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Abstract: With the emergence of vehicular Internet-of-Things (IoT) applications, it is a significant
challenge for vehicular IoT systems to obtain higher throughput in vehicle-to-cloud multipath
transmission. Network Coding (NC) has been recognized as a promising paradigm for improving
vehicular wireless network throughput by reducing packet loss in transmission. However, existing
researches on NC do not consider the influence of the rapid quality change of wireless links on
NC schemes, which poses a great challenge to dynamically adjust the coding rate according to the
variation of link quality in vehicle-to-cloud multipath transmission in order to avoid consuming
unnecessary bandwidth resources and to increase network throughput. Therefore, we propose an
Adaptive Network Coding (ANC) scheme brought by the novel integration of the Hidden Markov
Model (HMM) into the NC scheme to efficiently adjust the coding rate according to the estimated
packet loss rate (PLR). The ANC scheme conquers the rapid change of wireless link quality to obtain
the utmost throughput and reduce the packet loss in transmission. In terms of the throughput
performance, the simulations and real experiment results show that the ANC scheme outperforms
state-of-the-art NC schemes for vehicular wireless multipath transmission in vehicular IoT systems.

Keywords: vehicular network; multipath transmission; network coding; machine learning

1. Introduction

The future vehicular Internet-of-Things (IoT) is an important branch of IoT. The development of
vehicular IoT has promoted the development of vehicular applications. In an intelligent transportation
system (ITS), novel vehicular applications, such as cooperative autonomous driving, federated
learning, blockchain, Virtual Reality (VR), and Augmented Reality (AR), which are sensitive to
transmission delay, bandwidth, and throughput, are emerging [1–4]. The data that are generated
by these new applications need to be transmitted to the cloud servers through vehicle-to-cloud
communication [5]. A major bottleneck of vehicle-to-cloud communication is the limited bandwidth
and poor communication quality in vehicular wireless networks [6]. To improve the transmission
bandwidth of the vehicular network, Duo et al. [7] proposed introducing cellular-based wireless
networks (e.g., 5G, 4G, etc.) into the vehicular ad hoc network (VANET), Mandala et al. [8] proposed
even energy dissipation protocol (EEDP) to forward sensor data to the base station to balance the traffic
load in sensor network, and Brown and Du [9] described an efficient scheme for reporting packet drops
in the transmission from sensor node to the base station. However, the bandwidth that is provided by
a single cellular wireless link is unable to meet the bandwidth requirements of these novel applications
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in vehicular IoT. In recent years, many papers [10–14] proposed different multipath transmission
algorithms to transmit data packets over multiple links to aggregate bandwidth. The multipath
transmission has been proven to be a powerful method for increasing the bandwidth of vehicle-to-cloud
communication system by aggregating available cellular wireless resources. Dong et al. [15] proposed
to introduce the multipath transmission into the vehicle-to-cloud communication to improve the
transmission quality. Zhang et al. [16] proposed the Receiver Adaptive Incremental Delay (RAID)
scheme for vehicle-to-ground multipath communication to mitigate the impact of packets disorder
on network throughput. However, the throughput performance of multipath transmission in the
vehicular wireless network is seriously affected by packet loss. Li et al. [17] pointed out that when the
packet loss rate (PLR) of the wireless link is getting higher, the throughput will decrease significantly
because there are too many data packets lost in transmission. There are many researchers dedicated to
the packet loss problem in a NC perspective. These works are divided into two categories. One type
is NC schemes based on repetition code, Opportunistic Routing (OR) is one of them [18,19]. OR is
proposed to avoid packet loss by sending a copy of the packet through each available wireless link.
The other type is NC schemes based on erasure code (EC), which could recover lost data by adding
redundant data, refs. [20–23] realized the NC schemes based on EC by different methods, such as
bitwise XOR, Galois Field, Big Number, etc. The coding rate of the NC scheme based on EC represents
the ability to overcome packet loss in transmission. The coding rate is the ratio of the number of
redundant packets r to the total number of coded packets n, which could be represented as r/n.

However, these NC schemes do not consider the effect of link quality variations in coding and
decoding processes. The link quality of the wireless link is changing at all times in reality due to
the influences of vehicle movement, obstacles, and other factors. The rapid change of link quality
reflects in the variations of PLR in the wireless link. The existing NC schemes cannot dynamically
adjust the coding rate according to the variations of PLR in the wireless link, which could lead to
two serious problems. First, when the quality of the wireless link becomes better, the PLR of the
wireless link becomes lower from the high level. Although schemes, like BigNum Network Coding
(BNNC) [23] scheme and Galois Field Network Coding (GFNC) [22], can ensure there is no packet loss,
they consume a lot of unnecessary bandwidth because these schemes still use a relatively high coding
rate to ensure network reliability. A high coding rate results in low bandwidth utilization. Accordingly,
the throughput performance of the vehicular wireless network is poor. Second, in a contrary case,
when the quality of wireless link declines, the PLR of the wireless link becomes a higher level from
the low level, the above-mentioned NC schemes with relatively low coding rate cannot cope with the
poor quality of the wireless link, which means that the receiver fails to decode coded packets, because
there are not enough redundant packets to cope with the packet loss in transmission. To summarize,
the performance of these NC schemes is poor for the variations of link quality.

In this paper, aiming to counter the rapid change of wireless link quality, we investigate how to
optimize network coding to dynamically adjust the coding rate in order to increase vehicular-to-cloud
transmission throughput and reduce packet loss. Especially, to support real-time coding rate
adjustment, we design the architecture of the ANC scheme for vehicle-to-cloud multipath transmission.
Subsequently, based on the designed architecture, a novel network coding scheme is introduced to
dynamically adjust the coding rate according to the estimated next moment PLR to increase throughput
and reduce packet loss. Finally, we evaluate its performance when compared to state-of-the-art NC
schemes for vehicular multipath transmission, including the OR scheme, BNNC scheme, and GFNC
scheme. In terms of throughput and packet loss, extensive simulations and real experiments show that
ANC can greatly improve throughput performance and effectively reduce packet loss in transmission.

Our main contributions in this paper are summarized as follows:

• We propose an adaptive network coding scheme for vehicle-to-cloud multipath communication
in cellular-based wireless networks. When compared with the current NC schemes, ANC
significantly improves network throughput performance and reduces multipath transmission
packet loss.
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• We propose a novel combination of network coding and packet dispatch to reduce packet caching
time. Packet dispatch is realized in a group aspect to determine the distribution proportion in
each available link according to measured bandwidth and Round-Trip Time (RTT).

• We introduce wavelets into Hidden Markov Model (HMM) to fit in with the rapid change of
link quality in the cellular-based vehicular wireless networks. This estimation method effectively
reduces the error range of estimated PLR.

The structure of the paper is organized, as follows. In Section 2, some related works about
multipath transmission and NC schemes are introduced. In Section 3, we give an overview of the ANC
scheme. In Section 4, we introduce every part of the ANC scheme in detail. In Section 5, we take lots
of simulations and real experiments in order to prove that our scheme is effective and reliable. Finally,
Section 6 provides concluding remarks of this work.

2. Related Work

2.1. Multipath Transmission Schemes in Cellular-Based Vehicular Networks

Many multipath transmission schemes in cellular-based vehicular networks have been proposed
in the perspectives of the transport layer and the IP layer. On the transport layer, SCTP and MPTCP are
mainstream multipath transmission schemes. Xu et al. [24] proposed a novel cross-layer fairness-driven
(CL/FD) SCTP-based concurrent multipath transfer (CMT) solution (CMT-CL/FD) in order to improve
video delivery performance. Chung-Ming Huang and Ming-Sian Lin [25] proposed to have a loss
detection mechanism in SCTP (RG-SCTP) for vehicular networks to reduce the influence of packet
loss in transmission between On Bus Unit (OBU) and Road Side Unit (RSU). There are also many
researches regarding MPTCP, NC-MPTCP [13], and QCBF-MPTCP [26] worked on MPTCP to improve
the throughput performance by collision avoidance and sub-flow scheduling. When compared with
the transport layer multipath transmission, IP layer multipath transmissions do not need to design
new protocol, they are easier to be deployed and implemented. Generally, researchers realize IP
layer multipath transmission with the method of packet encapsulation. IP-in-IP is a kind of packet
encapsulation that attaches a new IP header with the original IP packet in order to form a new packet.
Based on this approach, Dong et al. [27] proposed a multipath transparent transmission scheme on
the IP layer in vehicular wireless networks. This scheme can make full use of heterogeneous wireless
networks between ground-based servers and onboard smart devices by building a virtual tunnel.
Based on [27], Zhang et al. [16] proposed RAID algorithm to overcome out-of-order data packets in
heterogeneous wireless networks.

There are also a lot of researches on multipath transmission combined with artificial intelligence.
Xu et al. [28] designed a deep reinforcement learning (DRL)-based control framework DRL-CC
for Congestion Control. Naeem et al. [29] proposed a novel model-free SDN-based adaptive deep
reinforcement learning framework that was based on a fuzzy normalized neural network to address
the issue of congestion control for MPTCP in the IoT networks. Arianpoo et al. [30] proposed a
combination of SCTP and Q-learning to solve the receiver buffer blocking problem. However, there
are not many researches on IP layer multipath transmission combined with artificial intelligence.

2.2. NC Researches

NC was proposed by [31] to reach the upper limit of Network multicast capacity. In recent years,
NC has been applied to multipath transmission. Many researches have been proposed. Kim et al. [32]
combined OR with multipath transmission to improve wireless sensor network reliability. Simply
speaking, the essence of OR is repetition code, OR sends data packets to the next sensor node through
all available wireless links. Assuming that the packet loss probability of each link is p, the overall PLR
of n links is pn, it can effectively reduce the packet loss probability of the entire system. However,
the drawback of this idea is obvious. In terms of resource utilization efficiency, for a system with
n communication links, each time a sent packet is received by the next sensor node, it means that
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n − 1 redundant packets need to be simultaneously discarded. Lin et al. [33] proposed SlideOR
to encode raw packets in overlapping sliding windows. Xu et al. [34] proposed MPTCP-PNC to
address packet reordering problem. When considering the scheduling of coded packets in each
available link, Xu et al. [22] proposed combining SCTP with NC. To raise the anti-jamming capability
of transmission, Zhang et al. [23] proposed a Big Number network coding scheme to reduce packet
loss during transmission.

3. ANC Scheme Overview

Figure 1 is the architecture of the ANC scheme, which consists of three parts: sender, receiver,
and multiple wireless links. The ANC scheme is deployed in sender and receiver. Through the
cooperation between the modules that are embedded in sender and receiver, the real-time information,
such as estimated PLR, measured bandwidth, and RTT, can be used in order to determine the coding
rate to change the ability to overcome packet loss in the transmission according to the variation of
wireless link quality.
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Figure 1. The architecture of the ANC scheme.

The sender includes ANC Mapping Module, ANC Coding Module, Sender Buffer and PLR
Estimation Module. The PLR Estimation Module connects with Sender Buffer to obtain link quality
during transmission. PLR Estimation Module estimates next moment PLR. It includes PLR data
acquisition and data estimation, which is introduced in detail in Section 4.4. First, the ANC Mapping
Module obtains data from vehicular applications and divides packets into several groups. The number
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of groups is determined by the number of available wireless links. Next, according to real-time
information about link quality, ANC Mapping Module determines the number of raw packets and
the number of redundant packets for a group and delivers information to ANC Coding Module.
The ANC Coding Module uses estimation and measurement information to generate different coding
matrices corresponding to different groups. Subsequently, ANC Coding Module encodes the raw
packets within a group to form a coded group. Sender Buffer sends coded groups via different
wireless links.

The process of multipath transmission between the sender and receiver can be concluded into
two steps. First, the sender encapsulates the coded IP data packet into the data part of the IP packet
and attaches a new header to form a new IP packet. Afterwards, the sender transmits these packets to
the receiver through different wireless links simultaneously.

The receiver uses ANC Mapping Module to remove the customized IP header to obtain the
information about the decoding process. Subsequently, the ANC Mapping Module converts processed
packets into numbers and store them in computer memory. When the receiver obtains enough packets
to be decoded, the receiver uses ANC Decoding Module to decode coded groups according to the
information about the decoding process, and store raw packets in Receiver Buffer. Receiver Buffer is
not only responsible for storing the raw packets, but also responsible for forwarding raw packets to
the application servers.

4. The Detail of ANC Scheme

In this section, we introduce the ANC scheme in detail. The structure of this section is organized
as follows. First, We give definitions of coding rate and transmission failure rate (TFR) in Section 4.1.
Next, we introduce the network topology model in a typical vehicular network scenario in Section 4.2.
Subsequently, we introduce the coding and decoding processes of the ANC scheme in Section 4.3.
Finally, Section 4.4 provides the mathematical PLR estimation Model.

4.1. Preliminaries and Definition

Before we introduce the detail of the ANC scheme, there are two terminologies that we
must explain:

• Coding rate: the coding rate is the ratio of the number of redundant packets to the total number
of coded packets. For example, if k raw packets are encoded into n coded packets, then, there
are r = n− k redundant packets generated to combat the packet loss of wireless links. In this
case, the coding rate is r/n. When r/n becomes higher, it means NC generates more redundant
packets. When r/n becomes lower, it means that NC generates fewer redundant packets.

• TFR: TFR is the ratio of the number of coded groups that fail to be decoded to the total number of
the coded groups. Although NC can reduce the probability of packet loss, it can not completely
solve the problem of packet loss in wireless transmission. There are still some packets lost in
transmission. When there are too many lost packets in transmission, the receiver can not obtain
enough coded packets to support the decoding process. TFR can well quantify the ability of
the NC scheme in order to overcome the packet loss problem of a wireless link in the different
communication environments. Let Failnum denote the number of the coded group that fails to be
decoded. We use Transnum to represent the total number of groups transmitted over a certain
link. Accordingly, TFR can be calculated as Failnum/Transnum.

The coding rate is first mentioned in Section 2 and it will be used repeatedly in the rest of this
paper. TFR is the abbreviation of the transmission failure rate that is first mentioned in Section 4.1.
TFR is a vital index for evaluating the ability of the NC scheme to cope with the packet loss in the
vehicular wireless network, which will be used in Section 5.
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4.2. Network Topology Model

Figure 2 is a vehicle-to-could multipath transmission network topology. The vehicle-to-could
multipath transmission system is to combine vehicular cyber-physical systems with cloud computing
technologies to offer essential services for passengers and drivers. The architecture includes three
layers: on-board cyber-physical system, cellular-based wireless networks, and cloud platform system.
On-board cyber-physical system consists of a large number of on-board IoT devices and a mobile
access router (MAR), as shown in Figure 2. MAR is equipped with several wireless interfaces to
connect with M heterogeneous cellular wireless networks at the same time. M generally is 3 indicating
the three major Internet service providers (ISP) in China currently. On-board IoT devices, such as
smartphones and laptops, are connected with a MAR via Wi-Fi or data cable. On-board IoT devices
transmit data that include real-time record video and train running state to the cloud server via MAR.
Subsequently, MAR transmits data to the cloud through different cellular-based wireless links at the
same time. As shown in Figure 2, the cloud platform system includes the mobile edge router (MER)
and cloud servers. MER is a network aggregation terminal device deployed in the cloud, which is
used to aggregate coded data packets that are sent from different wireless links by MAR and decode
the coded packets to recover lost raw packets in transmission. Subsequently, MER forwards raw data
packets to different application servers. The ANC scheme is both deployed in MAR and MER .

MARR

Smart device

MER

Servers

CMCC UNICOM CTC

Figure 2. Vehicle-to-cloud multipath transmission network topology.

4.3. The Coding and Decoding Processes of ANC

Before we introduce the coding and decoding process of the ANC scheme in detail, we provide
Table 1 in order to illustrate the meaning of the abbreviations mentioned below.

Table 1. Abbreviation description.

Symbol Description

B Column vector of raw packets
CM Coding matrix
IM Identity matrix
E Column vector of coded packets
Ê Column vector of received coded packets after transmission
ˆCM Reconstructed coding matrix in receiver

D Decoding matrix
ki The length of raw packets group B in the i th link
ni The length of coded packets group E in the i th link
ri The number of row vectors of RM in the i th link

praw
i Packet Loss Rate of the i th link

BWi Bandwidth of the i th link
RTTi Round-trip time of the i th link
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In the entire encoding process, the ANC Mapping Module is responsible for dividing data packets
into different groups and determine the number of redundant packets. First, ANC Mapping Module
decides the number of raw packets within a group with the measured bandwidth and RTT. Let BWi
denote the bandwidth of the i th wireless link. RTTi represents the RTT of the i th wireless link.
To simplify the problem, we regard the length of the packet as the Maximum Transmission Unit
(MTU) and we suppose the BWi and RTTi are fixed when the ANC scheme adjusts the coding rate.
Accordingly, we can define The total delay for one packet in transmission according to the measurement
of RTT and bandwidth.

∆Ti = MTU/BWi + RTTi/2. (1)

Equation (1) consists of two parts: MTU/BWi and RTTi/2. MTU/BWi represents the sending
delay of one packet. RTTi consists of three parts: the propagation delay of the i th wireless link,
the queuing delay in the routers and end devices, and the processing delay in the router cache.
Accordingly, RTTi/2 represents the sum of the propagation delay, queue delay, and processing delay
of one packet in transmission. In the Equation (2), Θi+1 represents the number of packets that link
i + 1 can transmit in the time link i takes for one packet to transmit to the receiver.

Θi+1 = ∆Ti/∆Ti+1 (2)

Therefore, we can propose an algorithm to dynamically determine the proportion of coded packets
allocated on each available wireless link.

Let ni represents the number of coded packets within a coded group E in the i th wireless link,
which is the same as the number of row vectors of CM. Let ki represent the number of raw packets in
a group B before coding in the i th wireless link, which is the same as the number of column vectors
of CM. Let ri represent the number of redundant packets in a coded group E in the i th wireless link,
which is the same as the number of row vectors of RM. Let praw

i represent the packet loss rate of
the data packet that is not processed by any network coding scheme during transmission on the i
th wireless link. Hence, ni = ki + ri. The number of successfully received coded packets in E after
transmission can be calculated as (1− praw

i )ni. We can obtain the relationship between (1− praw
i )ni and

ki when considering that the receiver need obtain more than ki coded packets to recover raw packets.

rmin
i ≥ Ceil(ki

praw
i

1− praw
i

). (3)

Ceil() is a function that always rounds a number up to the next largest integer. rmin
i is the

minimum number of redundant packets in the i th wireless link that ensures the receiver can recover
all raw packets. ANC Mapping Module makes inequality (3) be used in conjunction with Algorithm 1
to determine the number of coded packets (ki) in the i th wireless link. The combination makes coded
packets in each available link have the ability to reduce the packet loss of the wireless link. Let W
denote the total number of data packets that are obtained by ANC Mapping Module from different
applications. To simplify equations, we suppose there are 3 available wireless links, and the packets
distribution proportion of link 1 is the minimum. Therefore, k1 + k2 + k3 = W and Θ1 = 1 according
to Algorithm 1. ki(1 +

pi
1−pi

) represents the number of coded packet. Therefore, we proposed a system
of linear equations for packet dispatch, as below,

k1 + k2 + k3 = W

k1(1 +
praw

1
1−praw

1
)Θ2 = k2(1 +

praw
2

1−praw
2

)

k1(1 +
praw

1
1−praw

1
)Θ3 = k3(1 +

praw
3

1−praw
3

)

(4)

k1, k2, k3 could be obtained by solving Equation (4). The number of redundant packets ri is equal to

ki
praw

i
1−praw

i
. In order to generalize Equation (4), let Θmin denote the minimum of Θ and imin denote the link
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with Θmin distribution proportion. The number of available links is N. We define i ∈ N/Θi 6= Θmin to
represent every available link, except the link whose packets distribution proportion is the minimum.
The system of linear equations is concluded, as below,

∑N
i=1 ki = W

kimin(1 +
praw

imin
1−praw

imin
)Θi = ki(1 +

praw
i

1−praw
i

) ∀i ∈ N/Θi 6= Θmin
(5)

The number of raw packets in the i th link can be obtained with the linear equations system (5).

Subsequently, ri is Ceil(ki
praw

i
1−praw

i
). ANC Mapping Module transmits the information including ki and ri

of the i th link to the ANC Coding Module. According to ki and ri, the ANC Coding Module determines
the row number and column number of CMi. We only consider one wireless link to simplify the
description. Therefore, CMi is replaced by CM and ki, ni, ri is replaced by k, n, r. Each group has
k raw packets. k is different in each available link. ANC Coding Module regards each group as a
column vector,

B =
[
b1 b2 · · · bk

]T
(k× 1). (6)

Algorithm 1 Coded packets distribution
Input: measured RTT, measured BW, estimated next moment PLR
Output: packets distribution proportion Θ
1: This algorithm is used to determine the proportion of packets allocated on each available wireless

link
2: ∆T=[];∆max=0;Θ=[];
3: for each available Path i do
4: ∆Ti =

1
BWi

+ RTTi
2 ;

5: ∆T.append(∆Ti);
6: end for
7: for j in ∆T do
8: if j ≥ ∆temp then
9: ∆max = j;

10: end if
11: end for
12: for k = 0 to len(∆T)− 1 do
13: Θk =

∆max
∆Tk

;
14: Θ.append(Θk);
15: end for
16: Ceil(Θ)
17: return Θ

CM is coding matrix that consists of k rows identity matrix (IM) and n − k rows linearly
independent redundant matrix (RM),

CM =

[
IMk×k

RM(n−k)×k

]
=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

ak+1,1 ak+1,2 · · · ak+1,k
ak+2,1 ak+2,2 · · · ak+2,k

...
...

. . .
...

an,1 an,2 · · · an,k


n×k

. (7)
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RM and CM have k column vectors, k is the number of raw packets. n is the total row number of
CM. n− k is the number of redundant packets. RM from CM is composed of (n− k)× k Vandermonde
matrix, Vandermonde matrix is represented, as follows,

RM =



1 1 · · · 1
ak+2,1 ak+2,2 · · · ak+2,k
a2

k+2,1 a2
k+2,2 · · · a2

k+2,k
a3

k+2,1 a3
k+2,2 · · · a3

k+2,k
...

...
. . .

...
an−k−1

k+2,1 an−k−1
k+2,2 · · · an−k−1

k+2,k


(n−k)×k

. (8)

Let ak+2,1, ak+2,2, . . . , ak+2,k be 1, 2, . . . , k. The process of coding is linear operation shown in
Formula (9), multiply CM and B to obtain a group of coded packets E. The length of column vector E
is n.

En×1 = CMn×k × Bk×1(n ≥ k). (9)

To illustrate the process of coding in a more intuitive perspective, we explain Formula (9) by the
following Figure 3. In Figure 3, CM is a coefficient matrix of the system of linear equations. There are
five packets divided into one group. The coding operation is the multiplication of CM and group B.
Because CM consists of k rows IM and n− k rows RM, group E consists of raw group packets B and
redundant packets (C1, C2, C3) generated by RM. Some packets in group E could be lost in multipath
transmission. In Figure 3, B1, B4, and C1 packets are lost.

* =

B
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Figure 3. Coding process.

Due to the packet loss in transmission, receiver can not get the complete coded packets group E.
Therefore, E is converted into Ê. Ê is formed by packets that are not lost in transmission. In Figure 3,
Ê includes B2, B3, B5, C2, and C3 packets.

The IP header of received coded packet has a 6-tuple θ = (MSN, RPL, CPL, SSN, GN, LN),
which is introduced in Figure 4. MSN is used in order to determine the row vector sequence number
of the encoding matrix corresponding to the encoded packet, CPL is used to confirm the total number
of coded data packets within a group and RPL is used to conform the number of redundant packets
within a group. We use CPL to confirm the number of row vectors in matrix CM and use CPL− RPL
to confirm the number of column vectors in matrix CM. Because the coefficients of RM is defined as
1, 2, . . . , k, in receiver, ANC can confirm every coefficients in RM according to the CPL and CPL− RPL.
Because of the packets loss in transmission, CM is converted into ˆCM. ˆCM includes a certain number
of row vectors belonging to RM and a certain number of row vectors belonging to IM. In the receiver,
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ANC can determine the row vector in ˆCM according to the MSN and RM. For example, in Figure 3,
ˆCM consists of the row vectors that are corresponding to B2, B3, B5, C2 and C3. Due to row vectors in
ˆCM are linearly independent by each other, ˆCM is invertible.

Header 

length
Version Service Field Total Length

Identification Fregment Offset

Protocol Protocol Header Checksum

Source IP Address

Destination IP Address

Matrix Sequence Number Coded Packets Length

Link NumberGroup NumberSend Sequence Number

Coded Data part

Redundant Packet 

Length

Flag

Figure 4. Customized header format in IP packet.

We conclude the core idea of decoding in Formula (10). As long as any k packets in the vector E
are received, we could obtain Ê. Because ˆCM is invertible, D could be calculated as an inverse matrix
of ˆCM. We usually call D the decoding matrix. Ê can be multiplied with the decoding matrix D to
recover the original k raw packets.

Bk×1 = Dk×k × Êk×1. (10)

4.4. Mathematical PLR Estimation Model

We need to solve the system of linear Equation (4) to determine the number of raw packets k
and the number of redundant packets r in order to dynamically adjust the coding rate to counter
the variation of the wireless link. However, the coefficient praw

i is a random variable, we need a
mathematical model to estimate the next moment raw PLR to confirm praw

i . In this subsection, we
introduce the detail of next moment raw PLR estimation, which includes two steps: average PLR
acquisition and raw PLR estimation. In data acquisition, we use MAR to transmit packets that are not
processed by any network coding schemes with the customized header through a single vehicular
wireless link over a period of time to calculate the average raw PLRs of a single link. In PLR estimation,
we use WDD to process the average raw PLR in order to mitigate the estimation interference caused
by the violent quality fluctuation of the vehicular wireless network on a small time scale. ANC regards
raw PLR as a continuous random variable. Based on the average raw PLRs, ANC could obtain the
probability density function (PDF) of raw PLR and estimate the next moment raw PLR with the
method of HMM. The estimated next moment raw PLR is used in the system of linear Equation (4) to
dynamically adjust the coding rate.

4.4.1. Average PLR Acquisition

We first introduce the process of data acquisition. The average raw PLR is calculated with the
information stored in the customized header. The customized header is shown in Figure 4. Before the
coding process, MAR would encapsulate the customized header and probe IP packet into the data part
of the new IP data packet. After that, MAR sends the new IP data packet to MER to obtain the statistics
of raw PLR. The customized header includes a six-tuple θ = (MSN, RPL, CPL, SSN, GN, LN). MSN
is used to determine the row vector sequence number of the encoding matrix, RPL is used to confirm
the number of redundant packets within a group, CPL is used to confirm the total number of coded
data packets within a group, SSN is the sequence number of successfully transmitted coded IP data
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packet in a group, GN is used to confirm which group coded packet belongs to, and LN is used
to confirm the wireless link from which coded IP data packet is transmitted. When we calculate
average PLR, we only send coded packets over a single link. Accordingly, we use four parameters
SSN, CPL, GN, LN mentioned above to calculate the average PLR of each wireless link through the
following Algorithm 2.

Algorithm 2 Average PLR acquisition
Input: GN, LN, SSN, CPL
Output: averPLRset
1: This algorithm is used to calculate average packet loss rate over time
2: averPLRset=[];
3: for each available Path i do
4: i.sendnum=0;i.recvnum=0;i.group=[];i.averPLR=0;
5: for each received packet j do
6: if j.LN==i then
7: i.recvnum ++;
8: if i.group=[] or j.GN not in i.group then
9: i.sendnum+ = j.CPL;

10: i.group.append(j.GN);
11: end if
12: end if
13: end for
14: end for
15: for each available Path i do
16: i.averPLR = (i.sendnum− i.recvnum)/i.sendnum
17: averPLRset.append(i.averPLR)
18: end for
19: return averPLRset

4.4.2. Raw PLR Estimation

Reference [16] indicates that the network quality fluctuations have been more fierce in the
high-speed scenario for the vehicular wireless networks. Many estimation results of network quality
are affected by the uncertain violent fluctuation of the vehicular wireless network. To obtain a better
PLR estimation, we make a pre-processing after we get calculated average raw PLR with Algorithm 2.
We use Wavelet Domain Denoising (WDD) to process the average raw PLRs because WDD is a useful
transform analysis method to denoise irregular fluctuations in signals and retain signal characteristics.
WDD includes three steps: first, process the noisy signal with wavelet transform; second, deal with
the wavelet coefficients to remove the noise; and third, carry out inverse wavelet transform to get the
denoised signals. We choose the Daubechies8 wavelet as the wavelet basis function used in WDD.
Figure 5a shows the average raw PLR and the denoised average raw PLR preprocessed by WDD,
respectively. Figure 5b is the comparison of the average raw PLR and the denoised average raw
PLR preprocessed by WDD, we can find the processed average raw PLRs ignore extreme shifts that
caused by the violent quality fluctuation of the vehicular wireless network on a small time scale.
These extreme shifts could cause interference to the next moment raw PLR estimation. The processed
average raw PLR still retains the original characteristics, and the processed average raw PLR reflects
the overall trend of PLR. In Section 4.4.2, we will compare the PLR estimation error range of the
WDD + HMM method with that of the HMM method to prove the rationality and validity of the
WDD + HMM method.
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Figure 5. The wavelet domain de-noising process of average raw PLR.

After introducing the data acquisition and data pre-processing, we talk about the HMM of PLR
estimation. We propose an HMM that includes a latent variable and an observed variable. The latent
variable is a discrete random variable and it represents the quality of vehicular wireless networks.
The states of the latent variable are defined as S = {G, N, P}, in which G means Good latent state,
P means Poor latent state, and N means Neutral latent state. In order to simplify the mathematical
derivation and calculation, we make S1 represent Good, S2 represent Neutral and S3 represent Poor.
The observed variable is a continuous random variable and it represents the PDF of raw PLR. The top
two layers in Figure 6 are a graphical depiction of the HMM for the relationship between the latent
variable and the observed variable.

BS1 BS2

V

Hidden 

Layer

Observed 

Layer

Neutral

Gaussian Distribution 

Good

Poor

Figure 6. The estimation model of PLR.

Solid lines with arrow in the hidden layer represent the state transition of the latent variable.
Let αij denote the state transition conditional probability. Given that the state of the latent variable is i
at time t, the probability that the state of the latent variable is j at time t + 1 equals αij.

αij = p(st+1 = j|st = i), i, j ∈ S. (11)
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A = {αij} is the matrix of state transition conditional probabilities, where αij has been defined in
Equation (11). The latent variable has 3 states, so the matrix size of A is 3× 3.

Dash lines with arrow between the hidden layer and observed layer describe the emission of the
observed variable. Because the observed variable is not a discrete random variable, the emit probability
matrix does not exist. Instead, the conditional probability density function of the observed variable
can be defined directly, which follows one-dimensional Gaussian distribution N(σ, µ).

f (x|S; σ, µ) =
1

2π
p
2

∣∣∣σ∣∣∣EXP{−1
2
(x− µ)Tσ−1(x− µ)} (12)

The Gaussian distribution of the observed variable corresponding to different latent variable
states Si is given as,

praw ∼ Ni(σi, µi|Si), i = 1, 2, 3, Ni ∈ N, Si ∈ S. (13)

Parameter µi represents the mean of the observed variable corresponding to the latent variable
state Si, note that, µ1 ≤ µ2 ≤ µ3. Initially, there is an initial probability distribution that is given to
describe the state selection of the latent variable. Where,

Π = (Π1, Π2, Π3). (14)

HMM is usually defined as a three-tuple λ = (A, N, Π), where:

• A={αi,j} is the matrix of state transition conditional probability, where αij has been defined in
Equation (11).

• N={Ni} is the set of PDF of the observed variable corresponding to different latent variable states,
where Ni has been defined in Equation (13).

• Π = (Π1, Π2, Π3) are the initial state probability distribution, Πi is the probability that the system
starts from latent variable state Si.

To illustrate this model in a more intuitive perspective, we put this model in a high-speed railway
(HSR) network scenario. The link quality of cellular wireless link dynamic changes with the movement
of the train. As the bottom layer in Figure 6 depicts, BS1 and BS2 are two Base Stations (BSes) of the
same ISP, they represent different network link choices for the network adapter interface of MAR.
When the train is close enough to BS1, but away from BS2, the adapter interface is connected with
BS1, network quality performs Good due to the shortest distance between train and BS1, so we use
latent variable state S1 to represent this link quality state. When the train is in a position where is
nearly the same distance from the two BSes, network quality performs Neutral, because the distance
between the train and BS1 is becoming large, but the distance between the train and BS2 is smaller,
some packets are dropped caused by the handoff between BS1 and BS2, so, we use latent variable
state S2 to represent this link quality situation. When the train is far away from two BSes, it’s hard to
transfer data packets to the two BSes, network quality performs Poor, which is represented by state
S3. The state transition of the latent variable takes place at a large time scale and it cannot be directly
observed. The observable raw PLR variable changes on a relatively small time scale and it follows
different probability distributions that correspond to different latent variable states.

We propose Algorithm 3 to estimate the next moment raw PLR. Algorithm 3 can be summarized
into the following three steps:

1. Model learning: we use 10 observed raw PLR points to train this model by Baum-Welch algorithm.
2. Prediction: we estimate the classification of 10 raw PLR points by the Viterbi algorithm and

calculate the expectation of next moment raw PLR according to the state transition probability
matrix and the conditional probability density function of the observed variable.

3. Update: we combine the estimated raw PLR point with the previous nine data points into a new
training set, go to step 1 until the data set runs out.
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Algorithm 3 Next moment raw PLR estimation
Input: average raw PLRs
Output: estimated next moment raw PLRs
1: This algorithm is used to estimate next moment packet loss rate
2: Nl means the Gaussian distribution corresponding to the l th latent variable
3: TrainingTimes=y;TrainingSetNum=x;LatentVariableStateNum=3;
4: for each available Path i do
5: i.TrainingSet=[];
6: end for
7: for j = 0 to TrainingSetNum− 1 do
8: for each available Path i do
9: averPLR=averagePLRacquisition()[i];

10: i.TrainingSet.append(averPLR);
11: end for
12: end for
13: estimationPLRset=[];
14: for each available Path i do
15: i.TrainingSet = wavelet(i.TrainingSet)
16: InitialAssignment(A, N, Π);
17: i.estimationPLR=0;Index=0;LatentVariable=[];
18: for k = 0 to TrainingTimes− 1 do
19: (A, N, Π)=Baum−Welch(A, N, Π);
20: end for
21: LatentVariable = Viterbi(A, N, Π);
22: Index = LatentVariable[TrainingSetNum− 1];
23: for l = 0 to LatentVariableStateNum− 1 do
24: i.estimationPLR+ = A[Index][l] ∗ Nl .mean();
25: end for
26: estimationPLRset.append(i.estimationPLR);
27: end for
28: return estimationPLRset

We define the real time consumption of once HMM training with x points for a single wireless
link is f (x). Some samples of f (x) are listed in Table 2. According to the network topology described
in Section 4.2, there are 3 wireless links in the vehicle-to-cloud multipath transmission. Therefore,
we need to train the HMM for 3 wireless links, respectively. We define the training times for each
link is y. Accordingly, the total real time consumption of y times HMM training with x points for 3
wireless links is 3 ∗ f (x) ∗ y. The packet sending interval of NS-3 in simulation is 1 second, which
will be introduced in Section 5.1. We usually set training times y to 25. In order to make the total
real time consumption 3 ∗ f (x) ∗ y match the packet sending interval of NS-3 in simulation, the real
time consumption of once HMM training for a single link can be calculated as 1/(25 ∗ 3) = 0.0133 s.
Therefore, the number of training points x is 10, according to Table 2.

Table 2. The real time consumption of once Hidden Markov Model (HMM) training with different
points for a single link.

The Number of Training Points Real Time Consumption for Single Link

10 0.01332179 s
11 0.01466731 s
100 0.02417990 s
110 0.02523301 s

1000 0.03267589 s
1100 0.03368711 s
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The crucial criteria for evaluating the proposed HMM of the ANC scheme is to verify whether it
can accurately predict the PLR in different vehicular network conditions. [35] proposed an estimation
algorithm for PLR on VANET, which named RPLE. The core idea of RPLE is to use few probe packets
and enhance the estimation accuracy on wireless networks. We evaluate the PLR estimation error
range of the ANC scheme when compared with the RPLE algorithm. We use ErrPLR

i to denote the
estimation error. Estimationi means the i th estimation result and PLRi means the i th PLR point in
validation set.

ErrPLR
i =

‖Estimationi − PLRi‖
PLRi

. (15)

We collected PLR points in high-speed, low-speed, and static scenarios. Subsequently, we calculated
the estimation error of three different methods in different mobile scenarios through a cumulative
distribution function (CDF) graph. Figure 7 consists of three subfigures, in each subfigure, WDD +

HMM represents the HMM estimation method with the average raw PLRs that are processed by WDD,
WDD is introduced in the first paragraph of Section 4.4.2, WDD + HMM is the estimation method used
in the ANC scheme. HMM represents the HMM estimation method without WDD processing. RPLE
represents the estimation method that is used by [35]. In the high-speed scenario, 90% estimation errors of
PLR for the WDD+ HMM method are within 0.1, 75% estimation errors of PLR for the HMM method are
within 0.1, and 70% estimation errors of PLR for the RPLE method are within 0.1, as shown in Figure 7a.
All of the estimation errors of PLR for the WDD + HMM method are within 0.4, all estimation errors
of PLR for the HMM method are within 0.7, and all estimation errors of PLR for the RPLE method are
also within 0.7. Therefore, the estimation error range of PLR for the WDD + HMM is 30% smaller than
that for the RPLE method and HMM method in the high-speed scenario. In the low-speed scenario, 95%
estimation errors of PLR for the WDD + HMM method are within 0.1, 90% estimation errors of PLR
for the HMM method are within 0.1, and 85% estimation errors of PLR for the RPLE method are within
0.1, as shown in Figure 7b. All of the estimation errors of PLR for the WDD + HMM method are within
0.4, all estimation errors of PLR for the HMM method are within 0.4, and all estimation errors of PLR
for the RPLE method are within 0.5. Therefore, the estimation error range of PLR for ANC scheme is
10% smaller than that for the RPLE method in the low-speed scenario. Figure 7c shows that, in the static
scenario, 99% estimation errors of PLR for the WDD + HMM method and HMM method are within 0.1
and 98% estimation errors of PLR for the RPLE method are within 0.1. All estimation errors of PLR for
the WDD + HMM method are within 0.2 and all estimation errors of PLR for the HMM method and
RPLE method are within 0.3. Therefore, the estimation error range of PLR for the ANC scheme is 10%
smaller than that for RPLE and HMM in the static scenario. To sum up, the estimation results of the
WDD + HMM method can filter the extreme shifts that are caused by the violent quality fluctuation of
the vehicular wireless network on a small time scale to reduce the estimation error range of PLR in the
high-speed scenario.
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Figure 7. Comparison of estimation error range of PLR for different methods.

5. Results

In this section, we carry out a lot of simulations and real experiments in order to verify the superior
of the ANC scheme compared with other NC schemes. First, we introduce our simulation setup in
Section 5.1. Subsequently, in Section 5.2, we choose different link quality status in simulations to
evaluate the throughput and transmission failure rate performance of the ANC scheme compared with
the BNNC scheme, GFNC scheme, and OR scheme to verify the ability to combat the PLR variations
of wireless links. Next, we verify the rationality of the simulation results through real experiments.
We introduce our real experiment setup in Section 5.3. Finally, in Section 5.4, we evaluate the throughput
and transmission failure rate performance of the ANC scheme compared with the BNNC scheme, GFNC
scheme, and OR scheme in different real mobile scenarios in order to prove the rationality and validity
of the simulation results.

5.1. Simulation Setup

For the simulations, we use Network Simulator 3 (NS-3) version 3.28 as the simulation platform,
which is a discrete-event network simulator for Internet systems. NS3 is deployed in the Ubuntu 16.04
operating system and compiled with g++ 5.4.0. All of the NC schemes mentioned above were deployed
in NS-3. In the simulation environment, there are a client and a server for sending and receiving data
packets. The client simulates the MAR deployed in the vehicle and the server simulates the MER
deployed in the cloud, the packet sending interval of the client in simulation is 1 second. To simulate
the vehicle-to-cloud multipath transmission in vehicular IoT, we set three mutually independent
wireless links between the client and server in NS-3. Three links have the same bandwidth and
delay configuration (bandwidth is 50 Mbps and delay is 15 ms). According to the different packet
loss rate configuration of wireless links that are listed in Table 3, we simulate different wireless
communication scenarios. Configuration 1 represents the static communication scenario, configuration
2 represents the low-speed communication scenario, and configuration 3 represents the high-speed
communication scenario.

Table 3. Different configurations of packet loss rate.

Configuration Link A Link B Link C

1 0 0 0.1%
2 0.5% 0.6% 0.8%
3 1% 0.5% 3%

5.2. Network Performance of Different Network Coding Schemes in Simulations

The transmission failure rate is the ratio of the number of the coded groups that fail to be decoded
to the total number of the coded groups. The transmission failure rate differs from PLR, because PLR
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regards a data packet as a statistical unit, but the transmission failure rate regards a coded group as a
statistical unit. Suppose that there is only 1 group in transmission and this coded group consists of
10 coded data packets, and the coding rate of this coded group is 0.5, which means when more than
5 coded packets are lost in transmission, this coded group fails to be decoded. When 7 packets are lost
in transmission, the transmission failure rate is 1, but the PLR is 0.3. TFR is an important metric for
quantifying the ability of the NC scheme in order to overcome the packet loss problem of a wireless
link in the different communication environments.

The simulation results are shown in Figure 8. Figure 8 consists of 3 subfigures, and each subfigure
represents different communication scenario in simulations. Figure 8a shows the transmission failure
rate and throughput performance of different NC schemes in a static communication environment.
The transmission failure rates of all NC schemes are 0 in a static communication environment, but ANC
has the highest throughput because ANC decreases its coding rate to reduce unnecessary bandwidth
consumption resulted by redundant packets on the basis of overcoming the packet loss in transmission.
The average throughput of ANC is close to 19.5 Mbps, the average throughput of BNNC is 18 Mbps,
and the average throughput of GFNC is close to 17 Mbps. However, the average throughput of OR
is close to 9 Mbps, which is much lower than these of other NC schemes, because OR has the most
redundant packets, each time a data packet in one available wireless link is successfully received by
the receiver, the remaining 2 redundant packets need to be discarded simultaneously in simulations.
Figure 8b represents a low-speed communication environment, OR has the highest transmission failure
rate compared with other schemes, because OR avoid packet loss by sending more replicated packets,
OR actually can not recover lost packets. The transmission failure rate of ANC is still 0 but the average
throughput of ANC is a little lower than that in the Figure 8a, this means ANC increase the number
of redundant packets to overcome packet loss in transmission, more redundant packets consume
more bandwidth, which results in relatively lower throughput. Figure 8c represents a high-speed
communication environment, the throughput of the OR scheme is close to 5 Mbps, the throughput of
ANC is close to 14 Mbps, the throughput of BNNC is close to 13 Mbps, and the throughput of BNNC is
close to 11 Mbps. The throughput performance of all schemes degrades, because the PLRs of wireless
links become higher and there is much more packet loss in transmission.
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Figure 8. The transmission failure rate and throughput performance of different schemes in simulations.
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We put together the simulation data of a certain NC scheme in different scenarios in order
to calculate the variance of transmission failure rate and the variance of throughput for different
NC schemes. The variance of the simulation data gathered from different scenarios can reflect the
fluctuation extent of throughput and transmission failure rate for different network coding schemes
when the packet loss rate of wireless link changes. The lower the variance, the stronger the ability to
counter the variations of PLR in wireless links. In order to make Figure 9a clearer, we use common
logarithm as the ordinate in the Figure 9a, the abscissa in Figure 9 is the type of NC schemes. As shown
in Figure 9, the throughput variance of ANC is 4, the transmission failure rate variance of ANC is close
to 10−6. The ANC scheme has the lowest variances of transmission failure rate and throughput, which
means that the ANC scheme has the strongest ability to counter the variations of PLR in wireless links
when compared with other NC schemes for vehicle-to-cloud multipath transmission.
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Figure 9. The transmission failure rate variances and throughput variances of different schemes in
simulations. The variances reflect the fluctuation range of throughput and transmission failure rate for
different network coding schemes when the packet loss rate of wireless link changes.

5.3. Real Experiment Setup

For the real experiments, we evaluate the throughput and transmission failure rate performance
of the ANC scheme in the static environment and high-speed mobile environment. We choose the
high-speed railway as the high-speed mobile environment. Along the Beijing-Guangdong express
railway in China, we test the throughput and transmission failure rate performance of the ANC
scheme, BNNC scheme, GFNC scheme, and OR scheme. We give the performance comparisons of
different schemes in Section 5.4. Real experiment results verify the rationality and validity of the
simulation results.

5.4. Network Performance of Different Network Coding Schemes in Real Experiments

The real experiment results are shown in Figures 10 and 11. Figure 10 has two subfigures,
Figure 10a is a comparison of the real-time throughput performance for different schemes in a static
scenario. Figure 10b is a comparison of the real-time throughput performance for different schemes
in a high-speed mobile scenario. For each subfigure in Figure 10, the abscissa represents the time(s),
and the ordinate represents the throughput (Mbps). The black dotted line in each subfigure represents
the general trend of network throughput for the ANC scheme. In a static scenario, ANC has the highest
average network throughput, the throughput of the ANC scheme is close to 20 Mbps, as shown in
Figure 10. The average throughputs of BNNC and GFNC schemes are close to 17 Mbps and 15 Mbps,
respectively. The average throughput of the OR scheme is close to 12 Mbps because there is no packet
loss in the static scenario, the throughput performance of the OR scheme is not affected by packet loss.
In a high-speed mobile scenario, the ANC scheme also has the highest throughput, and the average
throughput of the ANC scheme is close to 12.5 Mbps, as shown in Figure 10b. The average throughput
of the BNNC scheme is close to 11 Mbps, the average throughput of the GFNC scheme is close to
10 Mbps, and the average throughput of the OR scheme is close to 5 Mbps. In terms of comparison with
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Figure 10a,b, we can find that the throughput performance of all schemes degrades in a high-speed
scenario and the throughput degradation of the OR scheme is most obvious compared with other NC
schemes. With the increase of moving speed, cellular wireless links are under the influence of Signals
Fading and Doppler Effects, the PLR of the link becomes higher, there is much more packet loss in
transmission. Therefore, the throughput performance of all NC schemes degrades.

Figure 11 has two subfigures, Figure 11b is a comparison of the average transmission failure
rate in a static scenario and high-speed scenario for different schemes. Figure 11a is a comparison of
the throughput variance for different schemes. We put together the real experiment data of a certain
NC scheme from the static scenario and high-speed scenario in order to calculate the variance of
throughput for different NC schemes to reflect the ability to counter the variations of link quality in
wireless links. In Figure 11b, the average transmission failure rates of all NC scheme in the high-speed
scenario is much higher than these of all NC schemes in the static scenario. We can find that OR has the
highest average transmission failure rate when compared with other NC schemes in the high-speed
scenario and static scenario. The transmission failure rate of the OR scheme also increases most
obviously. This means that OR is easier affected by network fluctuations than other NC schemes. The
throughput variance of the ANC scheme is the lowest compared with other NC schemes because the
ANC scheme determines a reasonable network coding rate according to the estimated PLR to conquer
the rapid changes of link quality, as shown in Figure 11a.

In terms of throughput and transmission failure rate performance, we can find real experiment
results are similar to the simulation results, which also verifies the rationality of simulations and the
usability of the ANC scheme.
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Figure 10. The real-time throughput performance of different schemes in high-speed and static
scenarios: (a) The real-time throughput performance of different network coding schemes in the static
scenario; (b) The real-time throughput performance of different schemes in the high-speed scenario.
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Figure 11. The average transmission failure rates and the throughput variances of different network
coding schemes in real experiments. (a) the comparison of average transmission failure rates of each
network coding scheme in the high-speed scenario and static scenario; and, (b) the variances of the
combined data set of throughput in the high-speed scenario and static scenario, which reflect the
fluctuation range of throughput for different network coding schemes when link quality changes.
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6. Conclusions

In this paper, ANC is proposed in order to dynamically adjust the coding rate to counter the
variations of link quality. We proposed a brand-new network coding scheme combined with HMM
to significantly improve network throughput and reduce packet loss for vehicle-to-cloud multipath
communication in vehicular IoT. Besides, the estimation part of the ANC scheme is a conjunction of
wavelet and HMM to conquer the PLR variations in each available wireless link. When considering the
differences between wireless links, the ANC scheme achieves the trade-off between the transmission
reliability and the bandwidth cost based on the feedback of the estimated instantaneous PLR. In the
end, extensive simulations and real tests are carried out along with comparisons with other NC
schemes in order to verify the superiority of the ANC scheme in terms of throughput and transmission
failure rate performance. The results show that ANC has the lowest transmission failure rate and
achieves a smaller throughput degradation when network fluctuating. Under the background of
the rapid development of vehicular IoT, the ANC scheme plays an important role in setting up a
new method for improving the transmission quality of the cellular-based vehicular network. In our
future work, we will focus on the research of combining multipath transmission with hierarchical edge
computing in high-speed cellular-based vehicular network.

Author Contributions: Conceptualization, C.Y. and P.D.; methodology, C.Y. and H.Z.; software, C.Y.; validation,
C.Y., P.D. and T.Z.; formal analysis, X.D. and M.G.; writing–original draft preparation, C.Y.; writing–review and
editing, P.D.; supervision, T.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Fundamental Research Funds for the Central Universities
under Grant No.2019YJS015, in part by the National Natural Science Foundation of China (NSFC) under Grant
61872029, and in part by the Beijing Municipal Natural Science Foundation under Grant 4182048.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Awan, K.A.; Ud Din, I.; Almogren, A.; Guizani, M.; Khan, S. StabTrust—A Stable and Centralized Trust-Based
Clustering Mechanism for IoT Enabled Vehicular Ad-Hoc Networks. IEEE Access 2020, 8, 21159–21177.
[CrossRef]

2. Du, Z.; Wu, C.; Yoshinaga, T.; Yau, K.A.; Ji, Y.; Li, J. Federated Learning for Vehicular Internet of Things:
Recent Advances and Open Issues. IEEE Open J. Comput. Soc. 2020, 1, 45–61. [CrossRef] [PubMed]

3. Peng, C.; Wu, C.; Gao, L.; Zhang, J.; Alvin Yau, K.L.; Ji, Y. Blockchain for Vehicular Internet of Things: Recent
Advances and Open Issues. Sensors 2020, 20, 5079. [CrossRef] [PubMed]

4. Gu, J.; Sun, B.; Du, X.; Wang, J.; Zhuang, Y.; Wang, Z. Consortium Blockchain-Based Malware Detection in
Mobile Devices. IEEE Access 2018, 6, 12118–12128. [CrossRef]

5. He, W.; Yan, G.; Xu, L.D. Developing Vehicular Data Cloud Services in the IoT Environment. IEEE Trans.
Ind. Inform. 2014, 10, 1587–1595. [CrossRef]

6. Su, Y.; Lu, X.; Huang, L.; Du, X.; Guizani, M. A Novel DCT-Based Compression Scheme for 5G Vehicular
Networks. IEEE Trans. Veh. Technol. 2019, 68, 10872–10881. [CrossRef]

7. Duo, R.; Wu, C.; Yoshinaga, T.; Zhang, J.; Ji, Y. SDN-based Handover Scheme in Cellular/IEEE 802.11p
Hybrid Vehicular Networks. Sensors 2020, 20, 1082. [CrossRef]

8. Mandala, D.; Dai, F.; Du, X.; You, C. Load Balance and Energy Efficient Data Gathering in Wireless Sensor
Networks. In Proceedings of the 2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems,
Vancouver, BC, Canada, 9–12 October 2006; pp. 586–591.

9. Brown, J.; Du, X. Detection of Selective Forwarding Attacks in Heterogeneous Sensor Networks. In Proceedings
of the 2008 IEEE International Conference on Communications, Beijing, China, 19-23 May 2008; pp. 1583–1587.

10. Xu, C.; Jin, W.; Zhao, G.; Tianfield, H.; Yu, S.; Qu, Y. A Novel Multipath-Transmission Supported Software
Defined Wireless Network Architecture. IEEE Access 2017, 5, 2111–2125. [CrossRef]

11. Wu, J.; Yuen, C.; Wang, M.; Chen, J. Content-Aware Concurrent Multipath Transfer for High-Definition
Video Streaming over Heterogeneous Wireless Networks. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 710–723.
[CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2968948
http://dx.doi.org/10.1109/OJCS.2020.2992630
http://www.ncbi.nlm.nih.gov/pubmed/32386144
http://dx.doi.org/10.3390/s20185079
http://www.ncbi.nlm.nih.gov/pubmed/32906707
http://dx.doi.org/10.1109/ACCESS.2018.2805783
http://dx.doi.org/10.1109/TII.2014.2299233
http://dx.doi.org/10.1109/TVT.2019.2939619
http://dx.doi.org/10.3390/s20041082
http://dx.doi.org/10.1109/ACCESS.2017.2653244
http://dx.doi.org/10.1109/TPDS.2015.2416736


Sensors 2020, 20, 5902 21 of 22

12. Wang, W.; Wang, X.; Wang, D. Handover optimisation for multipath transmission control protocol-based
concurrent multipath transfer in heterogeneous networks. Electron. Lett. 2019, 55, 715–716. [CrossRef]

13. Ming Li.; Lukyanenko, A.; Yong Cui. Network coding based multipath TCP. In Proceedings of the 2012
Proceedings IEEE INFOCOM Workshops, Orlando, FL, USA, 25–30 March 2012; pp. 25–30.

14. Palash, M.R.; Chen, K.; Khan, I. Bandwidth-Need Driven Energy Efficiency Improvement of MPTCP Users
in Wireless Networks. IEEE Trans. Green Commun. Netw. 2019, 3, 343–355. [CrossRef]

15. Dong, P.; Zheng, T.; Du, X.; Zhang, H.; Guizani, M. SVCC-HSR: Providing Secure Vehicular Cloud Computing
for Intelligent High-Speed Rail. IEEE Netw. 2018, 32, 64–71. [CrossRef]

16. Zhang, Y.; Dong, P.; Yu, S.; Luo, H.; Zheng, T.; Zhang, H. An Adaptive Multipath Algorithm to Overcome the
Unpredictability of Heterogeneous Wireless Networks for High-Speed Railway. IEEE Trans. Veh. Technol. 2018,
67, 11332–11344. [CrossRef]

17. Li, L.; Xu, K.; Wang, D.; Peng, C.; Zheng, K.; Mijumbi, R.; Xiao, Q. A Longitudinal Measurement Study of
TCP Performance and Behavior in 3G/4G Networks Over High Speed Rails. IEEE/ACM Trans. Netw. 2017,
25, 2195–2208. [CrossRef]

18. Kafaie, S.; Chen, Y.; Dobre, O.A.; Ahmed, M.H. Joint Inter-Flow Network Coding and Opportunistic Routing
in Multi-Hop Wireless Mesh Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018,
20, 1014–1035. [CrossRef]

19. Chakchouk, N. A Survey on Opportunistic Routing in Wireless Communication Networks. IEEE Commun.
Surv. Tutor. 2015, 17, 2214–2241. [CrossRef]

20. Bassoli, R.; Marques, H.; Rodriguez, J.; Shum, K.W.; Tafazolli, R. Network Coding Theory: A Survey.
IEEE Commun. Surv. Tutorials 2013, 15, 1950–1978. [CrossRef]

21. Cui, Y.; Wang, L.; Wang, X.; Wang, H.; Wang, Y. FMTCP: A Fountain Code-Based Multipath Transmission
Control Protocol. IEEE/ACM Trans. Netw. 2015, 23, 465–478. [CrossRef]

22. Xu, C.; Li, Z.; Zhong, L.; Zhang, H.; Muntean, G. CMT-NC: Improving the Concurrent Multipath Transfer
Performance Using Network Coding in Wireless Networks. IEEE Trans. Veh. Technol. 2016, 65, 1735–1751.
[CrossRef]

23. Zhang, Y.; Dong, P.; Yu, Y.; Du, X.; Luo, H.; Zheng, T.; Guizani, M. A Bignum Network Coding Scheme for
Multipath Transmission in Vehicular Networks. In Proceedings of the 2018 IEEE Global Communications
Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018; pp. 206–212.

24. Xu, C.; Li, Z.; Li, J.; Zhang, H.; Muntean, G. Cross-Layer Fairness-Driven Concurrent Multipath Video Delivery
Over Heterogeneous Wireless Networks. IEEE Trans. Circ. Syst. Video Technol. 2015, 25, 1175–1189.

25. Chung-Ming Huang.; Ming-Sian Lin. RG-SCTP: Using the relay gateway approach for applying SCTP in
vehicular networks. In Proceedings of the IEEE symposium on Computers and Communications, Riccione,
Italy, 22–25 June 2010; pp. 139–144.

26. Pang, S.; Yao, J.; Wang, X.; Ding, T.; Zhang, L. Transmission Control of MPTCP Incast Based on Buffer
Balance Factor Allocation in Data Center Networks. IEEE Access 2019, 7, 183428–183434. [CrossRef]

27. Dong, P.; Song, B.; Zhang, H.; Du, X. Improving Onboard Internet Services for High-Speed Vehicles by Multipath
Transmission in Heterogeneous Wireless Networks. IEEE Trans. Veh. Technol. 2016, 65, 9493–9507. [CrossRef]

28. Xu, Z.; Tang, J.; Yin, C.; Wang, Y.; Xue, G. Experience-Driven Congestion Control: When Multi-Path TCP
Meets Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2019. [CrossRef]

29. Naeem, F.; Srivastava, G.; Tariq, M. A Software Defined Network based Fuzzy Normalized Neural Adaptive
Multipath Congestion Control for Internet of Things. IEEE Trans. Netw. Sci. Eng. 2020. [CrossRef]

30. Arianpoo, N.; Aydin, I.; Leung, V.C.M. Network Coding as a Performance Booster for Concurrent Multi-Path
Transfer of Data in Multi-Hop Wireless Networks. IEEE Trans. Mob. Comput. 2017, 16, 1047–1058. [CrossRef]

31. Ahlswede, R.; Cai, N. Network information flow. IEEE Trans. Inf. Theory 2000, 46, 1204–1216. [CrossRef]
32. Kim, S.; Cho, H.; Yang, T.; Kim, C.; Kim, S. Low-Cost Multipath Routing Protocol by Adapting Opportunistic

Routing in Wireless Sensor Networks. In Proceedings of the 2017 IEEE Wireless Communications and
Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

33. Lin, Y.; Liang, B.; Li, B. SlideOR: Online Opportunistic Network Coding in Wireless Mesh Networks.
In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–5.

http://dx.doi.org/10.1049/el.2018.6878
http://dx.doi.org/10.1109/TGCN.2019.2897778
http://dx.doi.org/10.1109/MNET.2018.1700330
http://dx.doi.org/10.1109/TVT.2018.2873697
http://dx.doi.org/10.1109/TNET.2017.2689824
http://dx.doi.org/10.1109/COMST.2018.2796101
http://dx.doi.org/10.1109/COMST.2015.2411335
http://dx.doi.org/10.1109/SURV.2013.013013.00104
http://dx.doi.org/10.1109/TNET.2014.2300140
http://dx.doi.org/10.1109/TVT.2015.2409556
http://dx.doi.org/10.1109/ACCESS.2019.2960180
http://dx.doi.org/10.1109/TVT.2016.2581020
http://dx.doi.org/10.1109/JSAC.2019.2904358
http://dx.doi.org/10.1109/TNSE.2020.2991106
http://dx.doi.org/10.1109/TMC.2016.2585106
http://dx.doi.org/10.1109/18.850663


Sensors 2020, 20, 5902 22 of 22

34. Xu, C.; Wang, P.; Xiong, C.; Wei, X.; Muntean, G. Pipeline Network Coding-Based Multipath Data Transfer
in Heterogeneous Wireless Networks. IEEE Trans. Broadcast. 2017, 63, 376–390. [CrossRef]

35. Jiang, H.; Chen, S.; Yang, Y.; Jie, Z.; Leung, H.; Xu, J.; Wang, L. Estimation of Packet Loss Rate at Wireless
Link of VANET–RPLE. In Proceedings of the 2010 6th International Conference on Wireless Communications
Networking and Mobile Computing (WiCOM), Chengdu, China, 23–25 September 2010; pp. 1–5.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TBC.2016.2590819
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Multipath Transmission Schemes in Cellular-Based Vehicular Networks
	NC Researches

	ANC Scheme Overview
	The Detail of ANC Scheme
	Preliminaries and Definition
	Network Topology Model
	The Coding and Decoding Processes of ANC
	Mathematical PLR Estimation Model
	Average PLR Acquisition
	Raw PLR Estimation


	Results
	Simulation Setup
	Network Performance of Different Network Coding Schemes in Simulations
	Real Experiment Setup
	Network Performance of Different Network Coding Schemes in Real Experiments

	Conclusions
	References

