructed by the concatenation
of an RF combiner WRF ∈ CNr×Mr and a low-dimensional
digital baseband combiner WBB[k] ∈ CMr×Ns . Note that the
OFDM Rx module is also configured in the streaming mode,
and at the digital down-converter, cyclic prefix is removed
from the incoming OFDM symbols.
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Note that the proposed model can be easily extended to
multi-user cases. Assume that a BS with Nt transmit antennas
and Mt RF chains simultaneously serves U active users, and
each user has been equipped with Ns data streams (UNs ≤
Mt ≤ Nt). We have FBB[k] � [VBB1 [k], . . . , VBBU [k]] and
FRF � [VRF1 , . . . , VRFU

], where the hybrid precoders FBB[k] ∈
CMt×UNs and FRF ∈ CNt×Mt are represented by a block
concatenation of matrices, respectively. In this paper, because
we focus on a single-user beam tracking case, we omit the
subscript u for simplicity of expression. Parameters s[k],
VBB[k] and VRF can be directly applied to any single-user
case without extra algebraic manipulation.

In the absence of noise, the final transmitted symbol x
associated with the kth subcarrier can be represented as

x[k] = V[k]s[k] = VRFVBB[k]s[k], (1)

where VRF is used to process the digitally-precoded transmit-
ted stream and is the same for all subcarriers, and VBB[k]
is designed for each subcarrier since it is applied in the
frequency domain. To simplify our exposition, we first adopt
a widely-used narrowband block-fading channel model in an
ideal setting where a line-of-sight (LOS) path is considered so
that the channel can be approximated by the single-tap model.
Consequently, the received signal at subcarrier k at the antenna
array of MS can be written as

y[k] = H[k]x[k] + n[k], (2)

where H[k] ∈ C
Nr×Nt,u is the complex channel matrix corre-

sponding to the kth subcarrier and n[k] ∼ CN (0, σ2
kI) denotes

the vector of independent and identically distributed (i.i.d.)
additive white Gaussian noise (AWGN); σ2

k represents the
noise variance associated with subcarrier k; I ∈ CNr×Nr is the
identity matrix. Typically, the channel state matrix H can be
estimated by sending training sequences and/or pilot signals.
In stationary scenarios, such as indoor hotspots or backhaul,
since the channel is typically slowly varying, an idealistic but
acceptable assumption is that H is perfectly known at the
receiver. In contrast, perfect and instantaneous estimation of
CSI is a challenging task in mobile networks, due to mobility
and the rendered fast fading [5], [12]. Therefore, in this
paper, we mainly focus on fast varying channels. Particularly,
the problem we are interested in is how to mitigate the effects
of uncertain DOA in mobile mmWave systems. In the next
section, we will detail the motivation and specify the research
problem.

At the receiving end, the overall hybrid combiner can be
written as W[k] = WRFWBB[k], W[k] ∈ CMr×Ns , where WRF

is the RF combiner implemented by phase shifters, assuming
that ||WRF||2 = 1, and WBB[k] is the digital combiner in
baseband. It means that the estimate of the desired signal
vector z[k] ∈ CNs×1 can be given as a linear combination
of the receive signal y[k] over the current subcarrier. Thus,
we mathematically have

z[k] = WH [k]H[k]V[k]s[k] + WH [k]n[k]. (3)

Essentially, the optimal precoder at the transmitter is the one
that maximizes the transmit signal power with a given power

budget ΩTx. Thus, it enables the optimization problem to be
decoupled into a series of subproblems, and it is also feasible
to apply the same processing method at the receiver. In our
work, we adopt these general optimization methods, which
decouple and simplify the optimization problem for adjusting
the precoding and combining weights [4], [10]. The optimal
hybrid precoders at the BS can thereby be determined by the
following criterion:

Vopt[k] = arg maxV[k] VH [k]sH [k]s[k]V[k],

s.t.
K∑

k=1

Tr(VH [k]V[k]) < ΩTx. (4)

Similarly, we make an assumption of assigning equal power
to all subcarriers as well as all spatial streams, and the average
signal-to-noise ratio (SNR) at each receive antenna can be cal-
culated to be ρk/(Nt,uσ2

k), where ρk = ||WH [k]H[k]V[k]||2,
denoting the achieved power gain of the kth subcarrier [4].
The optimal combiner at the receiver which can be extended
to multiple RF chains can be expressed as [40], [41]

Wopt[k] = arg max
W[k]

(
||WH [k]H[k]V[k]||2 · ||s[k]||2

||WH [k]n[k]||2
)

,

s.t.
K∑

k=1

||W[k]||2 = 1. (5)

Assume that the total available power is uniformly allocated
over all space-frequency grids, and the data streams transmit-
ted from different antennas are statistically independent. From
the basics of information theory, the bound on the capacity of
a single-user system is given by [42]

CSU =
K∑

k=1

βklog2

(
1 +

ρk

Nt,uσ2
k

)

=
K∑

k=1

βklog2

(
1 +
||WH [k]H[k]V[k]||2

Nt,uσ2
k

)
, (6)

where βk represents the normalized weight of the rate over the
kth subcarrier. Based on (4) and (5), it is clear that a decoupled
design of the hybrid precoder and combiner is adopted to solve
the joint optimization problem over V and W. Accordingly,
the feedback overhead caused by a training procedure for
solving the joint optimization can be subtly circumvented.
Although the remaining optimization problem pertaining to
V and W is still non-convex and thereby difficult to be
optimally solved, it enables further decoupling by individually
designing RF and baseband. A primary approach is the joint
design of digital precoder VBB and analog precoder VRF,
in which the RF combiner is first designed based on a locally
optimal digital precoder, and the digital combiner can be
found afterwards. Note that VBB at the BS represents a set of
precoders corresponding to all subcarriers, and so on. Similar
operations can be applied to the optimization of the digital
combiner WBB[k] and WRF. Then, the optimization of each
pair can be solved sequentially to achieve the best trade-off
between the receiver performance and complexity [10].

It should be noted that even though the beamforming
processing for the data transmission and reception is modeled
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in a single-user system from the perspective of a single
subcarrier, the proposed method introduced herein can be
easily extended to multi-user MIMO-OFDM systems. Tak-
ing into account the effect of average signal-to-interference-
plus-noise ratio (SINR) of a U -user MIMO-OFDM system,
the achievable spectral efficiency in (4) becomes:

CMU =
K∑

k=1

βklog2

⎛⎜⎜⎜⎝1 +
||WH [k]H[k]V[k]||2

Nt,uσ2
k +

U∑
υ=1, υ �=u

γυρυk

⎞⎟⎟⎟⎠ , (7)

where ρυk
= |WH

υ [k]Hυ[k]Vυ[k]|2 accounts for the effect of
inter-user interference; Vυ[k] and Wυ[k] represent the hybrid
digital/analog precoder of the υth user, assuming that all users
share the whole hybrid precoder with Mt RF chains at the
BS. Note that, the SINR is calculated from a total number of
U−1 available users subject to the co-channel and/or adjacent
interference, and γυ denotes the weight of the interference
ratio of the υth user. For a multi-user downlink system, without
loss of generality, the desired signal can be expressed as a true
signal of the whole hybrid precoder and combiner designs,
which considers the interference caused by the other U − 1
users and can be written as

z̃[k] = z[k] +
U∑

υ �=u

WH
υ [k]Hυ[k]Vυ[k]sυ[k]. (8)

B. Channel Model

From a viewpoint of subcarrier, the narrowband channel
model incorporates the propagation characteristics of mmWave
channels. Consequently, we first adopt an extended Saleh-
Valenzuela geometric model, where the channel matrix H is
assumed to be determined by the sum of L multipath clusters,
assuming each cluster to be a complex Gaussian variable. With
this clustered channel model, the channel matrix of the kth
subcarrier H[k] can be written as

H[k] = NL

L−1∑
�=0

αk,laR�
aH

T�
e−j 2πk

K , (9)

where NL =
√

Nt,uNr

L is a normalized factor; αk,� ∼
CN (0, 1) is the complex gain of �th path over the k subcarrier;
aR�
∈ CNr×1 denotes the receive array steering vector and

aT�
∈ C

Nt,u×1 denotes the transmit array steering vector.
In a certain global reference assuming the azimuth angles
are fixed, let θR and θT be the AOA and the AOD in
elevation, respectively. The array steering vectors aR�

and aT�

corresponding to θR and θT are given by

aR�
=

1√
Nr

[
1, ecos(θR�

), . . . , e(Nr−1)cos(θR�
)
]T

,

aT�
=

1√
Nt,u

[
1, ecos(θT�

), . . . , e(Nt,u−1)cos(θT�
)
]T

. (10)

For wideband and limited scattering mmWave communi-
cation systems, the measurement results reveal the nature of
the wideband mmWave channels that there are {R�}L−1

�=0 rays

within each of L multipath clusters. Given a cyclic-prefix
length D, the discrete-time wideband channel H[k] associated
with the delay-d can be obtained as [43], [44]

H[d] = NPL

L−1∑
�=0

R�−1∑
r=0

ξ(dTs − τ�,r)aR�,r
aH

T�,r
, (11)

where NPL =
√

Nt,uNr

EPL
is a normalized factor dependent on

path loss EPL; ξ(·) is the transmit pulse shaping gain; d is
the inter-element distance of the ULA; Ts is the duration of
symbol; r represents the index of subpath; L is the number
of multiple paths; τ�,r denotes the time delay of the rth ray
within cluster �. For such a scattering environment, the channel
matrix over subcarrier k can be expressed as

H[k] =
D−1∑
d=0

H[d]e−j 2πdk
K . (12)

III. PROBLEM STATEMENT

For downlink mobile mmWave communications considered
in this paper, a key consideration is that the received wideband
signal is quite sensitive to the error of steering direction.
A slight beam misalignment may lead to a significant drop
of reception quality. Therefore, accurate DOA information is
essential for both BS and MS. However, precise knowledge
of the steering vector is usually difficult to be determined in a
fast-varying channel environment, while the DOA information
required by MS and BS is usually inaccurate and even lost due
to the effects of the local scatterers, gain and phase errors in
calibrated arrays, node mobility, as well as DOA estimation
error. In a mobile mmWave network, destructive effect caused
by mobility on the DOA accuracy shall be dealt with carefully.
Moreover, the directional DOA perturbation correspondingly
produces an erroneous steering vector, resulting in a signifi-
cant drop of reception quality. In practice, a low-complexity
mmWave front-end design with a low-resolution ADC or even
few-bit (e.g., 1-3 bits) ADCs is a feasible solution, which
ensures an acceptable level of power consumption and system
costs. As mentioned earlier, channel estimation with few-bit
ADCs is challenging, because the DOA estimation has to be
achieved from coarsely quantized data.

Motivated by the above challenges, we propose a Bayesian
beamforming method to mitigate the effects of uncertain DOA,
which is modeled as a random variable with a priori pdf. With
Bayes’ theorem, the parameter estimation problem is converted
into a more reliable probability optimization problem that
combines a priori knowledge and a posteriori knowledge
of DOA. When an indeterminate DOA occurs, the Bayesian
estimator is able to probabilistically infer what the accurate
DOA would be. It allows us to reconstruct DOA parameters by
using MAP estimates by considering a reasonable first-order
Markov model for DOA evolution.

Because our work mainly focuses on urban LOS and non-
LOS (NLOS) channels, (12) can be rewritten as

H[k]=H̄LOS[k]+H̃[k]=G0aR0aH
T0

+
D−1∑
d=1

HNLOS[d]e−j 2πdk
K ,

(13)
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where G0 is the antenna gain of LOS. The NLOS cluster can
be treated as ground-reflected paths within an angular spread
and lower power (e.g., 10∼20 dB) than the LOS path, and
the LOS path dominates in outdoor mmWave channels. For
the sake of simplicity, we temporarily disregard the NLOS
components, and treat their resultant effect as a disturbance
term.

From (8), a closed-form expression for the desired signal
can be expressed as

z[k] = G0WH [k]aR0aH
T0

V[k]s[k]︸ ︷︷ ︸
desired signals: LOS

+ WH [k]H̃[k]V[k]s[k] + WH [k]n[k]︸ ︷︷ ︸
effective signals plus noise: e[k]

. (14)

According to the prior studies in [10], [23], and [47],
the mmWave transmission is highly susceptible to blockages
and radio propagation attenuation, and thereby relies on the
LOS path. For this reason, the NLOS component can be
regarded as a disturbance term. Consider that the global opti-
mization problem is decoupled and the optimal beamformer
and combiner can be systematically solved. Accordingly,
we do not take the global optimization into account because
of its overlarge computational complexity. After some simple
manipulations, the final received signal can be simplified as

z[k] = WH [k]a[θ]aH [φ0]Vopt[k]s[k] + e[k], (15)

where e[k] represents the perturbation term, and φ0 is a tem-
porary steering angle in the selected beam direction. From the
viewpoint of the array geometry, the ULA can be regarded as a
special subarray of a planar array (e.g., rectangular array), not
only oriented on x-axis but also y-axis. As an example of the
outdoor mmWave antenna array, a set of multiple connected
antenna arrays is created in the x-y plane to yield different
radiation patterns. To track temporal variations in the mobile
channel, the full DOA information should be launched to select
appropriate beam and/or switch from one beam to another.
A generalized vector denotation not only can easily express
array factors for linear arrays along other cardinal directions,
but also is more effective to represent spatial reference, either
azimuth or elevation beamforming or in both dimensions.
Without loss of generality, we use θ to represent the DOA
information set in the following sections which can be viewed
as the combination of any azimuth and elevation angle.

IV. BAYESIAN APPROACH FOR ROBUST BEAMFORMING

A. Bayesian Beamforming With Uncertain DOA

Let Z = {z[n, k], . . . , z[n+m−1, k]} denote a collection of
m snapshots of the received data vectors. From (15), the kth
subcarrier of the nth received signal at the subcarrier level,
can be rewritten as

z[n, k] = WH [n, k]a[θ]aH [φ0]Vopt[k]s[n, k] + e[n, k], (16)

where θ could be viewed as the incident DOA of the received
signal at time slot n.

Using the Bayesian approach, the unknown DOA parameter
at each sampling moment is generally assumed to be a discrete

random variable with a priori p(θ), and there exists a discrete
set of J points θ = {θj} ∀j ∈ {1, ..,J } over the whole para-
meter space. From the viewpoint of statistical inference, given
observation Z with a hidden random variable θ, the detection
probability for the desired Z is proportional to the likelihood
function L(θ|Z), which can be written as

L(θ|Z) = p(Z|θ) =
m−1∏
i=0

p(z[n + i, k]|θ), (17)

where p(Z|θ) is the conditional pdf of observations.
By adopting a parametric representation of the Bayesian

approach, the estimation problem with uncertainty is to infer
θ in terms of p(Z |θ ) from the noisy observation Z. It is
clear that the azimuth and elevation angles associated with
DOA are independent, and θ can therefore be considered as a
single variable to reduce the computational complexity. Again,
denoting the joint pdf of Z and θ as f(Z, θ), we have

f(Z, θ) = p(Z |θ )p(θ)

= p(θ |Z)m(Z) = p(θ |Z)
∫

θ

p(Z |θ )p(θ)dθ, (18)

where m(Z) is the probability mass function (PMF). In this
case, only the a posteriori probability can be used for infer-
ence, which is calculated by

p(θ |Z) =
f(Z, θ)
m(Z)

=
p(Z |θ )p(θ)∫

θ
p(Z |θ )p(θ)dθ

. (19)

In this way, the solution to the Bayesian parameter inference
problem is converted into a more tractable a posteriori pdf
based statistical inference by incorporating the PMF, the prior
belief, and the evidence provided by the observed data. Since
m(z) does not depend on θ, it can be treated as a normalized
constant. As a result, (19) can be rewritten in a mathematically
equivalent form as

p(θ |Z ) ∝ p(Z |θ )p(θ). (20)

According to Bayes’ theorem, our task is to realize statistical
inferences about the unknown parameter θ. Suppose that a
meaningful a priori pdf is a normal distribution with given
parameter μn and δn that can be chosen for the parameter θ,
and then the a posteriori pdf of θ also corresponds to a normal
distribution and can thus improve the parameter estimation
accuracy.

In the presence of DOA uncertainty, given the noisy
observation data set Z, the Bayesian approach enables us to
reconstruct DOA parameter value by using its MAP estimate.
With the logarithmic representation, the MAP estimate can be
obtained by [45]

θ̂MAP = arg max
θ

p(Z |θ )p(θ). (21)

To evaluate the level of uncertainty, a simple approach is to
employ the Kullback-Leibler (KL) divergence as a distance
measure of the dissimilarity between two distributions of
estimates [28], which can be calculated by

D(θj ||θ) = Ej

{
ln

p(Z |θj )
p(Z |θ )

}
. (22)
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For analytical purposes, we consider a discrete setting,
in which θ is defined as a discrete set of J candidates.
Consequently, the estimate of the desired signal in (16) can
be rewritten in the form of

ẑ[n, k]

=
J∑

j=1

p(θj |z[n, k] )WH [θj , n, k]a[θj ]bH
n,ks[n, k]+e[n, k].

(23)

Accordingly, the optimal estimation of θj is to find one
minimizing the KL divergence by

θ̂j = argmin
θj∈θ

D(θ||θj). (24)

Recall from (5) that the weight vectors of combined matrix
W can be determined by solving the optimization problem by
certain criteria. In this paper, we follow the approach proposed
in [4], [10]. Considering Ẑ with p(Z|θj), the optimization
problem of the Bayesian beamformer WB[θ; n, k] turns out
to minimize the conditional minimum mean squared error
(MMSE) [45], namely

WB[θ; n, k] = argmin
WB[θ;n,k]

Tr
[
(Ẑ− Z)(Ẑ− Z)

H
]
. (25)

Given M possible DOA values, the weight vector of WB is
chosen according to a posteriori pdf of the DOA, and can be
expressed as

wB[n, k] =
M∑

m=1

p(θm|Z[n, k])wB[θm; n, k]. (26)

Note that, based directly on Bayes’ theorem, the use of
Bayesian estimator is equivalent to yielding an estimate of
θ̂ as close as possible to the actual value of θ, with respect
to the posterior information.

B. Determination of A Priori Probability

Taking into account the angle and delay distribution model
in [46] and the most recent measurement results [23], [43], our
paper considers the a priori DOA distribution as a Bernoulli
Gaussian-mixture (GM) with an unknown parameter θ. Based
on the channel estimation with few-bit ADCs results in [20],
we aim to obtain an approximate fit to the true channel
distribution. Meanwhile, motivated by the results presented in
[20], [46], the angle and delay of the �th path are mod-
eled by the angle and delay channel coefficient matrix
χ[�] ∈ CNr×Nt,u , in which the (i, j)th entry of the matrix
is the channel gain between the jth discrete transmit angle
and the ith discrete receive angle, equivalent to the angle
and delay channel representation proposed in [20]. Accord-
ingly, the coefficient χi of χ is generated by the following
expression:

p(χi; θ) = λ0δ(χi) +
∑

i

λiCN (χi; μi, Σi), (27)

where λ0 = Pr{χi = 0} and λi (0 ≤ λi ≤ 1), μi, and
Σi are the weights, means, and variances of the GM over θ,

Fig. 2. A priori information of a two-dimensional trajectory.

respectively; δ(·) is the Dirac delta function. The parameter
λ provides an additional degree of freedom characterizing the
GM distribution. As the details of the modeling process are out
of the scope of this paper, we do not present them here. Note
that the underlying distributions will not necessarily be limited
to the Gaussian distribution. Most recently, the authors in [47]
also proposed that the angular-domain channel coefficients
could be modeled by Laplacian distributed random variables.

Generally, the estimates of a priori pdf in (27) can be deter-
mined by a series of iterative quantization algorithms, e.g.,
MAP and Bayesian linear regression. However, the estimates
of (μi, Σi) of a priori pdf have to consider all possible combi-
nations of discrete DOA values in the whole parameter space
as well as all possible combinations of a posterior probability
estimation. Therefore, once the optimization procedure falls
into a wide search range, it would take a great amount of
time to converge to the optimal solution. Such a pitfall will
also lead to high computational complexity.

To solve the pitfall above, we propose a moving trajectory
based constraint relying on the motion features that are not
completely random. Therefore, we can to some extent utilize
the regularity to restrict the search space of DOA estimates.
It means that θ must lie in a known interval, and we suppose
that the true value of θ has been chosen from that interval,
which is capable of reducing the variance and therefore
improving the estimation accuracy [48]. The constraint is
pictorially illustrated in Fig. 2. We assume that each moving
trajectory corresponds to a specific a priori pdf subset, and
the channel information, i.e., the spatial directions, can be
collected from multiple specific moving tracjectories. With this
constraint, the parameter range of the expected a posteriori
pdf, e.g., variance, can therefore be limited to a smaller region,
resulting in a faster convergence rate and a higher estimation
accuracy. As the future work, it is worth noting that the beam
entropy proposed in [33] can also provide an indication for
the beamspace randomness of mmWave channels. It will be
thereby helpful to investigate the quantitative relation between
the channel randomness and the corresponding beam entropy
values, in accordance with the spatial characterization of beam
combining in [43].

The motivation behind this constraint is that the moving
trajectory contains valuable a priori information, since the
BS is geographically stationary, and the moving trajectory
of a target object is usually regular. Particularly, this regular
feature might be more obvious in high-mobility scenarios.
Suppose that there exists a K-element overlapping subset
{θ1, θ2 . . .θK} in the whole DOA parameter search space.
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Each element in the overlapping subset could be defined as a
subspace and is comprised of a priori pdf corresponding to a
specific moving trajectory. This feature implies that θ can be
reconstructed by

θ1 ∪ θ2 . . . ∪ θK = θ. (28)

At each time instant, it is common that we do not completely
know a priori distribution of the angle and delay channel
over the whole space. These subspace constraints lead to a
significant reduction in the degree of freedom and thereby
lower the variance of the DOA estimates. In the trajectory-
constrained case, it is important to note that the joint Bayesian
estimation of AOA/AOD is a very common type of parameter
point estimation problem, and the formulation can be sim-
ilarly derived to form the best beam pair. For this reason,
the developed methodology can be directly applied to facilitate
the high-resolution estimation of the azimuth/elevation AOD
at the BS.

C. Estimation of A Posteriori pdf

According to Bayes’ theorem with a priori pdf that is
modeled as a GM, the a posteriori pdf of θ, a discrete setting
of (19), can be expressed as

p(χi; θ |z ) =
p(Z |χi; θ )p(χi; θ)

J∑
i=1

p(Z |χi; θi )p(χi; θi)
. (29)

The DOA-dependent hyperparameter estimates μ̂i and Σ̂i are
obtained by maximizing the marginal log-likelihood distribu-
tion [20]. Mathematically, the estimates can be written as

(μ̂i, Σ̂i) = arg max
μi,Σi

J∑
i=1

(lnp(Z|χi; μi, Σi) + lnp(χi; μi, Σi)).

(30)

Note that the mean and variance of this a posteriori approx-
imation are tractable by means of an iterative method, e.g.,
a gradient-based adaptive estimator with optimal step-size con-
trol. In our work, the approximation of mean and variance can
be carried out analytically by a data-aided iteration procedure.
The significance of this a posteriori approximation is that an
alternative method, based on the observed signal, is provided
by a variational distribution approximation, resulting in a
considerable reduction in computational complexity. In this
case, the optimization objective becomes

θ̂MAP = arg max
θ

(lnp(Z |χi; θ ) + lnp(χi; θ)). (31)

Obviously, the instantaneous a posteriori pdf is also unavail-
able in practice. Therefore, what we can do is to apply an
iterative EM online processing scheme. Consequently, both
mean and variance of the a posteriori pdf are estimated in an
iterative manner from the received signals across all receive
antennas over the kth subcarrier.

D. Complexity Analysis

With the aforementioned trajectory based constraint,
we have proposed an approximation method of the estimates
of a priori pdf to reduce the computational complexity.

This parameter point estimation for the approximation of
a posteriori probability can be performed with lower com-
putational complexity. In other words, it is not necessary
to calculate the full posterior p(θ|Z). Taking into account
the computational complexity corresponding to the estimates
of a priori pdf, one simple but powerful alternative is the
calculation of the a priori pdf that can usually be generated
by Markov chain Monte Carlo (MCMC) simulation [49].
Meanwhile, a first-order autoregressive model can be further
employed to capture the temporal variation. In this case,
the remaining computations are the estimation of the Gaussian
mixture parameters μ,Σ of the a posteriori pdf.

To evaluate the a posterior probability model to estimate the
unknown θ, we specify a squared error loss function L(θ̂, θ) =
(θ̂−θ)2, resulting in an optimization problem with the MMSE
criterion for the posterior media. For a given observation Z,
it is more common to use the posterior mean as the Bayesian
estimate, and the optimal estimate of θ can be determined in
closed form as

θ̂ = E[θ |Z ] =
∫
ΘK

θp(θ |Z)dθ. (32)

Generally speaking, the statistics of θ vary on a continuous
scale, whereas it is usually hard to obtain the form of the
continuous distribution in practice. For simplicity, it is custom-
arily modeled in the discrete-time domain, i.e., θ takes discrete
values to yield a general discrete probability distribution. For
a specific moving trajectory K, given the observed data ZK,
we can manipulate the above expression to cast it in a discrete
form, and the estimation of θ can be given by

θ̂ = E[θ |ZK] =
J∑

j=1

θjp(θj |ZK ). (33)

In the subsequent step of this paper, the parameter estimates
associated with the posteriori are iteratively updated using
the EM algorithm. As a data-driven online learning method,
the EM algorithm has been proven to be an effective tool
for simplifying computational problems associated with the
maximum posteriori. Generally, the complexity of the estima-
tion algorithm is dominated by the expectation step (E-step),
whereas the calculation of maximization step (M-step) is
negligible in terms of computational complexity.

Considering the overall transmit data matrix X ∈ CN×NNt

with Np pilot subcarriers, we denote ρq as the transmit
power at the qth OFDM symbol. With sampling at the pilot
subcarriers, the MIMO-OFDM system model in (2) can be
rewritten as

Zp,q =
√

ρqHqΦT
p,q + Np,q, (34)

where Zp,q ∈ CNp×Nr , Φp,q ∈ CLNt×Np and Np,q ∈
CNp×Nr .

At the rth received antenna, since the posterior distribution
with the hidden random variable θ in Hq is iteratively obtained
by combining the likelihood and the prior distribution, for the
ith iteration of the EM algorithm, we obtain the correspond-
ing mean and covariance by the method developed in [50]
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as follows

μ(i)
r =

1
σ2

ΣΦ∗
pz(i)

p,r, Σ =
(

Φ∗
pΦp

σ2
+ Δ(i)−1

)−1

, (35)

where Δ(i) = diag(δ�), and δ� = [δ1, . . . , δL]T is the
variances of the elements of the a priori pdf, i.e., the hyper-
parameter value in the ith iteration.

From (9) and (10), we can see that the E-step will
involve the computation of the posterior associated with the
DOA-dependent hyperparameter estimates as given in (31).
At each iteration, the EM algorithm increases a lower bound
on the logarithmic posterior logp(μ|z). Accordingly, the com-
putational cost of the E-step at each iteration can be given by
O(N2

p L), while the M-step performs the update of hyperpara-
meter involved in the computational complexity O(NtNrL).

The benchmark results in Section VI-C will show that the
proposed algorithm is feasible to reduce the computational
complexity to a practical level, so as to provide guarantees for
the Bayesian inference in a finite time-window. The proposed
Bayesian framework is guaranteed to converge to a stationary
point and/or a local maximum of the posterior with a small
number of samples (in the order of hundreds of OFDM
symbols) of iterations. This result suggests that the proposed
algorithm is effective for many practical applications.

V. ROBUST CHANNEL TRACKING

A. DOA Tracking With EM Algorithm

To apply the proposed scheme to the time-varying channels,
it is reasonable to assume that the evolution of the DOA
is approximately constant for a number of symbol intervals.
For notational convenience, we define a discrete time index
t to be a normalized symbol block duration. According to a
time-variant state-space model, the dynamics of DOA can be
described as a first-order Gauss-Markov process by

αt = ναt−1 + ξα, (36)

and

θt = θt−1 + Δθ + ξθ, (37)

where ν ∈ (0, 1] is the fading correlation coefficient; ξθ ∼
CN (0, σ2

θ) and ξα ∼ CN (0, σ2
α) are zero-mean Gaussian

random noise terms that allow θ and α to change over time.
Recalling the signal model proposed in Section II-A,

the estimate of DOA can be performed by a subspace-
based narrowband DOA estimator, such as the classical
MUSIC or ESPRIT algorithm. Considering that the ULA satis-
fies the time shift requirement without deformation, we choose
the ESPRIT method to obtain the direction estimate. More
importantly, the ESPRIT method has the ability to obtain the
angular delay component estimate for each path. In addition,
the lower computational complexity of ESPRIT is one of the
features that we are interested in. From the definition given
in (37), the a posteriori pdf associated with the observations
is given by

p(x|θ) =
n∏

i=0

p(xi|θ)
n∏

i=0

p(θi+1|θi). (38)

Starting from (30), the Bayesian DOA estimation is affected by
the a priori probability and the a posteriori probability. In the
actual tracking process, we need to dynamically estimate the
GM distribution parameters associated with a particular motion
trajectory according to (31). Furthermore, it is clear that once
the a priori pdf is determined, the Bayesian estimation only
depends on the a posteriori probability.

To find the unknown parameters of the a posteriori pdf,
we adopt a data-aided EM algorithm, where the transmitted
symbol x is supposed to be known. Typically, the EM algo-
rithm is an iterative method, and each iteration cycle consists
two steps: the E-step and M-step [51]. We introduce both steps
as follows.

E-step: Define Q(θ|θ(t)) as the expected value of the
logarithmic a posterior function of θ. The new parameters are
estimated from the recent snapshot Z by

Q(θ, θ(i−1)) = E

[
logp(z|θ)|z = Z, θ(i−1)

]
. (39)

M-step: Iteratively find the parameters according to the crite-
rion given as follows:

θ(i) = argmax
θ

Q(θ, θ(i−1)). (40)

Note that the EM algorithm starts with an arbitrary initial
guess, due to the GM assumption, and the parameters are
characterized in Section IV-B. In the M-step, the latest para-
meters are updated. The M-step ensures that each iteration
cycle increases the a posteriori until a local maximum is
reached. For hyperparameter estimates of GMs, μ̂i and Σ̂i

can be obtained by (30) straightforwardly, and there is only
a slight difference in the form of the Q function, as shown
in (29) and (30).

B. Procedure of Channel Tracking

To ensure the actual performance of the Bayesian beam-
former, we devise an efficient beam tracking strategy based
on the iterative EM algorithm to have better robustness and
maintain a high tracking accuracy considering node mobility.
We focus on tracking the dynamics of channel in mobile
mmWave systems and adopt the angular motion model pro-
posed in [52]. We summarize our methodology in Algorithm 1,
and the descriptions are given as follows.

We start with the traditional beam searching and training
procedure introduced in [21] for initializing access beam
training, and obtain the a priori pdf. At the transmitter, the BS
uses the training precoding matrix of the first level of the
codebook. At the receiver, the MS uses the measurement
vectors of the first level to combine the received signal. In the
iteration step, we assume that the MS is moving along a fixed
trajectory or with a mobility pattern. According to Bayes’
theorem, the estimation of the latest set θ̂ of suitable directions
is used to alleviate the DOA uncertainty. During the iterative
EM procedure, we do not need to feed back explicit DOA
estimate to the BS, and the training overhead is therefore
reduced.

Because the optimal digital precoder VBB needs to be jointly
designed with the analog beamforming/combining matrix,
a large amount of feedback and training overhead between
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Algorithm 1 EM-Based mmWave Channel Tracking

Input: s(n, k), VBB[k], VRF, WRF, WBB[k]
Output: estimate of θ, z(n, k)
1: initialization: Guess θ̂0, p(θ), Determine p(θ) with
{θ1, θ2 . . . θK} � initialization step

2: Repeat � iterative step
3: for all n = 1, 2, .. do
4: E-step: Compute the latest θ from θt−1

5: Q← ln p(Z |χi; θ ) + ln p(χi; θ)
6: M-step: Find θ, which maximizes Q(θ, θ̂t−1)
7: for all {θ1, θ2, . . . , θJ } do � candidate θ
8: Evaluate a posteriori pdf, ∀J
9: end for

10: Bayesian inference
11: Update WB[θ; n, k]←WRF, WBB[k]
12: Detect abrupt changes [53]
13: if abrupt changes do not occur then
14: Feedback: θ � Feedback step
15: Update VRF, VBB[k] � Vopt

16: else
17: Return (θ)
18: end if
19: end for
20: Until D(θt−1||θ) < ε � KL divergence

BS and MS is required, including CSI [6], [52]. However,
it should be noted that instantaneous CSI is generally inac-
cessible at the transmitter, because the numbers of transmit
and receive antennas are very large, which means the overall
feedback overhead is very high, resulting in a significant loss
of transmission efficiency.

To address this problem, we thereby design an alternative
limited feedback strategy. Our idea is that the current channel
tracking is performed by the Bayesian estimator, while the
tracking error accumulates over time. At the same time,
we adopt an abrupt change detection scheme proposed in [53],
to determine whether the tracking is no longer reliable or the
path does not exist anymore by blockage. Once the abrupt
change point is detected and/or the Bayesian approach can-
not infer the beam directions, the corresponding counter-
measure will be triggered to deal with the abrupt change.
In Algorithm 1, the mobile system transmits the channel
estimate information back to the BS to calculate the precoding
weights needed for the subsequent data transmission. Accord-
ing to the reciprocity principle, the transmitter can update
the beamforming matrix according to the feedback from the
receiver, and then the highly directional beam matching the
current DOA can be generated. This mechanism allows us
to facilitate closed-loop transmit processing via a limited
feedback link [6], and robustly track the dynamics of the
channel between the transmitter and receiver.

VI. NUMERICAL RESULTS

A. Simulation Settings

We consider a 64 × 16 hybrid beamforming architecture
with a ULA, where the arrays at the BS and MS are equipped

TABLE I

SYSTEM PARAMETERS AND SIMULATION SETTINGS

with Nt = 64, Nr = 16 antenna elements and 4 RF chains.
To investigate the performance of the proposed approach in
close to the real scenarios, our simulation is conducted over
28 GHz frequency band in a typical urban macro-cellular
(UMa) scenario with LOS and NLOS components, using the
angular motion model proposed in [52]. The system has a
bandwidth of 100 MHz and the path loss exponent is 3.
In this simulation, we adopt an open-source channel simulator,
NYUSIM, which supports the parameterization and validation
of channel models on a reliable statistical basis [55]. With
NYUSIM, channel statistics based on extensive mmWave
measurements can be recreated from a variety of antenna
beamwidths and environmental conditions. We consider a
sparse mmWave channel with L = 3 multipath clusters and
R� = 6 delay spread, which are reconstructed according to the
channel model described in (11). Moreover, we assume that the
AOD φ and AOA θ are continuous and uniformly distributed
over [−π/2, π/2]. Note that φ and θ are measured from the
+x-axis in the x-y plane and the x-z plane, respectively.
In the simulations, the MIMO-OFDM system has k = 512
subcarriers. Table 1 summarizes the adopted parameters and
simulation settings.

B. Performance of Bayesian Beamformer

To evaluate the effects of DOA uncertainty, we first consider
the case of the existence of array calibration errors, as well as
phase and amplitude errors on the array gain (beamforming).
For instance, the array suffers from both geometrical and
electrical uncertainties, including the uncertainty of the phased
array antenna, i.e., phase fluctuation or error. To simulate the
random array errors, we suppose that each element of the
steering vector a(φ) is subject to a perturbation of a complex
Gaussian random variable with zero mean and variance σ2

c .
For simplicity, we suppose that all randomly perturbed arrays
have exactly the same statistical properties, and the expected
azimuth angle is set to be φ = 0◦. Fig. 3 compares
the proposed Bayesian method and existing data-independent
methods in the high SNR regime. It demonstrates that the sig-
nificant gains can be achieved by the proposed Bayesian beam-
forming approach. As can be seen from Fig. 3, the method
proposed in [7] may not take into account the effect of array
error, e.g., phase fluctuation and/or interference, and does not
form the expected gain in a particular direction. In this case,
we notice that the method proposed in [20] performs better
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Fig. 3. Synthetic array response patterns of beamformer with perturbation of
a complex Gaussian random variable. θ is set to be π/4; σ2

c is set to be 0.01;
SNR = 20 dB.

Fig. 4. Synthetic array response patterns of beamformer under inter-user
interference, which assume that the same beam is assigned to different users.
θ is set to be π/4; σ2

c is set to be 0.01; SNR = 5 dB.

than that of [7] but has a direction error of about 5◦. We can
also see that the Bayesian approach offers better performance
than the aforementioned two methods, and the steering gain
obtained is almost the same as the expected direction. This
demonstrates that our proposed method is robust to uncertain
estimates of θ.

In Fig. 4, we further evaluate the performance of the
calibrated radiation pattern in the low SNR regime, where
the inter-user interference is taken into account. According
to the analytical model constructed in (7), the achievable
spectral efficiencies multi-user case can be investigated. In our
simulation, the hypothetical interference beams come from
two directions, 20◦ and 10◦, and each presents a strong
interference signal out of the receive band. For simplicity,
the signal strength is uniformly set to be 20 dBm, where we
assume that each interference signal has the identical leakage
ratio that is set to be γ = 0.1. Thereafter, we observe that
all schemes can provide accurate steering vectors, but the
array response pattern obtained in [7], [20] have a wider
response range. In contrast, the Bayesian method produces

Fig. 5. MSE of DOA estimation vs. SNR: a lower-bit (1-2 bits) quantization
in the high SNR regime.

Fig. 6. MSE of DOA estimation vs. SNR: a higher-bit (3-4 bits) quantization
in the low SNR regime.

a 5 dB higher steering gain in an expected direction. This
observation suggests that the Bayesian method provides a
more considerable reduction in interference, and is feasible
to minimize the loss of sum rate with low complexity.

In Figs. 5 and 6, the MSE performance of DOA estimation
is evaluated at different ADC quantization levels. As described
in Section V, the statistical properties of DOA are the product
of the GM distribution, where a sufficiently large number of
snapshots could be generally used to obtain the correct statisti-
cal properties. Correspondingly, the MSE of the DOA estimate
can be expressed as E{|θ − θ̂|2}. Fig. 5 shows the MSE
performance for the estimated parameters θ using 1- and 2-bit
quantization in the high SNR regime. It is shown in Fig. 5 that
the proposed method first discussed in [20] are significantly
better than the method given in [30]. Furthermore, it is
noteworthy that the Bayesian estimation is slightly improved
compared to the noisy quantized CS algorithm in [20], whereas
similar angle and delay distribution models are taken into
account in our work. This can be also interpreted as that
the method proposed by [20] exploited sparsity in both the
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Fig. 7. Spectral efficiencies vs. SNR for different methods comparison with
a complex Gaussian perturbation at high SNR. γ = 0.1; μc and σ2

c are set
to be 1 and 0.01, respectively.

angle and delay domains and used an efficient approximate
message passing algorithm to provide estimates with nearly
minimum MSE. Another significant difference is that [20]
would introduce an additional 10-20% tracking overhead,
resulting in a loss of transmission efficiency. In light of
this, the data-driven Bayesian method provides better overall
performance than that expounded in [20]. In the low SNR
regime, according to the experimental results in [4], [20], all
schemes use a higher-bit (3-4 bits) quantization scheme. The
performance gap between the proposed approach and prior
literature is significant. In light of this, we confirm that the
Bayesian scheme offers better estimation performance.

Fig. 6 illustrates the MSE performance of the DOA esti-
mation in the low SNR regime. Interestingly, we find that
the proposed method and the approach in [20] outperform
that of [30]. At a higher resolution ADC level (3-4-bit),
the Bayesian method is significantly better than that advanced
by [20], and we observe an increase of channel gain in
the antenna arrays by 35% compared to conventional meth-
ods. In return, it is capable of providing SNR boost via
beamforming gain to invoke higher order modulations, which
leads to a significantly improvement of system throughout
without any additional SNR margin. This has been interpreted
in [20] and [30] by using a priori maximum likelihood
parameter estimation methods, while the Bayesian method
proposed herein implements a combination of a priori and
a posteriori information, which is more appropriate for the
GM parameter estimation.

Next, according to the same configurations of simulation,
we adopt Monte Carlo simulations to evaluate the spectral
efficiency of the system with noisy few-bit quantization. These
spectral efficiency metrics are illustrated as a function of
SNR, which are approximated by averaging over 1000 inde-
pendent channel realizations. Fig. 7 shows a comparison of
Bayesian beamforming with other advanced hybrid beamform-
ing schemes in the high SNR regime, where the achievable
spectral efficiency is also shown to serve as a performance
benchmark. In the presence of random DOA perturbation with
a complex Gaussian random variable, where the mean μc is

Fig. 8. Spectral efficiencies vs. SNR for different methods comparison
under inter-user interference at low SNR. Here, the direction of hypothesis
interference beams are 20◦ and 10◦ with transmit power of 10 dBm.

normalized, and the variance is set to be 0.01. Compared with
the method of [20], the gain of this method is about 2 dB,
which is almost 1.5 dB higher than that proposed in [4].
In Fig. 7, it is shown that when random DOA perturbation
is small, the spectral efficiency achieved by the Bayesian
method is very close to the approximate optimal case of
full-digital beamforming without DOA perturbation, which
confirms that the proposed method is near-optimal. In the
low SNR regime, we still focus on the situation of multi-user
interference. In Fig. 8, we compare the total system capacity
obtained by different methods. In particular, we investigated a
strong inter-user interference presenting in a specific direction,
and compare spectral efficiencies yielded by different methods.
This situation would be understood as a higher level of DOA
uncertainty. The numerical results show that using the pro-
posed technique can achieve better spectral efficiency than the
methods of [20] and [4] even if a strong inter-user interference
presents in a specific direction.

C. Performance of Robust Channel Tracking

To simulate the variations of the steering angle of the data
beam, in this section we utilize the angular motion model
proposed in [52] to simulate the DOA angle variations of
impinge on the antenna arrays, associated with a specific
motion trajectory. From the perspective of the frequency
domain, the narrowband system method proposed by [52]
is obviously applicable to the case where the LOS path
dominates in the wideband mmWave channel environment.
Therefore, the angular motion model can be used to character-
ize the angular variations with respect to a particular moving
trajectory.

Fig. 9 shows the simulation of the temporal evolution of
the mobile mmWave channel by using the above angle motion
model. Because of the mobility of the terminal in the downlink
transmission, the AOD of the BS is to a great extent dependent
on the CSI information fed back by the terminal. As such,
we mainly simulated the variants of the impinging angle at
the receiver. According to the angular motion model, the angle
variants of Δφ and Δθ can be obtained according to the MS’s
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Fig. 9. Examples of actual angle variations using the proposed motion
tracjectory model in sparse mmWave channels.

azimuth and elevation velocities vaz and vel. In this study,
we assume that the angle-correlated noise statistics are fixed,
and the random angular variants can be modeled as GM dis-
tributed random variables, according to (19). Fig. 9 illustrates a
simulation of three angular motion models associated with the
motion trajectory of the MS, where the BS is set at the center
of the cell [52]. We consider three typical motion trajectories:
(1) the MS either moves away the BS or close to it with a
fixed direction. That is, the main change occurs at the elevation
angle θ, whereas the azimuth φ is relatively stable or varies
in a small range; (2) the MS is moving along a ring that the
BS is located at the origin of the ring; the elevation angle θ
would keep unchanged at this time, whereas the main change
occurs at the azimuth angle φ; (3) the MS randomly moves,
resulting in random variant of φ and θ simultaneously.

Based on the aforementioned motion model, we next use the
a priori information to evaluate the estimated performance of
the a posteriori pdf. Without loss of generality, we assume that
all motion trajectories start at the same position. The starting
distance between MS and BS is 50 m, and the initial values of
θ and φ are set to be 0◦ and 90◦, respectively. The set motion
trajectory moves back and forth over a range of motion of ±5
m with certain absolute speed v. We assume that all MS have
the same speed of motion. Because the spatial information
θ and φ are mutually uncorrelated, we can independently
evaluate the estimation performance of θ and φ. Fig. 10 shows
the a posteriori pdf estimation performance for the unknown
parameters θ and φ, considering an approximation of a GM
distribution with two-component mixed model. The GM model
is thereby considered to be given by the product: p(θ) =
(1 − λ)g1(θ) + λg2(θ), where μ1 = 0, μ2 = 3, and Σ
is set to be 0.3. The estimates of Gaussian parameters are
obtained by using an iterative EM algorithm. Note that the
estimation of the GM distribution is performed at present
time frame n and future time intervals, where the estimated a
posteriori pdf is approximately calculated by 2,000 snapshots.
During the data transmission epoch, it implies that 256 OFDM
symbols are sufficient to provide guarantee for the Bayesian
interference in a finite statistical period. Compared to the a
posteriori pdf estimation without a priori knowledge on the

Fig. 10. Histogram of a posteriori pdf of the discrete Bayesian beamformer
(left part) with different motion trajectory restraints and histogram of a
posteriori pdf without a priori constraint (right part), given SNR = 15 dB.

Fig. 11. Average tracking errors yielded by different methods.

right part, it is also noticeable that the proposed approach has
better estimation performance. Obviously, Fig. 10 confirms
that the trajectory-constrained approach, i.e., the empirical
Bayesian estimation, has a high concentration of estimates of
a posteriori pdf at the actual DOA region. When the a priori
information is known, the estimation of a posteriori pdf in
terms of the moving trajectory constraint is closer to the true
value when the variance is smaller, and it can yield a higher
accuracy and with lower complexity than the estimate in the
full probability space.

Finally, we validate the performance of beam tracking
algorithms in more realistic situations, while sufficient training
is assumed at the initial stage. For a fair comparison, we set
an identical feedback cycle. As shown in Fig. 11, the proposed
method evidently yields better tracking performance than the
angle tracking strategies developed in [52] and [7], which
apply the extended Kalman filter (EKF) to track the channel
with the aid of beamswitching at the anology beamformers
at the transmitter and receiver. It should be noted that beam
tracking algorithm provides a higher degree of DOA error
suppression. An intuitive explanation for this phenomenon is
that, only when the nonlinearity of the solution problem is
mild, the Kalman filter can perform well. However, the actual
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dynamics of DOA and the property of ADC quantization are
nonlinear, as described in [23], [43]. From Fig. 11, we observe
that, as the tracking time increases, the DOA estimation
becomes less accurate, which, in turn, leads to a larger estima-
tion bias. It should further note that although the accumulated
DOA estimation error will severely degrade system perfor-
mance, the performance penalty is negligible via a limited
feedback link, by which the detected abrupt channel variation
is fed back [53]. By doing so, the tracking procedure remains
robust to enable a continuous beam tracking and to update the
steering directions directly within each feedback cycle.

VII. CONCLUSION

In this paper, we proposed a Bayesian beamforming
approach for dealing with the DOA uncertainty in a mobile
mmWave system. Because a priori information of the motion
trajectory dependent DOA is well exploited, the proposed
Bayesian beamformer is robust to uncertain DOA estimation
and is suitable even when the DOA is completely unknown.
To alleviate the computational complexity, we presented a
motion trajectory-constrained priori probability approximation
method, which implies that a directional estimate within a
specific spatial region can be achieved as close as to the
true DOA with high probability. The performance of the
proposed method was evaluated by simulation, which showed
that the proposed data-driven method improves over prior
works and enables directional beam tracking with significantly
less amount of feedback overhead, and the proposed Bayesian
beamforming approach exhibits the robustness against the
DOA uncertainty. The future work will be an empirical
study based on the promising results achieved in this paper
and investigating different probability distributions combined
with other criteria. From the information-theoretic perspective,
it would also be important to apply the concept of beam
entropy to the investigation of the beamspace randomness in
mobile mmWave communication scenarios.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for providing valuable comments that helped in improving the
quality of this paper.

REFERENCES

[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broad-
band systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107,
Jun. 2011.

[2] T. S. Rappaport et al., “Millimeter wave mobile communications for 5G
cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, May 2013.

[3] A. Alkhateeb, J. Mo, N. González-Prelcic, and R. W. Heath, Jr., “MIMO
precoding and combining solutions for millimeter-wave systems,” IEEE
Commun. Mag., vol. 52, no. 12, pp. 122–131, Dec. 2014.

[4] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design
for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 501–513, Apr. 2016.

[5] M. Xiao et al., “Millimeter wave communications for future mobile
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1935,
Sep. 2017.

[6] A. Alkhateeb and R. W. Heath, Jr., “Frequency selective hybrid pre-
coding for limited feedback millimeter wave systems,” IEEE Trans.
Commun., vol. 64, no. 5, pp. 1801–1818, May 2016.

[7] D. De Donno, J. Palacios, and J. Widmer, “Millimeter-wave beam
training acceleration through low-complexity hybrid transceivers,” IEEE
Trans. Wireless Commun., vol. 16, no. 6, pp. 3646–3660, Jun. 2017.

[8] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based
RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal
Process., vol. 53, no. 11, pp. 4091–4103, Nov. 2005.

[9] V. Venkateswaran and A.-J. van der Veen, “Analog beamforming in
MIMO communications with phase shift networks and online channel
estimation,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4131–4143,
Aug. 2010.

[10] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[11] R. W. Heath, Jr., N. González-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimeter
wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10,
no. 3, pp. 436–453, Apr. 2016.

[12] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular
wireless networks: Potentials and challenges,” Proc. IEEE, vol. 102,
no. 3, pp. 366–385, Mar. 2014.

[13] F. Gutierrez, S. Agarwal, K. Parrish, and T. S. Rappaport, “On-chip
integrated antenna structures in CMOS for 60 GHz WPAN systems,”
IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1367–1378, Oct. 2009.

[14] S. Kutty and D. Sen, “Beamforming for millimeter wave communica-
tions: An inclusive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 2,
pp. 949–973, 2nd Quart., 2016.

[15] F. Khalid and J. Speidel, “Robust hybrid precoding for multiuser MIMO
wireless communication systems,” IEEE Trans. Wireless Commun.,
vol. 13, no. 6, pp. 3353–3363, Jun. 2014.

[16] S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution code-
book and adaptive beamforming sequence design for millimeter wave
beam alignment,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5689–5701, Sep. 2017.

[17] P. Kuo, J. Ahn, and A. Mourad, “Adaptive digital precoder codebook
resolution for millimeter wave hybrid beamforming,” in Proc. IEEE
PIMRC, Montreal, QC, Canada, Oct. 2017, pp. 1–6.

[18] Y. Liu, X. Fang, M. Xiao, and S. Mumtaz, “Decentralized beam
pair selection in multi-beam millimeter-wave networks,” IEEE Trans.
Commun., vol. 66, no. 6, pp. 2722–2737, Jun. 2018.

[19] N. Garcia, H. Wymeersch, and D. T. M. Slock, “Optimal precoders for
tracking the AoD and AoA of a mmWave path,” IEEE Trans. Signal
Process., vol. 66, no. 21, pp. 5718–5729, Nov. 2018.

[20] J. Mo, P. Schniter, and R. W. Heath, Jr., “Channel estimation in
broadband millimeter wave MIMO systems with few-bit ADCs,” IEEE
Trans. Signal Process., vol. 66, no. 5, pp. 1141–1154, Mar. 2018.

[21] V. Raghavan, J. Cezanne, S. Subramanian, A. Sampath, and O. Koymen,
“Beamforming tradeoffs for initial UE discovery in millimeter-wave
MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3,
pp. 543–559, Apr. 2016.

[22] T. Rappaport et al., “Cellular broadband millimeter wave propagation
and angle of arrival for adaptive beam steering systems,” in Proc. Radio
Wireless Symp. (RWS), Santa Clara, CA, USA, Jan. 2012, pp. 151–154.

[23] H. Zhao et al., “28 GHz millimeter wave cellular communication
measurements for reflection and penetration loss in and around buildings
in new york city,” in Proc. IEEE ICC, Budapest, Hungary, Jun. 2013,
pp. 5163–5167.

[24] J. Zhao, F. Gao, W. Jia, S. Zhang, S. Jin, and H. Lin, “Angle domain
hybrid precoding and channel tracking for millimeter wave massive
MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 10,
pp. 6868–6880, Oct. 2017.

[25] T. Kim and D. J. Love, “Virtual AoA and AoD estimation for sparse
millimeter wave MIMO channels,” in Proc. IEEE SPAWC, Sydney, NSW,
Australia, Jun. 2015, pp. 146–150.

[26] C. Chen and W. Wu, “Joint AoD, AoA, and channel estimation for
MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 67, no. 7,
pp. 5806–5820, Jul. 2018.

[27] K. L. Bell, Y. Ephraim, and H. L. Van Trees, “A Bayesian approach
to robust adaptive beamforming,” IEEE Trans. Signal Process., vol. 48,
no. 2, pp. 386–398, Feb. 2000.

[28] C. J. Lam and A. C. Singer, “Bayesian beamforming for DOA uncer-
tainty: Theory and implementation,” IEEE Trans. Signal Process.,
vol. 54, no. 11, pp. 4435–4445, Nov. 2006.

[29] M. U. Aminu, M. Codreanu, and M. Juntti, “Variational Bayesian
learning for channel estimation and transceiver determination,” in Proc.
Inf. Theory Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2018,
pp. 1–9.

[30] S. Malik, J. Benesty, and J. Chen, “A Bayesian framework for blind
adaptive beamforming,” IEEE Trans. Signal Process., vol. 62, no. 9,
pp. 2370–2384, May 2014.



YANG et al.: BAYESIAN BEAMFORMING FOR MOBILE mmWAVE CHANNEL TRACKING IN THE PRESENCE OF DOA UNCERTAINTY 7561

[31] M. U. Aminu, M. Codreanu, and M. Juntti, “Bayesian learning based
millimeter-wave sparse channel estimation with hybrid antenna array,”
in Proc. IEEE SPAWC, Kalamata, Greece, Jun. 2018, pp. 1–5.

[32] P. Gerstoft, C. F. Mecklenbräuker, A. Xenaki, and S. Nannuru, “Mul-
tisnapshot sparse Bayesian learning for DOA,” IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1469–1473, Oct. 2016.

[33] K. K. Tiwari, E. Grass, J. S. Thompson, and R. Kraemer, “Beam entropy
of 5G cellular millimetre-wave channels,” in Proc. IEEE VTC Fall,
Honolulu, HI, USA, Sep. 2019, pp. 1–5.

[34] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986.

[35] R. Roy and T. Kailath, “ESPRIT: Estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[36] Y. Yang, S. Dang, M. Wen, S. Mumtaz, and M. Guizani, “Mobile
millimeter wave channel tracking: A Bayesian beamforming framework
against DOA uncertainty,” in Proc. IEEE GLOBECOM, Waikoloa, HI,
USA, Dec. 2019, pp. 1–6.

[37] Y. Niu, C. Gao, Y. Li, L. Su, D. Jin, and A. V. Vasilakos, “Exploiting
device-to-device communications in joint scheduling of access and
backhaul for mmWave small cells,” IEEE J. Sel. Areas Commun., vol. 33,
no. 10, pp. 2052–2069, May 2015.

[38] Y. Niu et al., “Energy-efficient scheduling for mmWave backhauling
of small cells in heterogeneous cellular networks,” IEEE Trans. Veh.
Technol., vol. 66, no. 3, pp. 2674–2687, Jun. 2017.

[39] E. Arribas et al., “Optimizing mmWave wireless backhaul schedul-
ing,” IEEE Trans. Mobile Comput., vol. 19, no. 10, pp. 2409–2428,
Oct. 2020.

[40] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311–335, Mar. 1998.

[41] H. Bölcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-
based spatial multiplexing systems,” IEEE Trans. Commun., vol. 50,
no. 2, pp. 225–234, Feb. 2002.

[42] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity
limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5,
pp. 684–702, Jun. 2003.

[43] Study on Channel Model for Frequency Spectrum Above 6 GHz (Release
15), document 3GPP TR 36.901 V15.0.0, Jul. 2018.

[44] A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE
Trans. Signal Process., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.

[45] H. L. V. Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory, 1st ed. Hoboken, NJ, USA: Wiley,
2002.

[46] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture
approximate message passing,” IEEE Trans. Signal Process., vol. 61,
no. 19, pp. 4658–4672, Oct. 2013.

[47] F. Bellili, F. Sohrabi, and W. Yu, “Generalized approximate message
passing for massive MIMO mmWave channel estimation with Lapla-
cian prior,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3205–3219,
May 2019.

[48] S. M. Kay, Fundamentals of Statistical Processing: Estimation Theory,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[49] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer-Verlag, 2006.

[50] R. Prasad, C. R. Murthy, and B. Rao, “Joint channel estimation and
data detection in MIMO-OFDM systems: A sparse Bayesian learning
approach,” IEEE Trans. Signal Process, vol. 63, no. 20, pp. 3704–3716,
Oct. 2015.

[51] J. A. Bilmes, “A gentle tutorial EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov mod-
els,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Comput. Sci.
Division, UC Berkeley, Berkeley, CA, USA, 1998.

[52] D. Zhu, J. Choi, Q. Cheng, W. Xiao, and R. W. Heath, Jr., “High-
resolution angle tracking for mobile wideband millimeter-wave systems
with antenna array calibration,” IEEE Trans. Wireless Commun., vol. 17,
no. 11, pp. 7173–7189, Nov. 2018.

[53] C. Zhang, D. Guo, and P. Fan, “Tracking angles of departure and
arrival in a mobile millimeter wave channel,” in Proc. IEEE ICC,
Kuala Lumpur, Malaysia, May 2016, pp. 1–6.

[54] M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical
channel model for 5G wireless system design,” IEEE Trans. Microw.
Theory Techn., vol. 64, no. 7, pp. 2207–2225, Jul. 2016.

[55] NYUSIM Channel Simulator v2.01. Accessed: Nov. 2019. [Online].
Available: https://wireless.engineering.nyu.edu/nyusim/

Yan Yang (Member, IEEE) received the B.Sc.
degree in electronics engineering, and the M.Sc. and
D.Sc. degrees in signal processing from the Uni-
versity of Electronic Science and Technology of
China, Sichuan University, Institute of Acoustic,
Chinese Academy of Science, China, in 1990, 1997,
and 2004, respectively. From 2014 to 2015, he
was a Visiting Scholar with the Georgia Institute
of Technology, Atlanta, USA. He is currently an
Associate Professor with the State Key Lab. of
Rail Traffic Control and Safety, Beijing Jiaotong

University, Beijing, China. His current research interests include wireless
communications, signal processing, and artificial intelligence for cognitive
wireless communications. He has served as a Reviewer for various jour-
nals, including IEEE TRANSACTIONS ON NETWORK, IEEE INTERNET OF

THINGS JOURNAL, IEEE WIRELESS COMMUNICATIONS LETTERS, IEEE
ACCESS, IEEE Network Magazine, IEEE Wireless Communications Magazine
and several more. He was a recipient of the Best Paper Awards from the
IEEE ComComAp’2019. He received the First Research Award from the
Science and Technology of China Railways Society in 2007 and 2014,
respectively. He is an active participant in the Working Party 5A (WP 5A), the
International Telecommunication Union (ITU), and is a Technical Specialist
for the research item 1.11 of the Resolution 236 World Radiocommunication
Conference (WRC-15).

Shuping Dang (Member, IEEE) received the B.Eng.
degree (Hons.) in electrical and electronic engineer-
ing from the University of Manchester, the B.Eng.
degree in electrical engineering and automation
from Beijing Jiaotong University, in 2014, via a
joint ‘2+2’ dual-degree program, and the D.Phil.
degree in engineering science from the University
of Oxford, in 2018. He joined in the R&D Center,
Huanan Communication Company, Ltd., after gradu-
ating from the University of Oxford and is currently
working as a Postdoctoral Fellow with the Computer,

Electrical and Mathematical Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST). He was a co-recipient of
the ‘best paper’ award for work presented at 2019 19th IEEE International
Conference on Communication Technology. He serves as a reviewer for a
number of key journals in communications and information science, including
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE TRANSAC-
TIONS ON COMMUNICATIONS, IEEE WIRELESS COMMUNICATIONS LET-
TERS, IEEE COMMUNICATIONS LETTERS, and IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY. He is recognized as the Exemplary Reviewer of
IEEE COMMUNICATIONS LETTERS in 2019. His current research interests
include novel modulation schemes, cooperative communications, terahertz
communications, and 6G wireless network design.

Miaowen Wen (Senior Member, IEEE) received
the Ph.D. degree from Peking University, Beijing,
China, in 2014. From 2012 to 2013, he was a
Visiting Student Research Collaborator with Prince-
ton University, Princeton, NJ, USA. He is cur-
rently an Associate Professor with the South China
University of Technology, Guangzhou, China, and
a Hong Kong Scholar with The University of
Hong Kong, Hong Kong. He has published a
Springer book entitled Index Modulation for 5G
Wireless Communications and more than 100 journal

articles. His research interests include a variety of topics in the areas of
wireless and molecular communications.

Dr. Wen was a recipient of four Best Paper Awards from the IEEE
ITST’2012, the IEEE ITSC’2014, the IEEE ICNC’2016, and IEEE
ICCT’2019. He has served on the Editorial Boards of IEEE ACCESS, and
EURASIP Journal on Wireless Communications and Networking, and a Guest
Editor for IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

(Special Issue on Spatial Modulation for Emerging Wireless Systems) and
for IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING (Special
Issue on Index Modulation for Future Wireless Networks: A Signal Processing
Perspective). He is currently serving as an Editor for IEEE TRANSACTIONS

ON COMMUNICATIONS, IEEE COMMUNICATIONS LETTERS, and Physical
Communication (Elsevier).



7562 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 12, DECEMBER 2020

Shahid Mumtaz (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in electrical and elec-
tronic engineering from the Blekinge Institute of
Technology (BTH) Karlskrona, Sweden, and Uni-
versity of Aveiro, Portugal, in 2006 and 2011,
respectively. He has more than ten years of wireless
industry experience and is currently working as a
Senior Research Scientist with the Instituto de Tele-
comunicações, Aveiro, Portugal, ARIES Research
Center, Universidad Antonio de Nebrija, Madrid,
Spain. Prior to his current position, he worked as a

Research Intern at Ericsson and Huawei Research Labs in 2005 at Karlskrona,
Sweden. He has more than 150 publications in international conferences,
journal papers, and book chapters. He was awarded an ‘Alain Bensoussan’
fellowship by ERCIM to pursue research in communication networks for
one year at the VTT Technical Research Centre of Finland in 2012. He was
nominated as a Vice Chair for IEEE new standardization on P1932.1: Standard
for Licensed/Unlicensed Spectrum Interoperability in Wireless Mobile Net-
works. He is also actively involved in 3GPP standardization on LTE release
12 onwards, along with major manufacturers. He is an ACM distinguished
speaker.

Mohsen Guizani (Fellow, IEEE) received the B.S.
(Hons.) and M.S. degrees in electrical engineering,
and the M.S. and Ph.D. degrees in computer engi-
neering from Syracuse University, Syracuse, NY,
USA, in 1984, 1986, 1987, and 1990, respectively.
He is currently a Professor and the ECE Department
Chair with the University of Idaho, USA. Previ-
ously, he served as the Associate Vice President for
Graduate Studies, Qatar University, a Chair for the
Computer Science Department, Western Michigan
University, and a Chair for the Computer Science

Department, University of West Florida. He also served in academic positions
at the University of Missouri-Kansas City, University of Colorado-Boulder,
and Syracuse University. His research interests include wireless communica-
tions and mobile computing, computer networks, mobile cloud computing,
security, and smart grid. He is currently the Editor-in-Chief of the IEEE
Network Magazine, serves on the editorial boards for several international
technical journals and the Founder and the Editor-in-Chief of Wireless Com-
munications and Mobile Computing journal (Wiley). He is the author of nine
books and more than 500 publications in refereed journals and conferences.
He guest edited a number of special issues in IEEE journals and magazines.
He also served as a member, Chair, and General Chair for a number of
international conferences. He received three teaching awards and four research
awards throughput his career. He received the 2017 IEEE Communications
Society Recognition Award for his contribution to outstanding research in
Wireless Communications. He was the Chair of the IEEE Communications
Society Wireless Technical Committee and the Chair of the TAOS Technical
Committee. He served as the IEEE Computer Society Distinguished Speaker
from 2003 to 2005. He is a Senior Member of ACM.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


