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A B S T R A C T   

Recently pipelines of machine learning-based classification models have become important to codify, orches-
trate, and automate the workflow to produce an effective machine learning model. In this article, we propose a 
framework that combines feature engineering techniques such as data imputation, transformation, and class 
balancing to compare the performance of different prediction models and select the best final model based on 
predefined parameters. The proposed framework is extendable and configurable by adding algorithms supported 
by the CARET package implemented in the R programming language. This framework can generate different 
machine learning models, which provide comparable results compared to other studies. The framework allows 
practitioners and researchers to automatically generate different classification models. This research used High- 
Resolution Orbitrap-based Mass Spectrometers (HRMS) data to create automated prediction models for the first 
time in literature. We demonstrated the applicability of feature engineering techniques such as data imputation, 
transformation (e.g., scaling, centering, etc.), and data balancing using several case studies and the proposed 
semi-automated framework. We showed how the initial prediction models can be improved using the proposed 
framework.   

1. Introduction 

The use of growth promoters to increase muscle mass in cattle is 
forbidden within the European Union (Qaid & Abdoun, 2022). To con-
trol growth promotor abuse in cattle, samples are taken at farms and 
mainly measured using targeted methods (LC-triplequad-MS methods). 
A targeted method only detects a fixed predefined set of compounds. 
However, due to technical advances in the last years, it is also possible to 
obtain highly accurate data in a non-targeted manner using liquid 
chromatography high-resolution orbitrap-based mass spectrometers 
(LC-HRMS) (Bianco et al., 2022). Using LC-HRMS, many data-rich files 
are collected containing exact masses, intensities, and retention times. 
Elemental compositions (molecular formulas) are deduced from the 
exact masses. For each LC-HRMS file, all signals with the same elemental 
composition are binned by adding the intensities. The new binned 
dataset, therefore, consists of elemental compositions and summed in-
tensities for each elemental composition. The data itself is sparse with 

low completeness regarding intensities. Therefore, data cleaning (Ilyas 
& Rekatsinas, 2022) and feature extraction methods are important parts 
of building machine learning models. 

Machine learning pipelines (Topçuoğlu et al., 2021) include a 
number of steps from data extraction and preprocessing to model 
training and deployment. Traditionally, the machine learning steps were 
performed as a manual process. Recently, machine learning pipelines 
have become important to codify, orchestrate, and automate the work-
flow to produce effective machine learning models. In this article, we 
propose a framework that combines feature engineering techniques 
(Gibert et al., 2022) such as data imputation (Neves et al., 2022), 
transformation, and class balancing (Khatir & Bee, 2022) to compare the 
performance of different prediction models and select the best final 
model based on predefined parameters. 

This study focuses on the current state of the art of feature engi-
neering techniques, which are investigated, compared, and imple-
mented to reach an optimal classifier model. Examples include missing 
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data imputation, variable transformation, encoding, scaling, aggre-
gating, dimension reduction, and feature creation/extraction/selection. 
These techniques are combined and tested with several machine 
learning models for robustness, efficacy, and ease of use purposes. To 
simplify the development of all these prediction models, a new frame-
work is built on top of the CARET package by developing wrapper 
functions. 

In addition to the new framework development aim, this study also 
aims to lead to a collection of models, capable classifiers for the usage to 
mine HRMS data files, and increase knowledge on important compound 
interactions and even better testing methods. For instance, if only 
certain specific compounds are causing most of the variance, it may be 
necessary to develop such a test instead of an all-out urine sample HRMS 
analysis on all compounds. Moreover, it is possible that different effects 
are visible in this data unrelated to illegal growth promoter treatment, 
which can be useful for other monitoring tasks. 

To demonstrate the applicability of the new framework on different 
datasets, we have also utilized a publicly available dataset called Pima 
(Smith et al., 1988), which was retrieved from the National Institute of 
Diabetes and Digestive and Kidney Diseases. Using this dataset, re-
searchers aim to predict whether a patient has diabetes or not based on 
certain measurements. As such, we performed our experiments on both 
the HRMS and Pima datasets and demonstrated that the proposed 
framework simplifies the development of machine learning models 
dramatically. 

The contributions of this paper are as follows:  

1. We designed and implemented a framework for automatically 
generating classification models: In this research, a new framework 
was built using the CARET package and several wrapper functions 
were developed as part of this implementation. The framework al-
lows practitioners and researchers to automatically generate 
different classification models automatically. With the help of this 
framework, it is possible to find the most optimal classification 
model.  

2. We created multiple classification models for the High-Resolution 
Orbitrap-based Mass Spectrometers (HRMS) data and aimed to find 
the best performing one: Finding the best performing classification 
model for the HRMS data requires a lot of effort and time. Therefore, 
many different models need to be built and investigated. In this 
research, these required models were built and the best performing 
one was identified. This kind of research has not been carried out for 
the HRMS dataset of urine profiles like this before. This type of model 
is very beneficial to controlling growth promotor abuse in the cattle 
industry and we were able to develop different classification models 
for this purpose.  

3. We showcased the applicable feature engineering techniques within 
this framework: For automated prediction model creation, the 
framework allows different feature engineering techniques such as 
data imputation, transformation (e.g., scaling, centering, etc.), and 
data balancing. We demonstrated the applicability of these feature 
engineering techniques, which are crucial elements of machine 
learning models, in this semi-automated framework.  

4. We demonstrated the ways to improve model quality using this 
automation framework: With the help of case studies, we were able 
to show how the initial prediction models can be improved using the 
proposed framework. Each technique might have a different effect on 
the overall performance of the model and therefore, we showed the 
performance change after a certain technique is applied. 

The next sections are organized as follows. Section 2 describes the 
background and related work. Section 3 presents the research method-
ology. Section 4 discusses the framework that supports the creation of 
automated prediction models. Section 5 explains the evaluation of the 
framework on different datasets. Section 6 presents the discussion and 
threats to validity. Section 7 concludes the paper and shows the 

potential future work. 

2. Background and related work 

2.1. Liquid chromatography coupled to mass spectrometry 

Liquid chromatography (LC) is a method to separate compounds 
based on interactions of the compounds with the adsorbent in the col-
umn. The time (retention time) compounds are retained on the column is 
dependent on the strength of their interactions. The detection of an 
eluting compound is often done with a mass spectrometer that is coupled 
to the LC (for example LC-Orbitrap-MS). A schematic example is shown 
in Fig. 1. As shown in this figure, the mass spectrometer involves the 
following three components: Ion Source, Mass Analyzer, and Detector. 
In the first component, the sample is ionized and cations are generated. 
Later, the second component separates ions based on their mass. Finally, 
the detector component detects the quantity and species of the ion. 
These steps create the main process performed by a mass spectrometer. 
Although a mass spectrometer is accurate for the detection and sepa-
ration, it is not sufficient for a very complex mixture. Therefore, it is 
combined with High-Performance Liquid Chromatography (HPLC), and 
this combination is called Liquid Chromatography Mass Spectrometry 
(LC-MS). This combination of techniques provides better accuracy and is 
used in many different application domains. 

Mass Spectrometry (MS) analysis is an analytical method to derive 
information on the presence and concentration of compounds based on 
the mass and charge of these compounds. It is widely used in organic 
chemistry applications and analysis varying from pharmaceutical anal-
ysis (Loos et al., n.d.) to biomolecule characterization (Breuker et al., 
2008), environmental analysis (Petrovic et al., 2005), and forensic 
analysis (Hoffmann et al., 2008). 

In this study, the HRMS dataset is derived in an LC-Orbitrap-MS 
setup. Compounds are separated by LC and subsequently ionized and 
passed on to the orbitrap. Ions in this Orbitrap oscillate at varying fre-
quencies. Measuring these frequencies allows for the derivation of mass 
over charge (M/Z) and subsequently of mass spectra images using 
Fourier transformations. The Orbitrap analyzers allow for high mass 
accuracies with mass error < 5 ppm (parts per million of the mass). An 
example of the Orbitrap is shown in Fig. 2. Typical data consists of the 
time necessary for compounds to elute (retention time) from the LC 
column, their exact mass over charge ratios (i.e. from their ionized 
form), and their intensity. The elemental composition of the compound 
can be calculated from the exact mass. 

2.2. Machine learning 

Machine learning (ML) is a sub-field of artificial intelligence, which 
combines the computational power of computers with well-established 
statistical algorithms to accomplish a plethora of tasks (Jordan & 
Mitchell, 2015; Muhamedyev et al., 2015). These tasks can range from a 
simple regression of numerical variables to complicated neural networks 
classifying images, or detecting human speech in recorded audio. 

The use of ML requires a workflow of first gathering and preparing 
the required data, analyzing which models should be used, and subse-
quently, training and evaluating the models based on evaluation met-
rics. In addition, hyperparameter optimization/hyperparameter tuning 
can drastically alter the model performance. Each of these steps shown 
in Fig. 3 involves different challenges. For instance, selecting a suitable 
algorithm to build the model has many different options, and also, pre- 
processing of the gathered data involves several techniques. In some 
cases, labeled data might not be sufficient to build a high-performance 
prediction model, and therefore, unlabeled data are also considered (i. 
e., semi-supervised learning). Each of these steps might take a consid-
erable amount of time and recently, there is a research field called 
Automated Machine Learning (AutoML) that aims to provide techniques 
to make machine learning available for non-machine learning experts. 
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Since the success of the prediction models highly depends on the 
expertise of the machine learning experts, this research field aims to 
simplify the development of machine learning models. There are several 
packages such as AutoWEKA, Auto-sklearn, and H2O AutoML, which 
were developed for automated machine learning. In deep learning, there 
is also a similar research field called neural architecture search (NAS) 
that aims to find a well-performing architecture automatically. Current 
deep learning models are built using many different options (e.g., 
different layer types, activation functions, algorithms, etc.) and there-
fore, the development is time-consuming and requires a lot of effort from 
the deep learning experts. For deep learning, there are also some 
packages such as AutoKeras and Auto-PyTorch. 

This workflow shown in Fig. 3 is often a manual search for the right 
combination of data preparation, model choice, and model tuning. This 
can be a time-consuming task, especially if certain model performance 
criteria must be met. There are packages such as CARET (Kuhn, 2008) 

for R, which help immensely with providing a framework for a data 
scientist to quickly experiment and build models. However, this is not 
fully automated and in order to quickly build well-performing models, 
this workflow should be automated. 

2.3. Feature engineering 

Feature engineering is often described as the art of extracting useful 
features or properties from data using either domain knowledge or 
established transformation methods (Heaton, n.d.). This is done by 
trying arbitrarily or with well-educated guesses to create new variables. 
Later, these new sets of features are used in the ML workflow to create a 
model, which is subsequently tested for model performance and feature 
importance. 

Common ways of feature engineering are cleaning data, handling 
missing data, and transforming the data. An example of transforming 
data is simple numerical transformations such as log scaling to force 
more normal distributions in the dataset, clustering to group data that is 
alike, encoding data to create categorical data, and other methods that 
try to capture the raw data in a different way such as PCA (Principal 
Component Analysis) (Jollife & Cadima, 2016). 

Missing data can be a problem in spare datasets with many variables 
with low frequency in entries. This can lead to models not functioning at 
all to dropping useful information in model creation. This problem can 
be addressed by imputing missing data, dropping data, or a combination 
of both. Imputing is an easy way to replace or fabricate new values. This 
can be done by simple arithmetical substitutions such as by the median 
or average to a random distribution based on known data characteristics 
to more complicated methods such as MICE (Multivariate Imputation by 
Chained Equations) (Azur et al., 2011; Van Buuren & Oudshoorn, 2000), 
which allows modeling missing data on other variables. 

Feature selection is often required to prevent excess in variables if 
methods such as feature creation or combinations are used, which can 
lead to dimensionality issues. This can be fixed by dimension reduction 
methods such as regularization or using feature selection to drop out 
certain variables based on relative significance or contribution to vari-
ance in the data. There are advancements in the field of automated 
feature engineering using tree-like methods to create new features 
(multi-relational decision tree learning) (Rinkal & Aluvalu, 2014) to 
deep feature synthesis (Kanter & Veeramachaneni, 2015). Methods like 
these have also become commercially available recently to help data 
scientists drastically increase data exploration capabilities and to help 
novices quickly extract useful features for further use in the workflow 
(It’s All About the Features – Reality AI, n.d.). These methods are greatly 
helpful as they are able to beat human teams in ML competitions more 
often. 

Fig. 1. Schematic overview of the experimental workflow of MS analyses (Chemyx, 2021).  

Fig. 2. Example of the derivation of mass/charge diagram based on the orbi-
trap (Rajawat & Jhingan, 2019). 

Fig. 3. Standard workflow of machine learning model development 
(Advani, 2021). 

S. Boeschoten et al.                                                                                                                                                                                                                             



Expert Systems With Applications 213 (2023) 118912

4

2.4. Summary of the previous studies and contributions 

In this research, one of our main objectives was to build a high- 
performance machine learning model that can predict the samples of 
guaranteed treated animals correctly. This is our first case study in this 
research. There are some research papers that applied machine learning 
to the HRMS data (Liebal et al., 2020; Bouwmeester et al., 2020), and a 
few researchers used machine learning for the quantification of hor-
mones in the samples using HRMS data (Rocha et al., 2022; Benedetto 
et al., 2021a; Benedetto et al., 2021b). However, they did not mention 
the challenges that exist in our HRMS data such as class imbalance, and 
also, they did not aim to develop the prediction models using a frame-
work as proposed in our research. Our focus was to detect the illegal 
hormone abuse in the cattle breeding industry in the Netherlands and 
there were several challenges in our dataset such as class imbalance and 
missing data points, which were not addressed in this context before. 
Moreover, we aimed to build prediction models using our semi- 
automated framework to demonstrate its applicability in a complex 
real-world problem. Therefore, our framework, HRMS dataset, and the 
prediction models built on top of the HRMS dataset are considered 
novel. 

3. Research methodology 

3.1. Research questions 

The following research questions have been identified in this study:  

• RQ1 - What are the adopted feature engineering methods that are 
applicable to numerical data for classification problems?  

• RQ2 – How can we improve the quality of a given classification 
model with feature engineering methods? 

• RQ3 – To what extent can we automate the development of classi-
fication models? 

The motivation for each research question is shown in Table 1. 
To answer these research questions, we followed the following steps: 
For answering RQ1, relevant knowledge sources on feature engi-

neering were collected using a domain analysis technique. The results of 
this step are provided in Section 5.1. For answering RQ2 and RQ3, a 
framework for automated prediction model creation is implemented as 
presented in Section 4. Further using this framework we adopt a ma-
chine learning life cycle, in which we apply different feature engineering 
techniques. The results are presented in Section 5. The approach is 
evaluated by using two case studies, which are explained in Section 4. 
The case studies and the adopted datasets are presented in Section 3. The 
overall approach is discussed in section 6. 

3.2. 3.2 HRMS data set of urine profiles 

The data is provided in CSV format where every urine sample has its 
own CSV file and identifier containing information on which compounds 

are found within that sample. Measurements for compounds are reten-
tion time, elemental composition, intensity, and weight. Information on 
the source of these urine sample files is stored in description CSV files. 
The experimental conditions are stored in a separate CSV file containing 
information on which treatment is used in samples originating from 
animal experiments. For every unique sample, the data of the com-
pounds are aggregated with their respective intensities in mind. It is 
unclear from the raw data what isomer each compound exactly is. This 
results in that different isomers being categorized as the same com-
pound. The final result is a data frame containing the urine samples as 
rows with isomer intensities, treatment, and sex labels as columns. The 
final data is ordered in 273 columns and 1241 rows. 1241 samples are 
divided into two categories: treated and untreated. All unknown samples 
were assumed to be untreated, which amounted to 1185 samples, with 
the rest 56 as confirmed treated samples. Sex data was limited, with only 
192 samples being labeled, the majority being female (176). The data is 
sparse with multiple columns containing missing data. The range of 
missing data is shown in Fig. 4. 

The data used for the framework is intensity data grouped by the 
same elemental composition. Each elemental composition has its own 
variable and column. Each entry has its own label concerning the status 
of the sample. An example of data is shown in Table 2. 

3.3. Dataset from the university of california at irvine (UCI) 

The PIMA dataset is retrieved from the National Institute of Diabetes 
and Digestive and Kidney Diseases and directly read into the framework. 
The features of this dataset are shown in Table 3. 

The PIMA dataset contains information on kidney diseases of pa-
tients of Pima Indian heritage in an effort to create predictions based on 
diagnostic measures. 

4. Framework for supporting automated prediction model 
creation 

In this section, we present the framework that we have developed for 
automation prediction model creation. The framework is based on the 
CARET (Classification And Regression Training) package implemented 
in R. This package is a tool used by data scientists as it aggregates the 
most often used methods for data preparation, model training, and 
tuning for evaluation, which allows rapid model creation, optimization, 
and testing. It supports 238 different algorithms with often multiple 
optimization parameters per model. It also allows for preprocessing, 
such as basic feature engineering and resampling to creating pre-
determined data splits for validation and optimization with, for 
example, cross-validation. In addition, it is possible to implement 

Table 1 
Overview of Research Questions.  

Research Question Motivation Section 

What are the adopted feature 
engineering methods that are 
applicable to numerical data for 
classification problems? 

To establish well-performing 
workable flows of operations for 
repetition in other classification 
cases  

5.1 

How can we improve the quality of a 
given classification model with 
feature engineering methods? 

To reach better performance 
evaluation scores from raw data  

5.2 

To what extent can we automate the 
development of classification 
models? 

To ease model development and 
rapid deployment in practical 
cases  

5.3  

Fig. 4. Distribution of missing data.  
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custom models or recipes, which allows for expansion in this system (12 
Using Recipes with Train | The Caret Package, n.d.). 

This study uses the CARET package to utilize most of the above- 
mentioned features in a semi-automatic way to create multiple models 
based on different data preparation and tuning methods. A diagram 
depicting this workflow is shown in Fig. 5, which depicts the order of 
operations from data imputation to transformations, which are then 
subsequently split into a validation set and a combined training/testing 
set, which is used for internal cross-validation for the hyperparameter 
tuning. The final performance is calculated using F1 scores based on 
unseen validation data to account for class imbalances. 

4.1. Imputation 

Missing data has to be addressed before training the model. Multiple 
ways of doing this are available. These vary from ignoring incomplete 
cases to replacing or calculating a distribution of values for the missing 
values. This can be done by simple methods such as a direct replacement 
or a normal or uniform distribution in a certain range to more advanced 
imputation methods. For example, knnImpute (Crookston & Finley, 
2008) or MICE (Van Buuren & Oudshoorn, 2000), models the missing 
data based on other information stored in other variables by respectively 
applying a k-nearest neighbors algorithm or applying a chained 
regression model. In the HRMS data set of urine profiles, ignoring the 
incomplete cases is not an option as all entries would be dropped that 
way. Therefore, an imputation method must be chosen. An applied or 
hybrid strategy should be adopted by ignoring sparse variables and 

imputing the other variables. One easy way, given the fact that a lower 
detection limit is known, is to calculate a random distribution around 
this limit and use that as a lower bound. For the aggregated intensity 
data, this is not a big issue as the lower detection limit is multiple orders 
of magnitudes lower than most of the data. Therefore, this was chosen as 
the first approach. 

4.2. Transformation 

CARET allows for multiple transformation methods to be applied to 
the data such as scaling, centering, or calculated derivatives such as 
correlation scores and PCA, dropping zero variance (zv), near zero 
variance (nzv) columns. These transformations are immediately applied 
to all of the data points after imputation and before any split and class 
balancing occurs. Custom transformation methods can be used as well, 
however, these have to be implemented manually, which was done for 
the log transformation, which is not natively supported by CARET. Other 
methods could be implemented using CARET recipes. 

4.3. Class balancing 

This study deals with highly imbalanced data, which can affect 
model performance severely. Class imbalances can be addressed in 
multiple ways. This can be done by choosing models that can handle 
these differences relatively well or by applying the subsampling 
approach. Subsampling is often used to implement solutions to reme-
diate model performance issues related to class imbalances. There are 
multiple options, down and upsampling, which respectively drop the 
frequency of the majority class or increase the frequency of the minority 
class. Smarter solutions are SMOTE (Chawla et al., 2002) or ROSE 
(Lunardon et al., 2014), which can do both to narrow the gap between 
the class imbalances by dropping samples and creating new ones based 
on others imputed by, for example, a k-nearest neighbor algorithm in the 
case of SMOTE. These methods are available as R packages. In this study, 
upsampling and SMOTE are used in conjunction with no modification to 
the training data. This means that the final validation set does not 
accurately represent the training data but does allow the learner models 
to get more information on the lower frequency class relative to the 
higher frequent class. 

4.4. Training and tuning 

The training uses the CARET package as a framework for both 
implementing models and tuning the hyperparameters for these 
learners. Every algorithm provided in the CARET package has standard 
suggested tuning grids for parameter optimization, which is used to find 
an optimal model within these parameter ranges. For this optimization, 
model performance is necessary to assert model quality. In this case, a 
stratified 10-fold cross-validation and 5 repeats are applied in the tuning 

Table 2 
Example data of HRMS data set of urine profiles.  

Sex Label C18H32O3 C18H24O8S2 … (more elemental 
compositions) 

M/F/NA 
(factor) 

bovine/ 
bovine test 
(factor) 

NA/ 
27930.88 
(Double) 

NA/ (Double)   

Table 3 
Features of the PIMA dataset.  

Feature Label Type 

# of times pregnant Int 
Plasma glucose concentration Real 
Diastolic blood pressure Real 
Triceps skin fold thickness Real 
2-hours serum insulin Real 
BMI Real 
Diabetes pedigree function Real 
Age Int 
Class Binary  

Fig. 5. Model Creation Process of the Framework.  
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process by measuring the overall misclassification error. Tuning is 
controlled by the standard suggested tune grid, which can be modified 
by changing the tuned length. This variable multiplies the grid compo-
nents to control deeper or shallower searches for an optimal model. The 
main trade-off in this regard is time vs model quality. Larger tune 
lengths cost more time for a theoretically higher likelihood of better 
models. This tune grid can be adjusted manually per individual model to 
allow for time management. This is especially necessary for models that 
take significantly longer times, such as the gradient boosting methods. 
Different metrics can be applied by using the Mlmetrics package (Yan & 
Maintainer, 2016), which provides precision, recall, and F1 scores as 
evaluation metrics. F1 is calculated as shown in Equation 1. Moreover, it 
is possible to adjust the F score evaluation system by weighting the 
importance of precision and recall, as shown in equation 2 by changing β 
which allows for weighing for more importance of precision or recall.  

F1 = 2*(precision*recall)/(precision + recall)(1)                                         

Fβ= ((1 + β^2)*(precision*recall))/([(β]^2*precision + recall))(2)                

This can be done in situations where a large class imbalance is pre-
sent. This causes likely high recall but low precision for the learners 
used. Table 4 shows the algorithms, their descriptions, and the hyper-
parameters applied in this study. These were selected for ease of use and 
compatibility with the developed framework. 

4.5. Validation 

Final validation is performed with the final model produced by 
tuning in CARET on unseen and unmodified data with corresponding 
labels. For this, several split ratios are used to test the differences in sizes 
of the final validation set and the combined training/testing sets. The 
final model is applied to the unseen data and produces predictions, 
which are compared to the actual labels provided in the same dataset in 
a confusion matrix. From this table, metrics such as precision, recall, and 
F1 scores are calculated. This F1 score is calculated in the first place on 
the validation data. The model is then stored along its validation metrics 
and the corresponding datasets for possible further analysis depending 
on the F1 score, which is used as a first indicator and main selector for 
model quality. This workflow generates a multitude of final models and 
a much larger array of tuning models because each combination of 
imputation method, split ratio, preprocessing method, and modeling 
method is tested. This results in several hundreds of models due to the 
combinations. Saved models can be loaded and investigated for their 
hyperparameters and reused with any dataset related to the training set. 
This way performance on seen and unseen data can be assessed. More-
over, for every experiment and variation, it is possible to retrieve a 
distribution of model performance, as such, comparisons can be made 
between different split ratios, model methods, imputation methods, and 
class balancing approach. 

5. Results 

5.1. Currently adopted feature engineering methods (RQ1) 

RQ1 - What are the adopted feature engineering methods that are 
applicable to numerical data for classification problems? 

The literature covers feature engineering often as an art. The pre-
dictive power of machine learning models is aimed to be improved by 
extracting information or features from a dataset and utilizing domain 
knowledge or other commonly used transformations. This has been a 
manual process up until recently. New methods and automated feature 
extraction tools such as deep feature synthesis provided automated 
discovery of features with the help of open source tools such as Featur-
etools (https://www.featuretools.com/). Common ways of feature en-
gineering are cleaning data, handling missing data, and transforming the 
data. An example of transforming data is simple numerical trans-
formations such as log scaling to force more normal distributions in the 
dataset, clustering to group data that is alike, encoding data to create 
categorical data, and other methods that capture the raw data in a 
different way such as PCA. Missing data can be a problem in very sparse 
datasets with many variables with low frequency in entries. This can 
lead to models not functioning at all or dropping useful information in 
model creation. This problem can be addressed by imputing missing 
data, dropping data, or a combination of both. Imputing is an easy way 
to replace or fabricate new values. This can be done by simple arith-
metical substitutions such as by the median or average to a random 
distribution based on known data characteristics to more complicated 
methods such as MICE, which allows for modeling missing data on other 
variables. 

Feature extraction creates new features from raw data based on an 
algorithm or predefined ruleset. Feature selection is often required to 
prevent excess in variables if methods such as feature creation or com-
binations are used, which can lead to dimensionality issues. CARET 
provides methods to alter the class proportions in the data by either 
down and upsampling or using hybrid methods such as SMOTE (Syn-
thetic Minority Oversampling Technique) or ROSE (Random Over- 
Sampling Examples). These methods are applied to enable machine 
learning models to generalize better over the classes themselves at the 
cost of increased bias. It is not always necessary to use such methods if 
the data is already well-balanced or if the minority class count is satis-
factory. When such methods are used, special care needs to be taken 
with interpretation as some metrics do not reflect that the model per-
forms better. An example of this is the accuracy paradox where it seems 
that accuracy increases while the model itself only predicts one class. 
Therefore, it is important to account for performance across classes and 
which metrics such as precision, recall, and F1 scores are to be used. 
SMOTE is used in this framework as the method for addressing the class 
balance issues in the HRMS data set of urine profiles as the positive label 
count was low and several configurations were tested and compared in 
Section 5.2. The final F1 scores were calculated on validation data that 
was not treated with the class balancing approach to best reflect the 
reality of the naturally found class distribution. 

5.2. Improving classification models with feature engineering methods 
(RQ2) 

RQ2 – How can we improve the quality of a given classification model 
with feature engineering methods? 

Several experiments were run using different algorithms and trans-
formation methods, as shown in Table 5. These combinations of impu-
tation, transformation, and modeling methods were all then performed 
by the framework with the models, standard tunegrid was used as ar-
guments for the hyperparameter optimization unless stated otherwise. 

Combining these methods with the fact that two different split ratios 
were used for the final validation set results in 6 (transformation 
methods) * 6 (model algorithms) * 2 (split ratios) = 72 models that were 

Table 4 
Hyperparameters for CARET-supported algorithms.  

Algorithm 
name 

Description Hyperparameters 

LMT Logistic Model 
Trees 

iter 

Logitboost Boosted Logistic 
Regression 

nIter 

xgbLinear eXtreme Gradient 
Boosting 

nrounds, lambda, alpha, eta 

xgbtree eXtreme Gradient 
Boosting  

nrounds, max_depth, eta, gamma, 
colsample_bytree, min_child_weight, 
subsample 

deepboost  num_iter, tree_depth, beta, lambda, loss_type 
Naïve_bayes  laplace, usekernel, adjust 
rocc ROC-Based 

Classifier 
xgenes  
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created in the framework per experiment. However, each of these 
models is the final model based on the fine-tuning performed by CARET, 
therefore, essentially multiple hundreds of models are created by the 
framework based on the provided tunegrids. 

Every experiment contains 72 final models. However, as there is a 
large class imbalance, multiple experiments were run with differing 
approaches to address this problem. These are shown in Table 6. Every 
experiment containing 72 final models is then loaded back into the 
framework for validation based on the separated validation set. Every 
model is then back-tested and scored with the F1 score. This results in 72 
F1 scores for every experiment, which is used for comparisons and 
graphing. Moreover, the F1 scores are split by their respective modeling 
and transformation methods based on the average across the two split 
ratios resulting in tables with 36 averaged F1 scores along their 
respective precision and recall for comparison between methods and 
experiments. 

Fig. 6 shows the model F1 performance distribution for the standard 
balanced dataset. The best model has an F1 score of 0.833 and is shown 
as the single bar on the right. This distribution is skewed to lower- 
performing models with 23/72 models performing above 0.5 F1 
scores. Fig. 7 shows model performance metrics per algorithm and 
transformation for non-balanced data. 

The model performance values are also shown in Tables 7–9 aver-
aging on the split ratios of 0.8 and 0.9. The F1 score is also split into the 
precision and recall counterparts. Simple log transformation performs 
the best in combination with the Naive Bayes and ROC-based classifier. 
As shown in Table 8, the precision value of the Naïve Bayes model is 0.78 
when the log transformation is applied. According to Tables 8 and 9, 
Logitboost algorithm provided 0.68 precision and 0.37 recall values. 

Some transformation methods are completely biased towards one 
class indicating an F1 score of 0 or that specific algorithm resulted in an 
error also indicating a score of 0. Logitboost followed by the xgb algo-
rithms is more consistent based on the transformation method. 

Table 7 shows the final optimized model F1 score for every classifi-
cation algorithm and transformation method in this study averaged for 
the two split ratios. 

Table 8 shows the final optimized model precision for every classi-
fication algorithm and transformation method in this study averaged for 
the two split ratios. 

Table 9 shows the final optimized model recall for every classifica-
tion algorithm and transformation method in this study averaged for the 
two split ratios. 

Fig. 8 shows the model F1 performance distribution for the standard 
Smote balanced dataset. The best model has an F1 score of 0.923 and is 
shown as the single bar on the right. This distribution is skewed to higher 
performing models indicating class balancing shows a general 
improvement. These model performance results are also shown in Ta-
bles 11 to 12 averaging on the split ratios of 0.8 and 0.9. The F1 score in 

Table 10 is also split into the precision and recall counterparts in 
Table 11 and 12 respectively. The tables are also depicted as a bar chart 
in Fig. 9. All models tend to dominate higher recall vs lower precision, 
which tends to provide more false positives. As shown in Tables 11 and 
12, xgbLinear provided 0.62 precision (i.e., log transformation) and 0.96 
recall values. 

Gradient boosting performs better with the linear variant being on 
top. Overall, correlation transformation is the best single transformation 
step followed by log, centering, matrix, and scaling. The worst per-
forming models are Naive Bayes and the Rocc algorithm with the 
exception of log transformation for Naive Bayes. 

Table 10 shows the final optimized model F1 score for every classi-
fication algorithm and transformation method in this study averaged for 
the two split ratios. 

Table 11 shows the final optimized model precision for every clas-
sification algorithm and transformation method in this study averaged 
for the two split ratios. 

Table 12 shows the final optimized model recall for every classifi-
cation algorithm and transformation method in this study averaged for 
the two split ratios. 

Fig. 10 shows the model F1 performance distribution for the Smote 
400 % balanced dataset. The best model has an F1 score of 0.857 and is 
shown as the single bar on the right. This distribution is divided into 
three lower to mediocre sections and higher performing models with 
roughly the same prevalence. These model performance values are also 
shown in Tables 13 to 15 averaging on the split ratios of 0.8 and 0.9. The 
F1 score in Table 13 is also split into the precision and recall counter-
parts in Table 14 and 15 respectively. The tables are also depicted as bar 
charts in Fig. 11. All models tend to dominate higher recall vs lower 
precision, which tends to more false positives. 

As shown in Tables 14 and 15, deepboost algorithm provided 0.80 
recall (i.e., nzv transformation is applied) and 0.65 precision values. 

Deepboost is at the top closely along with the xgb linear and the log- 
transformed Naive Bayes classifier. Overall, log transformation is the 
best single transformation step followed by correlation. The worst- 
performing models, in general, are Naive Bayes and the Rocc algorithm. 

Table 13 shows the final optimized model F1 score for every classi-
fication algorithm and transformation method in this study averaged for 
the two split ratios. 

Table 14 shows the final optimized model precision for every clas-
sification algorithm and transformation method in this study averaged 
for the two split ratios. 

Table 15 shows the final optimized model recall for every classifi-
cation algorithm and transformation method in this study averaged for 
the two split ratios. 

The Pima dataset has a range of F1 scores from the lower 0.55 to the 
upper 0.7 with 10 finalized and optimized models being in the highest 
section. This framework is able to create models with similar perfor-
mance as in literature (Pal et al., 2020). This paper cites a maximum F1 
score of 0.64 on an SVM classifier after balancing the data. The results in 
this section were not generated after balancing the Pima data. This 

Table 5 
Algorithms and transformation methods.  

Model algorithms Transformation methods 

deepboost center 
LogitBoost corr 
Naive_bayes log 
rocc nzv 
xgbLinear scale 
xgbTree zv  

Table 6 
Experiments with subsampling.  

ID Additional conditions 

1 No subsampling 
2 Standard SMOTE (200 % max upsampling) 
3 SMOTE (400 % max upsampling)  

Fig. 6. F1 distribution with no subsampling (highest F1 validation = 0.833).  
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indicates that this framework is able to create at least similar models as 
to what an individual could do. 

Fig. 12 shows the model F1 performance distribution for the Pima 
diabetes dataset. These model performance values are also shown in 

Tables 16–18 averaging on the split ratios of 0.8 and 0.9. The F1 score in 
Table 16 is also split into the precision and recall counterparts in Ta-
bles 17 and 18 respectively. The tables are also depicted as a bar chart in 
Fig. 13. All models tend to dominate higher precision vs lower recall 

Fig. 7. Model performance metrics per algorithm and transformation for non-balanced data.  

Table 7 
Validation F1 averaged on the split ratio.   

center corr log nzv scale zv 

deepboost 0.33 0.33  0.33 0.33 0.33 0.33 
LogitBoost 0.47 0.47  0.47 0.47 0.47 0.47 
naive_bayes 0.15 0.26  0.75 0.26 0.29 0.26 
rocc 0 0  0.7 0 0 0 
xgbLinear 0.38 0.38  0.38 0.38 0.38 0.38 
xgbTree 0.44 0.47  0.49 0.44 0.44 0.44  

Table 8 
The precision average on the split ratio.   

center corr log nzv scale zv 

deepboost 1 1 1 1 1 1 
LogitBoost 0.68 0.68 0.68 0.68 0.68 0.68 
naive_bayes 0.21 0.38 0.78 0.38 0.54 0.38 
rocc 0 0 0.69 0 0 0 
xgbLinear 1 1 1 1 1 1 
xgbTree 1 0.9 0.88 1 1 1  
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although the difference is smaller than in the HRMS data set of urine 
profiles. 

As shown in Tables 17 and 18, xgbLinear provided 0.73 precision and 
0.62 recall values. 

xgbLinear is at the top closely along with the xgbtree and deepboost. 
Overall, log transformation is the best single transformation step. The 
worst-performing models, in general, are Naive Bayes and the Rocc al-
gorithm. The log transformation is the best for Naive Bayes although the 
gain is smaller than for the HRMS data set of urine profiles. 

5.3. Automation of classification models (RQ3) 

RQ3 – To what extent can we automate the development of classification 
models? 

While there are methods and algorithms well suited for automatic 
classification learning such as deep learning models, it is not often that 
the entire pipeline from data loading to the final classification model is 
automated. A data scientist regularly has to adjust model learning pa-
rameters or try different feature engineering methods in an effort to 
improve model quality. Parts of this pipeline are available to be auto-
mated such as automatic feature extraction or automated model tuning. 
Examples of this are the Multi-Relational Decision Tree Algorithm 
(MRDTL) (Atramentov et al., 2003) or the aforementioned Deep Feature 
synthesis or CARET itself for automated model tuning. Ideally, the entire 
pipeline as shown in Fig. 14 needs to be automated. 

The framework as explained in Section 4 focuses on the data prep-
aration and model building and training sections with focuses on data 
transformation and automated model testing and validation. Hyper-
parameter tuning is also automated but is included in the CARET 
package and not edited for this study with the exception of the ability to 
change tunegrid length or provide a custom tune grid. Results shown in 
Section 5.2 were generated by this framework. Each model is individ-
ually constructed and saved as an rds file. Afterward, these were loaded 
and the results were analyzed and compiled for automatic generation of 
the distribution graphs and tables. The parts of creating and loading the 
models are separated resulting in few actions required to generate these 
graphs. These are manually checking the data for the requirements of 
having one label class and the rest as numerical, designating the label 
column, setting parameters for model creation such as vectors of which 
algorithms, transformations, tunegrids to use, and running the model 
creation parts, running the model analysis and plotter part. These ac-
tions themselves can be performed within a few minutes. The system is, 
therefore, not fully automatic but does achieve automation of model 
creation including the tedious parts of hyperparameter optimization. 
The framework has proven to be working with two separately sourced 
datasets. 

The framework as explained in Section 4 focuses on the data prep-
aration and model building and training sections and covers the data 
transformation and automated model testing and validation. Hyper-
parameter tuning is also automated but is included in the CARET 
package and not edited for this study with the exception of the ability to 
change tunegrid length or provide a custom tune grid. 

6. Discussion 

6.1. General discussion 

The development of machine learning models is shown to be auto-
mated as long as a strict frame is defined on what to support. For this, 
basic building blocks of model development were investigated and 
implemented using two case studies. There are, however, many more 
methods available for more niche cases. This would increase complexity 
in terms of time and implementation as combinations of these building 
blocks can grow quickly. They can be implemented due to the recipe 
function of CARET, which allows this framework to be customized for 
special cases. This framework is able to quickly generate an array of 

Table 9 
The Recall average on the split ratio.   

center corr log nzv scale zv 

deepboost 0.2 0.2  0.2 0.2 0.2 0.2 
LogitBoost 0.37 0.37  0.37 0.37 0.37 0.37 
naive_bayes 0.12 0.2  0.72 0.2 0.2 0.2 
rocc 0 0  0.72 0 0 0 
xgbLinear 0.24 0.24  0.24 0.24 0.24 0.24 
xgbTree 0.28 0.32  0.37 0.28 0.28 0.28  

Table 10 
Validation F1 averaged on the split ratio.   

center corr log nzv scale zv 

deepboost  0.62  0.66  0.55  0.62  0.62  0.62 
LogitBoost  0.45  0.45  0.5  0.45  0.45  0.45 
naive_bayes  0.21  0.21  0.61  0.21  0.21  0.21 
rocc  0.29  0.29  0.45  0.29  0.37  0.29 
xgbLinear  0.71  0.77  0.75  0.71  0.71  0.71 
xgbTree  0.59  0.61  0.66  0.59  0.59  0.59  

Fig. 8. Distribution for standard Smote balancing (200 %) (standard, highest 
validation F1 = 0.923). 

Table 11 
The precision average on the split ratio.   

center corr log nzv scale zv 

deepboost  0.46  0.5  0.4  0.46  0.46  0.46 
LogitBoost  0.3  0.3  0.34  0.3  0.3  0.3 
naive_bayes  0.12  0.12  0.51  0.12  0.12  0.12 
rocc  0.17  0.17  0.3  0.17  0.24  0.17 
xgbLinear  0.58  0.67  0.62  0.58  0.58  0.58 
xgbTree  0.46  0.45  0.51  0.46  0.46  0.46  

Table 12 
The Recall average on the split ratio.   

center corr log nzv scale zv 

deepboost  0.96  0.96  0.88  0.96  0.96  0.96 
LogitBoost  0.92  0.92  0.92  0.92  0.92  0.92 
naive_bayes  0.88  0.88  0.76  0.88  0.88  0.88 
rocc  0.88  0.88  0.96  0.88  0.88  0.88 
xgbLinear  0.92  0.92  0.96  0.92  0.92  0.92 
xgbTree  0.84  0.92  0.96  0.84  0.84  0.84  
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Fig. 9. Model performance metrics per algorithm and transformation for standard Smote class balancing.  
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models for different datasets with comparable performance results for 
the Pima dataset. The framework shows which models and trans-
formation methods outperform each other and can be used to select a 
model and its defined workflow for a practical application. 

RQ1 - What are the adopted feature engineering methods that are 
applicable to numerical data for classification problems? 

A multitude of options regarding feature engineering exists. In 
creating any machine learning pipeline, it is necessary to decide which 
techniques should be adopted. The traditional way of trial and error is 
often employed by newbie data scientists. The process consists of 
creating or transforming features based on domain knowledge and 
subsequently, testing them in iterations, with each iteration hopefully 

increasing model performance or better alignment with the end goal. 
This is an iterative and time-consuming process and is reported to be the 
largest time-consuming task for data scientists. Choosing and testing 
these techniques becomes more challenging if domain knowledge is not 
readily available. In this case, the process becomes a stepwise iteration 
of randomly selecting a subset of these techniques and testing them. This 
study focuses on this method by automating this process based on some 
common and easy-to-understand transformations. This is done by 
testing combinations of different models for rapid model development 
and testing. 

The HRMS data set of urine profiles entailed numerical trans-
formations, principal component analysis (PCA), and filtering for near or 
non-zero variance features. For the HRMS data set of urine profiles, data 
were grouped based on chemical element composition based on the 
knowledge that certain carbon counts were expected to be an important 
feature in testing hormone treatment status. This data could have been 
grouped better by dividing these compositions into different compound 
classes to better reflect the chemical reality and perhaps to increase 
resolution. This was, however, not performed as it would increase the 
sparsity of the data greatly and the expectation that carbon classed 
compositions are somewhat alike in the pathway in bovines. 

In theory, much more specific features could be synthesized based on 
biochemical knowledge such as dividing into acids, large molecules, 
intermediates, etc. This, however, requires specific domain knowledge 
and would exacerbate the missing data more. Therefore, the initial data 
grouping was kept simple as it was the goal to create a framework that 
would be able to perform on raw numerical data with limited knowledge 
and limited to no manual crafting of features. This framework in-
vestigates some simple transformations, which work on any numerical 
data for testing. Another reason to use this type of feature engineering 
was that other types such as encoding, aggregating, and extraction 
require manual intervention or would quickly increase the possibilities 
without an intelligent approach, which probably has to be based on 
domain knowledge. This framework, however, does not only do the 
feature engineering part of the machine learning pipeline but also ad-
dresses hyperparameter optimization and validation. It is known that 
sophisticated feature engineering approaches are available specifically 
for one field of feature engineering fields such as deep feature synthesis 
and MRDTL. Ideally, a perfect pipeline could combine the best of every 
step and use such methods as well at the cost of more time and 
complexity. This framework uses common and simple transformations 
to keep this process relatively simple. In this case, they were numerical 
transformations and imputations, PCA, and removal of zero or near zero 
variance variables. It is possible to include other transformations such as 
YeoJohson or to implement novel transformations if not supported by 
CARET. The latter requires a manual definition according to CARET’s 
recipes. 

RQ2 – How can the quality of a given classification model be improved 
with feature engineering methods? 

The quality of models can both be increased as well as decreased by 
feature engineering in a step-by-step process. This is often described as 
an art in data science competitions. It is hard to find an optimal way of 
feature engineering as many approaches and combinations are avail-
able. However, domain knowledge makes this easier as it can act as a 
guide on how the data is supposed to be interpreted by models, for 
example, by performing a log distribution on biological data to force a 
normal distribution, which is often expected or by grouping and 
aggregating data such as compounds with the same elemental compo-
sition. In order to improve the quality as defined, multiple approaches 
must be tested and a satisfactory approach needs to be selected. It is, 
however, important not to over-engineer the data or overfitting can 
occur on the validation data if this is kept constant. For example, vali-
dation data is kept as a reality check for model performance trained only 
on the training data. However, if a large number of models is constructed 
and selected for performance on validation data, at some point the 
process also fits for the validation data specifically. It is therefore 

Fig. 10. Distribution for smote with 400 % oversampling (400 perc over, 
highest validation, F1 = 0.857). 

Table 13 
Validation F1 averaged on the split ratio.   

center corr log nzv scale zv 

deepboost  0.71  0.63  0.68  0.71  0.71  0.71 
LogitBoost  0.52  0.56  0.49  0.52  0.52  0.52 
naive_bayes  0.21  0.21  0.72  0.21  0.21  0.21 
rocc  0.28  0.28  0.47  0.28  0.36  0.28 
xgbLinear  0.72  0.72  0.74  0.72  0.72  0.72 
xgbTree  0.58  0.69  0.69  0.58  0.58  0.58  

Table 14 
The precision average on the split ratio.   

center corr log nzv scale zv 

deepboost  0.65  0.64  0.55  0.65  0.65  0.65 
LogitBoost  0.39  0.42  0.35  0.39  0.39  0.39 
naive_bayes  0.12  0.12  0.72  0.12  0.12  0.12 
rocc  0.17  0.17  0.32  0.17  0.23  0.17 
xgbLinear  0.67  0.66  0.68  0.67  0.67  0.67 
xgbTree  0.51  0.6  0.58  0.51  0.51  0.51  

Table 15 
Recall averaged on the split ratio.   

center corr log nzv scale zv 

deepboost  0.8  0.64  0.88  0.8  0.8  0.8 
LogitBoost  0.81  0.85  0.84  0.81  0.81  0.81 
naive_bayes  0.85  0.85  0.72  0.85  0.85  0.85 
rocc  0.79  0.79  0.88  0.79  0.88  0.79 
xgbLinear  0.81  0.81  0.85  0.81  0.81  0.81 
xgbTree  0.77  0.81  0.85  0.77  0.77  0.77  
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Fig. 11. Model performance metrics per algorithm and transformation for Smote 400% class balancing.  
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prudent to either change the validation data by selecting it from a basket 
of validation data or find new validation data at the absolute end of the 
pipeline. This potential flaw can also be countered by increasing the size 
of the data making this more unlikely. However, this is not always 
practically feasible. 

RQ3 – To what extent can we automate the development of classification 
models? 

The extent to which automation can be performed is contingent on 
the requirements and available resources. It is possible to automate a 
large pipeline with a small number of simple building blocks or to 
automate one step in this process heavily with the implementation of all 

possible approaches and niche situations. However, trying to combine 
this in one framework can drastically increase complexity if not handled 
intelligently. In the cases discussed in this study, however, it is shown 
that simple pipeline automation can be implemented to get comparable 
results as to what individual development can do. While this framework 
does not optimize as an individual could with enough time and under-
standing, it is a lot quicker and understandable for beginner data sci-
entists as this framework repeats the standard workflow of data 
scientists to a certain degree. It allows for quick and simple model 
development providing clues to better manual improvement if desired. 

The framework allows for rapid model creation with customization 
options but lacks the standard integration of more advanced techniques, 
especially with regard to feature engineering techniques such as Multi- 
relational decision tree learning or deep feature synthesis. It is, how-
ever, applicable for fast deployment with easy-to-understand and well- 
established techniques for a shotgun approach for finding better classi-
fication models. 

The HRMS data set of urine profiles is extracted from the HRMS data 
in this paper in undisclosed ways. This data is derived from MS graphs 
resulting in intensities for certain chemical compositions per sample. 
The chemical compositions tested are containing exact masses corre-
sponding to hormone masses. The HRMS data set of urine profiles are 
not publicly available due to confidentiality reasons and is used as-is in 
this study. The Pima data is publicly available and used as a reference to 
test the framework’s capabilities. 

6.2. THREATS TO VALIDITY 

This study has not conducted an exhaustive Systematic Literature 
Review. In addition to the implementation of the framework, care has 
been taken to ensure validity in terms of cross-referencing models and 
their corresponding preparations by using a well-established cross- 
validation technique. The framework is set up with a seed for every 
random function to ensure repeatability with the same data, packages, 
and environment. Widely used evaluation metrics and strategies have 
been applied, and therefore, the analysis of the results is reliable and 
repeatable. 

Several feature engineering techniques, namely data imputation, 
transformation, feature selection, and data balancing are supported in 
the implemented framework. As known in the machine learning com-
munity, the effect of each feature engineering technique on the overall 
performance is highly sensitive to the nature of the application data at 
hand and there is no best way to be good in all of these fields. The 
proposed framework evaluates all possible combinations of the available 
algorithms for each technique automatically and later, reveals the 
optimal model considering the best score of the generated models. As 
there is a limited number of algorithms for each category in the current 
framework, the optimal model should be interpreted as the optimal 
within the framework context, which means that there might be addi-
tional algorithms, which were not been implemented in the framework 
yet, that can provide better overall performance. The framework is 
flexible to add new algorithms for each category of feature engineering 
techniques, therefore, there is no strict limitation on the number of al-
gorithms used for each feature engineering technique. 

6.3. Comparison of the framework 

In this section, we compare our framework with a new machine 
learning framework called the Tidymodels framework (www. 
tidymodels.org), which is considered to be the successor of the Caret 
package. Both frameworks can be used by R programming users and 
have different features. In Table 19, we present our comparison using 
different aspects of these tools. Both frameworks were used by the re-
searchers to implement different machine learning models and evalua-
tions were reflected in this table. Since our framework was built on top 
of the Caret package, we benefit from the available features of the Caret 

Fig. 12. Histogram of F1 scores on the validation set of individual 
Pima models. 

Table 16 
F1 scores on the validation set of PIMA data.   

center corr log nzv scale zv 

deepboost  0.6  0.6 0.6  0.6  0.6  0.6 
LogitBoost  0.66  0.66 0.66  0.66  0.66  0.66 
naive_bayes  0.59  0.59 0.64  0.59  0.59  0.59 
rocc  0.6  0.6 0.59  0.6  0.58  0.6 
xgbLinear  0.67  0.67 0  0.67  0.67  0.67 
xgbTree  0.66  0.66 0  0.66  0.66  0.66  

Table 17 
Precision scores on the validation set of PIMA data.   

center corr log nzv scale zv 

deepboost  0.72  0.72 0.72  0.72  0.72  0.72 
LogitBoost  0.71  0.71 0.71  0.71  0.71  0.71 
naive_bayes  0.65  0.65 0.59  0.65  0.65  0.65 
rocc  0.75  0.75 0.69  0.75  0.7  0.75 
xgbLinear  0.73  0.73 0  0.73  0.73  0.73 
xgbTree  0.79  0.79 0  0.79  0.79  0.79  

Table 18 
Recall scores on the validation set of PIMA data.   

center corr log nzv scale zv 

deepboost  0.52  0.52 0.52  0.52  0.52  0.52 
LogitBoost  0.61  0.61 0.61  0.61  0.61  0.61 
naive_bayes  0.54  0.54 0.7  0.54  0.54  0.54 
rocc  0.51  0.51 0.52  0.51  0.49  0.51 
xgbLinear  0.62  0.62 0  0.62  0.62  0.62 
xgbTree  0.56  0.56 0  0.56  0.56  0.56  
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Fig. 13. Model performance metrics for the PIMA dataset averaged over two split ratios.  
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package such as available resources and the simplicity of the models. 

7. Conclusion and future work 

While alternatives are available for separate parts of the machine 
learning workflow, the proposed framework can help to find a highly 
accurate model in a short time without much expertise. For the imbal-
anced dataset, addressing this problem is an important factor in 
increasing model prediction qualities and should not be overlooked. 
Data transformation is not always beneficial but might provide a sig-
nificant advantage depending on the underlying dataset. It is easier to 
create explainable Naïve Bayes or tree-based classifiers than deep 
learning-based models such as deepboost (Cortes et al., 2014). For a 
quick model generation, it is better to select algorithms that have simple 
asymptotic complexities. For example, the Naïve Bayes classifier is very 
fast in comparison to deepboost and the gradient boosting algorithms 
and it is able to reach similar performance if the right transformation 
step is chosen. This also indicates the importance of feature engineering 
and data preparation as it can greatly increase performance. This 
framework allows for quick exploration of these possibilities but is by no 
means exhaustive. It can be expanded upon by the use of recipes, that 
allow for greater automation. Therefore, the extent to which it can be 
automated is the extent to which methods can be implemented as rec-
ipes. More recipes allow for more comparisons. Combinations of recipes 
allow for greater chances of finding better-performing models. 
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Topçuoğlu, B. D., Lapp, Z., Sovacool, K. L., Snitkin, E., Wiens, J., & Schloss, P. D. (2021). 
mikropml: User-friendly R package for supervised machine learning pipelines. 
Journal of open source software, 6(61). 

Vaishali Advani. (2021). What is Machine Learning | Definition, Tools, how it Works & 
Uses. https://www.mygreatlearning.com/blog/what-is-machine-learning/. 

Van Buuren, S., & Oudshoorn, C. G. M. (2000). Multivariate Imputation by Chained 
Equations: MICE V1. 0 Users’s Manual: TNO Prevention and Health. Public Health. 

Yan, Y., & Maintainer, ]. (2016). Package “MLmetrics, Machine Learning Evaluation 
Metrics. 

S. Boeschoten et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.jasms.2008.05.013
https://doi.org/10.1613/JAIR.953
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0060
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0060
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0065
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0065
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0065
https://doi.org/10.1146/annurev-anchem-071114-040335
https://doi.org/10.1146/annurev-anchem-071114-040335
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0080
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0080
https://doi.org/10.1126/SCIENCE.AAA8415
https://doi.org/10.1126/SCIENCE.AAA8415
https://doi.org/10.3390/metabo10060243
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0110
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0110
https://doi.org/10.18637/JSS.V028.I05
https://doi.org/10.32614/RJ-2014-008
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0150
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0150
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0155
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0155
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0155
https://doi.org/10.1016/j.chroma.2004.10.110
https://doi.org/10.1016/j.chroma.2004.10.110
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0170
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0170
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0170
https://doi.org/10.1016/B978-0-12-816548-5.00001-0
https://doi.org/10.1016/B978-0-12-816548-5.00001-0
https://doi.org/10.9790/0661-16297481
https://doi.org/10.9790/0661-16297481
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0195
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0195
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0195

	The automation of the development of classification models and improvement of model quality using feature engineering techn ...
	1 Introduction
	2 Background and related work
	2.1 Liquid chromatography coupled to mass spectrometry
	2.2 Machine learning
	2.3 Feature engineering
	2.4 Summary of the previous studies and contributions

	3 Research methodology
	3.1 Research questions
	3.2 3.2 HRMS data set of urine profiles
	3.3 Dataset from the university of california at irvine (UCI)

	4 Framework for supporting automated prediction model creation
	4.1 Imputation
	4.2 Transformation
	4.3 Class balancing
	4.4 Training and tuning
	4.5 Validation

	5 Results
	5.1 Currently adopted feature engineering methods (RQ1)
	5.2 Improving classification models with feature engineering methods (RQ2)
	5.3 Automation of classification models (RQ3)

	6 Discussion
	6.1 General discussion
	6.2 Threats to Validity
	6.3 Comparison of the framework

	7 Conclusion and future work
	Data Availability Statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


