
Expert Systems With Applications 213 (2023) 118912

Available online 27 September 2022
0957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The automation of the development of classification models and
improvement of model quality using feature engineering techniques

Sjoerd Boeschoten a, Cagatay Catal b,*, Bedir Tekinerdogan a,*, Arjen Lommen c,
Marco Blokland c

a Information Technology Group, Wageningen University & Research, Wageningen, The Netherlands
b Department of Computer Science and Engineering, Qatar University, Doha, Qatar
c Wageningen Food Safety Research Institute, Wageningen University & Research, Wageningen, The Netherlands

A R T I C L E I N F O

Keywords:
Machine learning pipeline
Feature engineering
Machine learning
Automation
Data imputation
Feature transformation
Data balancing

A B S T R A C T

Recently pipelines of machine learning-based classification models have become important to codify, orches-
trate, and automate the workflow to produce an effective machine learning model. In this article, we propose a
framework that combines feature engineering techniques such as data imputation, transformation, and class
balancing to compare the performance of different prediction models and select the best final model based on
predefined parameters. The proposed framework is extendable and configurable by adding algorithms supported
by the CARET package implemented in the R programming language. This framework can generate different
machine learning models, which provide comparable results compared to other studies. The framework allows
practitioners and researchers to automatically generate different classification models. This research used High-
Resolution Orbitrap-based Mass Spectrometers (HRMS) data to create automated prediction models for the first
time in literature. We demonstrated the applicability of feature engineering techniques such as data imputation,
transformation (e.g., scaling, centering, etc.), and data balancing using several case studies and the proposed
semi-automated framework. We showed how the initial prediction models can be improved using the proposed
framework.

1. Introduction

The use of growth promoters to increase muscle mass in cattle is
forbidden within the European Union (Qaid & Abdoun, 2022). To con-
trol growth promotor abuse in cattle, samples are taken at farms and
mainly measured using targeted methods (LC-triplequad-MS methods).
A targeted method only detects a fixed predefined set of compounds.
However, due to technical advances in the last years, it is also possible to
obtain highly accurate data in a non-targeted manner using liquid
chromatography high-resolution orbitrap-based mass spectrometers
(LC-HRMS) (Bianco et al., 2022). Using LC-HRMS, many data-rich files
are collected containing exact masses, intensities, and retention times.
Elemental compositions (molecular formulas) are deduced from the
exact masses. For each LC-HRMS file, all signals with the same elemental
composition are binned by adding the intensities. The new binned
dataset, therefore, consists of elemental compositions and summed in-
tensities for each elemental composition. The data itself is sparse with

low completeness regarding intensities. Therefore, data cleaning (Ilyas
& Rekatsinas, 2022) and feature extraction methods are important parts
of building machine learning models.

Machine learning pipelines (Topçuoğlu et al., 2021) include a
number of steps from data extraction and preprocessing to model
training and deployment. Traditionally, the machine learning steps were
performed as a manual process. Recently, machine learning pipelines
have become important to codify, orchestrate, and automate the work-
flow to produce effective machine learning models. In this article, we
propose a framework that combines feature engineering techniques
(Gibert et al., 2022) such as data imputation (Neves et al., 2022),
transformation, and class balancing (Khatir & Bee, 2022) to compare the
performance of different prediction models and select the best final
model based on predefined parameters.

This study focuses on the current state of the art of feature engi-
neering techniques, which are investigated, compared, and imple-
mented to reach an optimal classifier model. Examples include missing

* Corresponding authors.
E-mail addresses: sjoerd.boeschoten@wur.nl (S. Boeschoten), ccatal@qu.edu.qa (C. Catal), bedir.tekinerdogan@wur.nl (B. Tekinerdogan), arjen.lommen@wur.nl

(A. Lommen), marco.blokland@wur.nl (M. Blokland).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.118912
Received 27 May 2022; Received in revised form 12 September 2022; Accepted 23 September 2022

mailto:sjoerd.boeschoten@wur.nl
mailto:ccatal@qu.edu.qa
mailto:bedir.tekinerdogan@wur.nl
mailto:arjen.lommen@wur.nl
mailto:marco.blokland@wur.nl
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.118912
https://doi.org/10.1016/j.eswa.2022.118912
https://doi.org/10.1016/j.eswa.2022.118912
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118912&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 213 (2023) 118912

2

data imputation, variable transformation, encoding, scaling, aggre-
gating, dimension reduction, and feature creation/extraction/selection.
These techniques are combined and tested with several machine
learning models for robustness, efficacy, and ease of use purposes. To
simplify the development of all these prediction models, a new frame-
work is built on top of the CARET package by developing wrapper
functions.

In addition to the new framework development aim, this study also
aims to lead to a collection of models, capable classifiers for the usage to
mine HRMS data files, and increase knowledge on important compound
interactions and even better testing methods. For instance, if only
certain specific compounds are causing most of the variance, it may be
necessary to develop such a test instead of an all-out urine sample HRMS
analysis on all compounds. Moreover, it is possible that different effects
are visible in this data unrelated to illegal growth promoter treatment,
which can be useful for other monitoring tasks.

To demonstrate the applicability of the new framework on different
datasets, we have also utilized a publicly available dataset called Pima
(Smith et al., 1988), which was retrieved from the National Institute of
Diabetes and Digestive and Kidney Diseases. Using this dataset, re-
searchers aim to predict whether a patient has diabetes or not based on
certain measurements. As such, we performed our experiments on both
the HRMS and Pima datasets and demonstrated that the proposed
framework simplifies the development of machine learning models
dramatically.

The contributions of this paper are as follows:

1. We designed and implemented a framework for automatically
generating classification models: In this research, a new framework
was built using the CARET package and several wrapper functions
were developed as part of this implementation. The framework al-
lows practitioners and researchers to automatically generate
different classification models automatically. With the help of this
framework, it is possible to find the most optimal classification
model.

2. We created multiple classification models for the High-Resolution
Orbitrap-based Mass Spectrometers (HRMS) data and aimed to find
the best performing one: Finding the best performing classification
model for the HRMS data requires a lot of effort and time. Therefore,
many different models need to be built and investigated. In this
research, these required models were built and the best performing
one was identified. This kind of research has not been carried out for
the HRMS dataset of urine profiles like this before. This type of model
is very beneficial to controlling growth promotor abuse in the cattle
industry and we were able to develop different classification models
for this purpose.

3. We showcased the applicable feature engineering techniques within
this framework: For automated prediction model creation, the
framework allows different feature engineering techniques such as
data imputation, transformation (e.g., scaling, centering, etc.), and
data balancing. We demonstrated the applicability of these feature
engineering techniques, which are crucial elements of machine
learning models, in this semi-automated framework.

4. We demonstrated the ways to improve model quality using this
automation framework: With the help of case studies, we were able
to show how the initial prediction models can be improved using the
proposed framework. Each technique might have a different effect on
the overall performance of the model and therefore, we showed the
performance change after a certain technique is applied.

The next sections are organized as follows. Section 2 describes the
background and related work. Section 3 presents the research method-
ology. Section 4 discusses the framework that supports the creation of
automated prediction models. Section 5 explains the evaluation of the
framework on different datasets. Section 6 presents the discussion and
threats to validity. Section 7 concludes the paper and shows the

potential future work.

2. Background and related work

2.1. Liquid chromatography coupled to mass spectrometry

Liquid chromatography (LC) is a method to separate compounds
based on interactions of the compounds with the adsorbent in the col-
umn. The time (retention time) compounds are retained on the column is
dependent on the strength of their interactions. The detection of an
eluting compound is often done with a mass spectrometer that is coupled
to the LC (for example LC-Orbitrap-MS). A schematic example is shown
in Fig. 1. As shown in this figure, the mass spectrometer involves the
following three components: Ion Source, Mass Analyzer, and Detector.
In the first component, the sample is ionized and cations are generated.
Later, the second component separates ions based on their mass. Finally,
the detector component detects the quantity and species of the ion.
These steps create the main process performed by a mass spectrometer.
Although a mass spectrometer is accurate for the detection and sepa-
ration, it is not sufficient for a very complex mixture. Therefore, it is
combined with High-Performance Liquid Chromatography (HPLC), and
this combination is called Liquid Chromatography Mass Spectrometry
(LC-MS). This combination of techniques provides better accuracy and is
used in many different application domains.

Mass Spectrometry (MS) analysis is an analytical method to derive
information on the presence and concentration of compounds based on
the mass and charge of these compounds. It is widely used in organic
chemistry applications and analysis varying from pharmaceutical anal-
ysis (Loos et al., n.d.) to biomolecule characterization (Breuker et al.,
2008), environmental analysis (Petrovic et al., 2005), and forensic
analysis (Hoffmann et al., 2008).

In this study, the HRMS dataset is derived in an LC-Orbitrap-MS
setup. Compounds are separated by LC and subsequently ionized and
passed on to the orbitrap. Ions in this Orbitrap oscillate at varying fre-
quencies. Measuring these frequencies allows for the derivation of mass
over charge (M/Z) and subsequently of mass spectra images using
Fourier transformations. The Orbitrap analyzers allow for high mass
accuracies with mass error < 5 ppm (parts per million of the mass). An
example of the Orbitrap is shown in Fig. 2. Typical data consists of the
time necessary for compounds to elute (retention time) from the LC
column, their exact mass over charge ratios (i.e. from their ionized
form), and their intensity. The elemental composition of the compound
can be calculated from the exact mass.

2.2. Machine learning

Machine learning (ML) is a sub-field of artificial intelligence, which
combines the computational power of computers with well-established
statistical algorithms to accomplish a plethora of tasks (Jordan &
Mitchell, 2015; Muhamedyev et al., 2015). These tasks can range from a
simple regression of numerical variables to complicated neural networks
classifying images, or detecting human speech in recorded audio.

The use of ML requires a workflow of first gathering and preparing
the required data, analyzing which models should be used, and subse-
quently, training and evaluating the models based on evaluation met-
rics. In addition, hyperparameter optimization/hyperparameter tuning
can drastically alter the model performance. Each of these steps shown
in Fig. 3 involves different challenges. For instance, selecting a suitable
algorithm to build the model has many different options, and also, pre-
processing of the gathered data involves several techniques. In some
cases, labeled data might not be sufficient to build a high-performance
prediction model, and therefore, unlabeled data are also considered (i.
e., semi-supervised learning). Each of these steps might take a consid-
erable amount of time and recently, there is a research field called
Automated Machine Learning (AutoML) that aims to provide techniques
to make machine learning available for non-machine learning experts.

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

3

Since the success of the prediction models highly depends on the
expertise of the machine learning experts, this research field aims to
simplify the development of machine learning models. There are several
packages such as AutoWEKA, Auto-sklearn, and H2O AutoML, which
were developed for automated machine learning. In deep learning, there
is also a similar research field called neural architecture search (NAS)
that aims to find a well-performing architecture automatically. Current
deep learning models are built using many different options (e.g.,
different layer types, activation functions, algorithms, etc.) and there-
fore, the development is time-consuming and requires a lot of effort from
the deep learning experts. For deep learning, there are also some
packages such as AutoKeras and Auto-PyTorch.

This workflow shown in Fig. 3 is often a manual search for the right
combination of data preparation, model choice, and model tuning. This
can be a time-consuming task, especially if certain model performance
criteria must be met. There are packages such as CARET (Kuhn, 2008)

for R, which help immensely with providing a framework for a data
scientist to quickly experiment and build models. However, this is not
fully automated and in order to quickly build well-performing models,
this workflow should be automated.

2.3. Feature engineering

Feature engineering is often described as the art of extracting useful
features or properties from data using either domain knowledge or
established transformation methods (Heaton, n.d.). This is done by
trying arbitrarily or with well-educated guesses to create new variables.
Later, these new sets of features are used in the ML workflow to create a
model, which is subsequently tested for model performance and feature
importance.

Common ways of feature engineering are cleaning data, handling
missing data, and transforming the data. An example of transforming
data is simple numerical transformations such as log scaling to force
more normal distributions in the dataset, clustering to group data that is
alike, encoding data to create categorical data, and other methods that
try to capture the raw data in a different way such as PCA (Principal
Component Analysis) (Jollife & Cadima, 2016).

Missing data can be a problem in spare datasets with many variables
with low frequency in entries. This can lead to models not functioning at
all to dropping useful information in model creation. This problem can
be addressed by imputing missing data, dropping data, or a combination
of both. Imputing is an easy way to replace or fabricate new values. This
can be done by simple arithmetical substitutions such as by the median
or average to a random distribution based on known data characteristics
to more complicated methods such as MICE (Multivariate Imputation by
Chained Equations) (Azur et al., 2011; Van Buuren & Oudshoorn, 2000),
which allows modeling missing data on other variables.

Feature selection is often required to prevent excess in variables if
methods such as feature creation or combinations are used, which can
lead to dimensionality issues. This can be fixed by dimension reduction
methods such as regularization or using feature selection to drop out
certain variables based on relative significance or contribution to vari-
ance in the data. There are advancements in the field of automated
feature engineering using tree-like methods to create new features
(multi-relational decision tree learning) (Rinkal & Aluvalu, 2014) to
deep feature synthesis (Kanter & Veeramachaneni, 2015). Methods like
these have also become commercially available recently to help data
scientists drastically increase data exploration capabilities and to help
novices quickly extract useful features for further use in the workflow
(It’s All About the Features – Reality AI, n.d.). These methods are greatly
helpful as they are able to beat human teams in ML competitions more
often.

Fig. 1. Schematic overview of the experimental workflow of MS analyses (Chemyx, 2021).

Fig. 2. Example of the derivation of mass/charge diagram based on the orbi-
trap (Rajawat & Jhingan, 2019).

Fig. 3. Standard workflow of machine learning model development
(Advani, 2021).

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

4

2.4. Summary of the previous studies and contributions

In this research, one of our main objectives was to build a high-
performance machine learning model that can predict the samples of
guaranteed treated animals correctly. This is our first case study in this
research. There are some research papers that applied machine learning
to the HRMS data (Liebal et al., 2020; Bouwmeester et al., 2020), and a
few researchers used machine learning for the quantification of hor-
mones in the samples using HRMS data (Rocha et al., 2022; Benedetto
et al., 2021a; Benedetto et al., 2021b). However, they did not mention
the challenges that exist in our HRMS data such as class imbalance, and
also, they did not aim to develop the prediction models using a frame-
work as proposed in our research. Our focus was to detect the illegal
hormone abuse in the cattle breeding industry in the Netherlands and
there were several challenges in our dataset such as class imbalance and
missing data points, which were not addressed in this context before.
Moreover, we aimed to build prediction models using our semi-
automated framework to demonstrate its applicability in a complex
real-world problem. Therefore, our framework, HRMS dataset, and the
prediction models built on top of the HRMS dataset are considered
novel.

3. Research methodology

3.1. Research questions

The following research questions have been identified in this study:

• RQ1 - What are the adopted feature engineering methods that are
applicable to numerical data for classification problems?

• RQ2 – How can we improve the quality of a given classification
model with feature engineering methods?

• RQ3 – To what extent can we automate the development of classi-
fication models?

The motivation for each research question is shown in Table 1.
To answer these research questions, we followed the following steps:
For answering RQ1, relevant knowledge sources on feature engi-

neering were collected using a domain analysis technique. The results of
this step are provided in Section 5.1. For answering RQ2 and RQ3, a
framework for automated prediction model creation is implemented as
presented in Section 4. Further using this framework we adopt a ma-
chine learning life cycle, in which we apply different feature engineering
techniques. The results are presented in Section 5. The approach is
evaluated by using two case studies, which are explained in Section 4.
The case studies and the adopted datasets are presented in Section 3. The
overall approach is discussed in section 6.

3.2. 3.2 HRMS data set of urine profiles

The data is provided in CSV format where every urine sample has its
own CSV file and identifier containing information on which compounds

are found within that sample. Measurements for compounds are reten-
tion time, elemental composition, intensity, and weight. Information on
the source of these urine sample files is stored in description CSV files.
The experimental conditions are stored in a separate CSV file containing
information on which treatment is used in samples originating from
animal experiments. For every unique sample, the data of the com-
pounds are aggregated with their respective intensities in mind. It is
unclear from the raw data what isomer each compound exactly is. This
results in that different isomers being categorized as the same com-
pound. The final result is a data frame containing the urine samples as
rows with isomer intensities, treatment, and sex labels as columns. The
final data is ordered in 273 columns and 1241 rows. 1241 samples are
divided into two categories: treated and untreated. All unknown samples
were assumed to be untreated, which amounted to 1185 samples, with
the rest 56 as confirmed treated samples. Sex data was limited, with only
192 samples being labeled, the majority being female (176). The data is
sparse with multiple columns containing missing data. The range of
missing data is shown in Fig. 4.

The data used for the framework is intensity data grouped by the
same elemental composition. Each elemental composition has its own
variable and column. Each entry has its own label concerning the status
of the sample. An example of data is shown in Table 2.

3.3. Dataset from the university of california at irvine (UCI)

The PIMA dataset is retrieved from the National Institute of Diabetes
and Digestive and Kidney Diseases and directly read into the framework.
The features of this dataset are shown in Table 3.

The PIMA dataset contains information on kidney diseases of pa-
tients of Pima Indian heritage in an effort to create predictions based on
diagnostic measures.

4. Framework for supporting automated prediction model
creation

In this section, we present the framework that we have developed for
automation prediction model creation. The framework is based on the
CARET (Classification And Regression Training) package implemented
in R. This package is a tool used by data scientists as it aggregates the
most often used methods for data preparation, model training, and
tuning for evaluation, which allows rapid model creation, optimization,
and testing. It supports 238 different algorithms with often multiple
optimization parameters per model. It also allows for preprocessing,
such as basic feature engineering and resampling to creating pre-
determined data splits for validation and optimization with, for
example, cross-validation. In addition, it is possible to implement

Table 1
Overview of Research Questions.

Research Question Motivation Section

What are the adopted feature
engineering methods that are
applicable to numerical data for
classification problems?

To establish well-performing
workable flows of operations for
repetition in other classification
cases

5.1

How can we improve the quality of a
given classification model with
feature engineering methods?

To reach better performance
evaluation scores from raw data

5.2

To what extent can we automate the
development of classification
models?

To ease model development and
rapid deployment in practical
cases

5.3

Fig. 4. Distribution of missing data.

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

5

custom models or recipes, which allows for expansion in this system (12
Using Recipes with Train | The Caret Package, n.d.).

This study uses the CARET package to utilize most of the above-
mentioned features in a semi-automatic way to create multiple models
based on different data preparation and tuning methods. A diagram
depicting this workflow is shown in Fig. 5, which depicts the order of
operations from data imputation to transformations, which are then
subsequently split into a validation set and a combined training/testing
set, which is used for internal cross-validation for the hyperparameter
tuning. The final performance is calculated using F1 scores based on
unseen validation data to account for class imbalances.

4.1. Imputation

Missing data has to be addressed before training the model. Multiple
ways of doing this are available. These vary from ignoring incomplete
cases to replacing or calculating a distribution of values for the missing
values. This can be done by simple methods such as a direct replacement
or a normal or uniform distribution in a certain range to more advanced
imputation methods. For example, knnImpute (Crookston & Finley,
2008) or MICE (Van Buuren & Oudshoorn, 2000), models the missing
data based on other information stored in other variables by respectively
applying a k-nearest neighbors algorithm or applying a chained
regression model. In the HRMS data set of urine profiles, ignoring the
incomplete cases is not an option as all entries would be dropped that
way. Therefore, an imputation method must be chosen. An applied or
hybrid strategy should be adopted by ignoring sparse variables and

imputing the other variables. One easy way, given the fact that a lower
detection limit is known, is to calculate a random distribution around
this limit and use that as a lower bound. For the aggregated intensity
data, this is not a big issue as the lower detection limit is multiple orders
of magnitudes lower than most of the data. Therefore, this was chosen as
the first approach.

4.2. Transformation

CARET allows for multiple transformation methods to be applied to
the data such as scaling, centering, or calculated derivatives such as
correlation scores and PCA, dropping zero variance (zv), near zero
variance (nzv) columns. These transformations are immediately applied
to all of the data points after imputation and before any split and class
balancing occurs. Custom transformation methods can be used as well,
however, these have to be implemented manually, which was done for
the log transformation, which is not natively supported by CARET. Other
methods could be implemented using CARET recipes.

4.3. Class balancing

This study deals with highly imbalanced data, which can affect
model performance severely. Class imbalances can be addressed in
multiple ways. This can be done by choosing models that can handle
these differences relatively well or by applying the subsampling
approach. Subsampling is often used to implement solutions to reme-
diate model performance issues related to class imbalances. There are
multiple options, down and upsampling, which respectively drop the
frequency of the majority class or increase the frequency of the minority
class. Smarter solutions are SMOTE (Chawla et al., 2002) or ROSE
(Lunardon et al., 2014), which can do both to narrow the gap between
the class imbalances by dropping samples and creating new ones based
on others imputed by, for example, a k-nearest neighbor algorithm in the
case of SMOTE. These methods are available as R packages. In this study,
upsampling and SMOTE are used in conjunction with no modification to
the training data. This means that the final validation set does not
accurately represent the training data but does allow the learner models
to get more information on the lower frequency class relative to the
higher frequent class.

4.4. Training and tuning

The training uses the CARET package as a framework for both
implementing models and tuning the hyperparameters for these
learners. Every algorithm provided in the CARET package has standard
suggested tuning grids for parameter optimization, which is used to find
an optimal model within these parameter ranges. For this optimization,
model performance is necessary to assert model quality. In this case, a
stratified 10-fold cross-validation and 5 repeats are applied in the tuning

Table 2
Example data of HRMS data set of urine profiles.

Sex Label C18H32O3 C18H24O8S2 … (more elemental
compositions)

M/F/NA
(factor)

bovine/
bovine test
(factor)

NA/
27930.88
(Double)

NA/ (Double)

Table 3
Features of the PIMA dataset.

Feature Label Type

of times pregnant Int
Plasma glucose concentration Real
Diastolic blood pressure Real
Triceps skin fold thickness Real
2-hours serum insulin Real
BMI Real
Diabetes pedigree function Real
Age Int
Class Binary

Fig. 5. Model Creation Process of the Framework.

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

6

process by measuring the overall misclassification error. Tuning is
controlled by the standard suggested tune grid, which can be modified
by changing the tuned length. This variable multiplies the grid compo-
nents to control deeper or shallower searches for an optimal model. The
main trade-off in this regard is time vs model quality. Larger tune
lengths cost more time for a theoretically higher likelihood of better
models. This tune grid can be adjusted manually per individual model to
allow for time management. This is especially necessary for models that
take significantly longer times, such as the gradient boosting methods.
Different metrics can be applied by using the Mlmetrics package (Yan &
Maintainer, 2016), which provides precision, recall, and F1 scores as
evaluation metrics. F1 is calculated as shown in Equation 1. Moreover, it
is possible to adjust the F score evaluation system by weighting the
importance of precision and recall, as shown in equation 2 by changing β
which allows for weighing for more importance of precision or recall.

F1 = 2*(precision*recall)/(precision + recall)(1)

Fβ= ((1 + β^2)*(precision*recall))/([(β]^2*precision + recall))(2)

This can be done in situations where a large class imbalance is pre-
sent. This causes likely high recall but low precision for the learners
used. Table 4 shows the algorithms, their descriptions, and the hyper-
parameters applied in this study. These were selected for ease of use and
compatibility with the developed framework.

4.5. Validation

Final validation is performed with the final model produced by
tuning in CARET on unseen and unmodified data with corresponding
labels. For this, several split ratios are used to test the differences in sizes
of the final validation set and the combined training/testing sets. The
final model is applied to the unseen data and produces predictions,
which are compared to the actual labels provided in the same dataset in
a confusion matrix. From this table, metrics such as precision, recall, and
F1 scores are calculated. This F1 score is calculated in the first place on
the validation data. The model is then stored along its validation metrics
and the corresponding datasets for possible further analysis depending
on the F1 score, which is used as a first indicator and main selector for
model quality. This workflow generates a multitude of final models and
a much larger array of tuning models because each combination of
imputation method, split ratio, preprocessing method, and modeling
method is tested. This results in several hundreds of models due to the
combinations. Saved models can be loaded and investigated for their
hyperparameters and reused with any dataset related to the training set.
This way performance on seen and unseen data can be assessed. More-
over, for every experiment and variation, it is possible to retrieve a
distribution of model performance, as such, comparisons can be made
between different split ratios, model methods, imputation methods, and
class balancing approach.

5. Results

5.1. Currently adopted feature engineering methods (RQ1)

RQ1 - What are the adopted feature engineering methods that are
applicable to numerical data for classification problems?

The literature covers feature engineering often as an art. The pre-
dictive power of machine learning models is aimed to be improved by
extracting information or features from a dataset and utilizing domain
knowledge or other commonly used transformations. This has been a
manual process up until recently. New methods and automated feature
extraction tools such as deep feature synthesis provided automated
discovery of features with the help of open source tools such as Featur-
etools (https://www.featuretools.com/). Common ways of feature en-
gineering are cleaning data, handling missing data, and transforming the
data. An example of transforming data is simple numerical trans-
formations such as log scaling to force more normal distributions in the
dataset, clustering to group data that is alike, encoding data to create
categorical data, and other methods that capture the raw data in a
different way such as PCA. Missing data can be a problem in very sparse
datasets with many variables with low frequency in entries. This can
lead to models not functioning at all or dropping useful information in
model creation. This problem can be addressed by imputing missing
data, dropping data, or a combination of both. Imputing is an easy way
to replace or fabricate new values. This can be done by simple arith-
metical substitutions such as by the median or average to a random
distribution based on known data characteristics to more complicated
methods such as MICE, which allows for modeling missing data on other
variables.

Feature extraction creates new features from raw data based on an
algorithm or predefined ruleset. Feature selection is often required to
prevent excess in variables if methods such as feature creation or com-
binations are used, which can lead to dimensionality issues. CARET
provides methods to alter the class proportions in the data by either
down and upsampling or using hybrid methods such as SMOTE (Syn-
thetic Minority Oversampling Technique) or ROSE (Random Over-
Sampling Examples). These methods are applied to enable machine
learning models to generalize better over the classes themselves at the
cost of increased bias. It is not always necessary to use such methods if
the data is already well-balanced or if the minority class count is satis-
factory. When such methods are used, special care needs to be taken
with interpretation as some metrics do not reflect that the model per-
forms better. An example of this is the accuracy paradox where it seems
that accuracy increases while the model itself only predicts one class.
Therefore, it is important to account for performance across classes and
which metrics such as precision, recall, and F1 scores are to be used.
SMOTE is used in this framework as the method for addressing the class
balance issues in the HRMS data set of urine profiles as the positive label
count was low and several configurations were tested and compared in
Section 5.2. The final F1 scores were calculated on validation data that
was not treated with the class balancing approach to best reflect the
reality of the naturally found class distribution.

5.2. Improving classification models with feature engineering methods
(RQ2)

RQ2 – How can we improve the quality of a given classification model
with feature engineering methods?

Several experiments were run using different algorithms and trans-
formation methods, as shown in Table 5. These combinations of impu-
tation, transformation, and modeling methods were all then performed
by the framework with the models, standard tunegrid was used as ar-
guments for the hyperparameter optimization unless stated otherwise.

Combining these methods with the fact that two different split ratios
were used for the final validation set results in 6 (transformation
methods) * 6 (model algorithms) * 2 (split ratios) = 72 models that were

Table 4
Hyperparameters for CARET-supported algorithms.

Algorithm
name

Description Hyperparameters

LMT Logistic Model
Trees

iter

Logitboost Boosted Logistic
Regression

nIter

xgbLinear eXtreme Gradient
Boosting

nrounds, lambda, alpha, eta

xgbtree eXtreme Gradient
Boosting

nrounds, max_depth, eta, gamma,
colsample_bytree, min_child_weight,
subsample

deepboost num_iter, tree_depth, beta, lambda, loss_type
Naïve_bayes laplace, usekernel, adjust
rocc ROC-Based

Classifier
xgenes

S. Boeschoten et al.

https://www.featuretools.com/

Expert Systems With Applications 213 (2023) 118912

7

created in the framework per experiment. However, each of these
models is the final model based on the fine-tuning performed by CARET,
therefore, essentially multiple hundreds of models are created by the
framework based on the provided tunegrids.

Every experiment contains 72 final models. However, as there is a
large class imbalance, multiple experiments were run with differing
approaches to address this problem. These are shown in Table 6. Every
experiment containing 72 final models is then loaded back into the
framework for validation based on the separated validation set. Every
model is then back-tested and scored with the F1 score. This results in 72
F1 scores for every experiment, which is used for comparisons and
graphing. Moreover, the F1 scores are split by their respective modeling
and transformation methods based on the average across the two split
ratios resulting in tables with 36 averaged F1 scores along their
respective precision and recall for comparison between methods and
experiments.

Fig. 6 shows the model F1 performance distribution for the standard
balanced dataset. The best model has an F1 score of 0.833 and is shown
as the single bar on the right. This distribution is skewed to lower-
performing models with 23/72 models performing above 0.5 F1
scores. Fig. 7 shows model performance metrics per algorithm and
transformation for non-balanced data.

The model performance values are also shown in Tables 7–9 aver-
aging on the split ratios of 0.8 and 0.9. The F1 score is also split into the
precision and recall counterparts. Simple log transformation performs
the best in combination with the Naive Bayes and ROC-based classifier.
As shown in Table 8, the precision value of the Naïve Bayes model is 0.78
when the log transformation is applied. According to Tables 8 and 9,
Logitboost algorithm provided 0.68 precision and 0.37 recall values.

Some transformation methods are completely biased towards one
class indicating an F1 score of 0 or that specific algorithm resulted in an
error also indicating a score of 0. Logitboost followed by the xgb algo-
rithms is more consistent based on the transformation method.

Table 7 shows the final optimized model F1 score for every classifi-
cation algorithm and transformation method in this study averaged for
the two split ratios.

Table 8 shows the final optimized model precision for every classi-
fication algorithm and transformation method in this study averaged for
the two split ratios.

Table 9 shows the final optimized model recall for every classifica-
tion algorithm and transformation method in this study averaged for the
two split ratios.

Fig. 8 shows the model F1 performance distribution for the standard
Smote balanced dataset. The best model has an F1 score of 0.923 and is
shown as the single bar on the right. This distribution is skewed to higher
performing models indicating class balancing shows a general
improvement. These model performance results are also shown in Ta-
bles 11 to 12 averaging on the split ratios of 0.8 and 0.9. The F1 score in

Table 10 is also split into the precision and recall counterparts in
Table 11 and 12 respectively. The tables are also depicted as a bar chart
in Fig. 9. All models tend to dominate higher recall vs lower precision,
which tends to provide more false positives. As shown in Tables 11 and
12, xgbLinear provided 0.62 precision (i.e., log transformation) and 0.96
recall values.

Gradient boosting performs better with the linear variant being on
top. Overall, correlation transformation is the best single transformation
step followed by log, centering, matrix, and scaling. The worst per-
forming models are Naive Bayes and the Rocc algorithm with the
exception of log transformation for Naive Bayes.

Table 10 shows the final optimized model F1 score for every classi-
fication algorithm and transformation method in this study averaged for
the two split ratios.

Table 11 shows the final optimized model precision for every clas-
sification algorithm and transformation method in this study averaged
for the two split ratios.

Table 12 shows the final optimized model recall for every classifi-
cation algorithm and transformation method in this study averaged for
the two split ratios.

Fig. 10 shows the model F1 performance distribution for the Smote
400 % balanced dataset. The best model has an F1 score of 0.857 and is
shown as the single bar on the right. This distribution is divided into
three lower to mediocre sections and higher performing models with
roughly the same prevalence. These model performance values are also
shown in Tables 13 to 15 averaging on the split ratios of 0.8 and 0.9. The
F1 score in Table 13 is also split into the precision and recall counter-
parts in Table 14 and 15 respectively. The tables are also depicted as bar
charts in Fig. 11. All models tend to dominate higher recall vs lower
precision, which tends to more false positives.

As shown in Tables 14 and 15, deepboost algorithm provided 0.80
recall (i.e., nzv transformation is applied) and 0.65 precision values.

Deepboost is at the top closely along with the xgb linear and the log-
transformed Naive Bayes classifier. Overall, log transformation is the
best single transformation step followed by correlation. The worst-
performing models, in general, are Naive Bayes and the Rocc algorithm.

Table 13 shows the final optimized model F1 score for every classi-
fication algorithm and transformation method in this study averaged for
the two split ratios.

Table 14 shows the final optimized model precision for every clas-
sification algorithm and transformation method in this study averaged
for the two split ratios.

Table 15 shows the final optimized model recall for every classifi-
cation algorithm and transformation method in this study averaged for
the two split ratios.

The Pima dataset has a range of F1 scores from the lower 0.55 to the
upper 0.7 with 10 finalized and optimized models being in the highest
section. This framework is able to create models with similar perfor-
mance as in literature (Pal et al., 2020). This paper cites a maximum F1
score of 0.64 on an SVM classifier after balancing the data. The results in
this section were not generated after balancing the Pima data. This

Table 5
Algorithms and transformation methods.

Model algorithms Transformation methods

deepboost center
LogitBoost corr
Naive_bayes log
rocc nzv
xgbLinear scale
xgbTree zv

Table 6
Experiments with subsampling.

ID Additional conditions

1 No subsampling
2 Standard SMOTE (200 % max upsampling)
3 SMOTE (400 % max upsampling)

Fig. 6. F1 distribution with no subsampling (highest F1 validation = 0.833).

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

8

indicates that this framework is able to create at least similar models as
to what an individual could do.

Fig. 12 shows the model F1 performance distribution for the Pima
diabetes dataset. These model performance values are also shown in

Tables 16–18 averaging on the split ratios of 0.8 and 0.9. The F1 score in
Table 16 is also split into the precision and recall counterparts in Ta-
bles 17 and 18 respectively. The tables are also depicted as a bar chart in
Fig. 13. All models tend to dominate higher precision vs lower recall

Fig. 7. Model performance metrics per algorithm and transformation for non-balanced data.

Table 7
Validation F1 averaged on the split ratio.

center corr log nzv scale zv

deepboost 0.33 0.33 0.33 0.33 0.33 0.33
LogitBoost 0.47 0.47 0.47 0.47 0.47 0.47
naive_bayes 0.15 0.26 0.75 0.26 0.29 0.26
rocc 0 0 0.7 0 0 0
xgbLinear 0.38 0.38 0.38 0.38 0.38 0.38
xgbTree 0.44 0.47 0.49 0.44 0.44 0.44

Table 8
The precision average on the split ratio.

center corr log nzv scale zv

deepboost 1 1 1 1 1 1
LogitBoost 0.68 0.68 0.68 0.68 0.68 0.68
naive_bayes 0.21 0.38 0.78 0.38 0.54 0.38
rocc 0 0 0.69 0 0 0
xgbLinear 1 1 1 1 1 1
xgbTree 1 0.9 0.88 1 1 1

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

9

although the difference is smaller than in the HRMS data set of urine
profiles.

As shown in Tables 17 and 18, xgbLinear provided 0.73 precision and
0.62 recall values.

xgbLinear is at the top closely along with the xgbtree and deepboost.
Overall, log transformation is the best single transformation step. The
worst-performing models, in general, are Naive Bayes and the Rocc al-
gorithm. The log transformation is the best for Naive Bayes although the
gain is smaller than for the HRMS data set of urine profiles.

5.3. Automation of classification models (RQ3)

RQ3 – To what extent can we automate the development of classification
models?

While there are methods and algorithms well suited for automatic
classification learning such as deep learning models, it is not often that
the entire pipeline from data loading to the final classification model is
automated. A data scientist regularly has to adjust model learning pa-
rameters or try different feature engineering methods in an effort to
improve model quality. Parts of this pipeline are available to be auto-
mated such as automatic feature extraction or automated model tuning.
Examples of this are the Multi-Relational Decision Tree Algorithm
(MRDTL) (Atramentov et al., 2003) or the aforementioned Deep Feature
synthesis or CARET itself for automated model tuning. Ideally, the entire
pipeline as shown in Fig. 14 needs to be automated.

The framework as explained in Section 4 focuses on the data prep-
aration and model building and training sections with focuses on data
transformation and automated model testing and validation. Hyper-
parameter tuning is also automated but is included in the CARET
package and not edited for this study with the exception of the ability to
change tunegrid length or provide a custom tune grid. Results shown in
Section 5.2 were generated by this framework. Each model is individ-
ually constructed and saved as an rds file. Afterward, these were loaded
and the results were analyzed and compiled for automatic generation of
the distribution graphs and tables. The parts of creating and loading the
models are separated resulting in few actions required to generate these
graphs. These are manually checking the data for the requirements of
having one label class and the rest as numerical, designating the label
column, setting parameters for model creation such as vectors of which
algorithms, transformations, tunegrids to use, and running the model
creation parts, running the model analysis and plotter part. These ac-
tions themselves can be performed within a few minutes. The system is,
therefore, not fully automatic but does achieve automation of model
creation including the tedious parts of hyperparameter optimization.
The framework has proven to be working with two separately sourced
datasets.

The framework as explained in Section 4 focuses on the data prep-
aration and model building and training sections and covers the data
transformation and automated model testing and validation. Hyper-
parameter tuning is also automated but is included in the CARET
package and not edited for this study with the exception of the ability to
change tunegrid length or provide a custom tune grid.

6. Discussion

6.1. General discussion

The development of machine learning models is shown to be auto-
mated as long as a strict frame is defined on what to support. For this,
basic building blocks of model development were investigated and
implemented using two case studies. There are, however, many more
methods available for more niche cases. This would increase complexity
in terms of time and implementation as combinations of these building
blocks can grow quickly. They can be implemented due to the recipe
function of CARET, which allows this framework to be customized for
special cases. This framework is able to quickly generate an array of

Table 9
The Recall average on the split ratio.

center corr log nzv scale zv

deepboost 0.2 0.2 0.2 0.2 0.2 0.2
LogitBoost 0.37 0.37 0.37 0.37 0.37 0.37
naive_bayes 0.12 0.2 0.72 0.2 0.2 0.2
rocc 0 0 0.72 0 0 0
xgbLinear 0.24 0.24 0.24 0.24 0.24 0.24
xgbTree 0.28 0.32 0.37 0.28 0.28 0.28

Table 10
Validation F1 averaged on the split ratio.

center corr log nzv scale zv

deepboost 0.62 0.66 0.55 0.62 0.62 0.62
LogitBoost 0.45 0.45 0.5 0.45 0.45 0.45
naive_bayes 0.21 0.21 0.61 0.21 0.21 0.21
rocc 0.29 0.29 0.45 0.29 0.37 0.29
xgbLinear 0.71 0.77 0.75 0.71 0.71 0.71
xgbTree 0.59 0.61 0.66 0.59 0.59 0.59

Fig. 8. Distribution for standard Smote balancing (200 %) (standard, highest
validation F1 = 0.923).

Table 11
The precision average on the split ratio.

center corr log nzv scale zv

deepboost 0.46 0.5 0.4 0.46 0.46 0.46
LogitBoost 0.3 0.3 0.34 0.3 0.3 0.3
naive_bayes 0.12 0.12 0.51 0.12 0.12 0.12
rocc 0.17 0.17 0.3 0.17 0.24 0.17
xgbLinear 0.58 0.67 0.62 0.58 0.58 0.58
xgbTree 0.46 0.45 0.51 0.46 0.46 0.46

Table 12
The Recall average on the split ratio.

center corr log nzv scale zv

deepboost 0.96 0.96 0.88 0.96 0.96 0.96
LogitBoost 0.92 0.92 0.92 0.92 0.92 0.92
naive_bayes 0.88 0.88 0.76 0.88 0.88 0.88
rocc 0.88 0.88 0.96 0.88 0.88 0.88
xgbLinear 0.92 0.92 0.96 0.92 0.92 0.92
xgbTree 0.84 0.92 0.96 0.84 0.84 0.84

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

10

Fig. 9. Model performance metrics per algorithm and transformation for standard Smote class balancing.

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

11

models for different datasets with comparable performance results for
the Pima dataset. The framework shows which models and trans-
formation methods outperform each other and can be used to select a
model and its defined workflow for a practical application.

RQ1 - What are the adopted feature engineering methods that are
applicable to numerical data for classification problems?

A multitude of options regarding feature engineering exists. In
creating any machine learning pipeline, it is necessary to decide which
techniques should be adopted. The traditional way of trial and error is
often employed by newbie data scientists. The process consists of
creating or transforming features based on domain knowledge and
subsequently, testing them in iterations, with each iteration hopefully

increasing model performance or better alignment with the end goal.
This is an iterative and time-consuming process and is reported to be the
largest time-consuming task for data scientists. Choosing and testing
these techniques becomes more challenging if domain knowledge is not
readily available. In this case, the process becomes a stepwise iteration
of randomly selecting a subset of these techniques and testing them. This
study focuses on this method by automating this process based on some
common and easy-to-understand transformations. This is done by
testing combinations of different models for rapid model development
and testing.

The HRMS data set of urine profiles entailed numerical trans-
formations, principal component analysis (PCA), and filtering for near or
non-zero variance features. For the HRMS data set of urine profiles, data
were grouped based on chemical element composition based on the
knowledge that certain carbon counts were expected to be an important
feature in testing hormone treatment status. This data could have been
grouped better by dividing these compositions into different compound
classes to better reflect the chemical reality and perhaps to increase
resolution. This was, however, not performed as it would increase the
sparsity of the data greatly and the expectation that carbon classed
compositions are somewhat alike in the pathway in bovines.

In theory, much more specific features could be synthesized based on
biochemical knowledge such as dividing into acids, large molecules,
intermediates, etc. This, however, requires specific domain knowledge
and would exacerbate the missing data more. Therefore, the initial data
grouping was kept simple as it was the goal to create a framework that
would be able to perform on raw numerical data with limited knowledge
and limited to no manual crafting of features. This framework in-
vestigates some simple transformations, which work on any numerical
data for testing. Another reason to use this type of feature engineering
was that other types such as encoding, aggregating, and extraction
require manual intervention or would quickly increase the possibilities
without an intelligent approach, which probably has to be based on
domain knowledge. This framework, however, does not only do the
feature engineering part of the machine learning pipeline but also ad-
dresses hyperparameter optimization and validation. It is known that
sophisticated feature engineering approaches are available specifically
for one field of feature engineering fields such as deep feature synthesis
and MRDTL. Ideally, a perfect pipeline could combine the best of every
step and use such methods as well at the cost of more time and
complexity. This framework uses common and simple transformations
to keep this process relatively simple. In this case, they were numerical
transformations and imputations, PCA, and removal of zero or near zero
variance variables. It is possible to include other transformations such as
YeoJohson or to implement novel transformations if not supported by
CARET. The latter requires a manual definition according to CARET’s
recipes.

RQ2 – How can the quality of a given classification model be improved
with feature engineering methods?

The quality of models can both be increased as well as decreased by
feature engineering in a step-by-step process. This is often described as
an art in data science competitions. It is hard to find an optimal way of
feature engineering as many approaches and combinations are avail-
able. However, domain knowledge makes this easier as it can act as a
guide on how the data is supposed to be interpreted by models, for
example, by performing a log distribution on biological data to force a
normal distribution, which is often expected or by grouping and
aggregating data such as compounds with the same elemental compo-
sition. In order to improve the quality as defined, multiple approaches
must be tested and a satisfactory approach needs to be selected. It is,
however, important not to over-engineer the data or overfitting can
occur on the validation data if this is kept constant. For example, vali-
dation data is kept as a reality check for model performance trained only
on the training data. However, if a large number of models is constructed
and selected for performance on validation data, at some point the
process also fits for the validation data specifically. It is therefore

Fig. 10. Distribution for smote with 400 % oversampling (400 perc over,
highest validation, F1 = 0.857).

Table 13
Validation F1 averaged on the split ratio.

center corr log nzv scale zv

deepboost 0.71 0.63 0.68 0.71 0.71 0.71
LogitBoost 0.52 0.56 0.49 0.52 0.52 0.52
naive_bayes 0.21 0.21 0.72 0.21 0.21 0.21
rocc 0.28 0.28 0.47 0.28 0.36 0.28
xgbLinear 0.72 0.72 0.74 0.72 0.72 0.72
xgbTree 0.58 0.69 0.69 0.58 0.58 0.58

Table 14
The precision average on the split ratio.

center corr log nzv scale zv

deepboost 0.65 0.64 0.55 0.65 0.65 0.65
LogitBoost 0.39 0.42 0.35 0.39 0.39 0.39
naive_bayes 0.12 0.12 0.72 0.12 0.12 0.12
rocc 0.17 0.17 0.32 0.17 0.23 0.17
xgbLinear 0.67 0.66 0.68 0.67 0.67 0.67
xgbTree 0.51 0.6 0.58 0.51 0.51 0.51

Table 15
Recall averaged on the split ratio.

center corr log nzv scale zv

deepboost 0.8 0.64 0.88 0.8 0.8 0.8
LogitBoost 0.81 0.85 0.84 0.81 0.81 0.81
naive_bayes 0.85 0.85 0.72 0.85 0.85 0.85
rocc 0.79 0.79 0.88 0.79 0.88 0.79
xgbLinear 0.81 0.81 0.85 0.81 0.81 0.81
xgbTree 0.77 0.81 0.85 0.77 0.77 0.77

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

12

Fig. 11. Model performance metrics per algorithm and transformation for Smote 400% class balancing.

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

13

prudent to either change the validation data by selecting it from a basket
of validation data or find new validation data at the absolute end of the
pipeline. This potential flaw can also be countered by increasing the size
of the data making this more unlikely. However, this is not always
practically feasible.

RQ3 – To what extent can we automate the development of classification
models?

The extent to which automation can be performed is contingent on
the requirements and available resources. It is possible to automate a
large pipeline with a small number of simple building blocks or to
automate one step in this process heavily with the implementation of all

possible approaches and niche situations. However, trying to combine
this in one framework can drastically increase complexity if not handled
intelligently. In the cases discussed in this study, however, it is shown
that simple pipeline automation can be implemented to get comparable
results as to what individual development can do. While this framework
does not optimize as an individual could with enough time and under-
standing, it is a lot quicker and understandable for beginner data sci-
entists as this framework repeats the standard workflow of data
scientists to a certain degree. It allows for quick and simple model
development providing clues to better manual improvement if desired.

The framework allows for rapid model creation with customization
options but lacks the standard integration of more advanced techniques,
especially with regard to feature engineering techniques such as Multi-
relational decision tree learning or deep feature synthesis. It is, how-
ever, applicable for fast deployment with easy-to-understand and well-
established techniques for a shotgun approach for finding better classi-
fication models.

The HRMS data set of urine profiles is extracted from the HRMS data
in this paper in undisclosed ways. This data is derived from MS graphs
resulting in intensities for certain chemical compositions per sample.
The chemical compositions tested are containing exact masses corre-
sponding to hormone masses. The HRMS data set of urine profiles are
not publicly available due to confidentiality reasons and is used as-is in
this study. The Pima data is publicly available and used as a reference to
test the framework’s capabilities.

6.2. THREATS TO VALIDITY

This study has not conducted an exhaustive Systematic Literature
Review. In addition to the implementation of the framework, care has
been taken to ensure validity in terms of cross-referencing models and
their corresponding preparations by using a well-established cross-
validation technique. The framework is set up with a seed for every
random function to ensure repeatability with the same data, packages,
and environment. Widely used evaluation metrics and strategies have
been applied, and therefore, the analysis of the results is reliable and
repeatable.

Several feature engineering techniques, namely data imputation,
transformation, feature selection, and data balancing are supported in
the implemented framework. As known in the machine learning com-
munity, the effect of each feature engineering technique on the overall
performance is highly sensitive to the nature of the application data at
hand and there is no best way to be good in all of these fields. The
proposed framework evaluates all possible combinations of the available
algorithms for each technique automatically and later, reveals the
optimal model considering the best score of the generated models. As
there is a limited number of algorithms for each category in the current
framework, the optimal model should be interpreted as the optimal
within the framework context, which means that there might be addi-
tional algorithms, which were not been implemented in the framework
yet, that can provide better overall performance. The framework is
flexible to add new algorithms for each category of feature engineering
techniques, therefore, there is no strict limitation on the number of al-
gorithms used for each feature engineering technique.

6.3. Comparison of the framework

In this section, we compare our framework with a new machine
learning framework called the Tidymodels framework (www.
tidymodels.org), which is considered to be the successor of the Caret
package. Both frameworks can be used by R programming users and
have different features. In Table 19, we present our comparison using
different aspects of these tools. Both frameworks were used by the re-
searchers to implement different machine learning models and evalua-
tions were reflected in this table. Since our framework was built on top
of the Caret package, we benefit from the available features of the Caret

Fig. 12. Histogram of F1 scores on the validation set of individual
Pima models.

Table 16
F1 scores on the validation set of PIMA data.

center corr log nzv scale zv

deepboost 0.6 0.6 0.6 0.6 0.6 0.6
LogitBoost 0.66 0.66 0.66 0.66 0.66 0.66
naive_bayes 0.59 0.59 0.64 0.59 0.59 0.59
rocc 0.6 0.6 0.59 0.6 0.58 0.6
xgbLinear 0.67 0.67 0 0.67 0.67 0.67
xgbTree 0.66 0.66 0 0.66 0.66 0.66

Table 17
Precision scores on the validation set of PIMA data.

center corr log nzv scale zv

deepboost 0.72 0.72 0.72 0.72 0.72 0.72
LogitBoost 0.71 0.71 0.71 0.71 0.71 0.71
naive_bayes 0.65 0.65 0.59 0.65 0.65 0.65
rocc 0.75 0.75 0.69 0.75 0.7 0.75
xgbLinear 0.73 0.73 0 0.73 0.73 0.73
xgbTree 0.79 0.79 0 0.79 0.79 0.79

Table 18
Recall scores on the validation set of PIMA data.

center corr log nzv scale zv

deepboost 0.52 0.52 0.52 0.52 0.52 0.52
LogitBoost 0.61 0.61 0.61 0.61 0.61 0.61
naive_bayes 0.54 0.54 0.7 0.54 0.54 0.54
rocc 0.51 0.51 0.52 0.51 0.49 0.51
xgbLinear 0.62 0.62 0 0.62 0.62 0.62
xgbTree 0.56 0.56 0 0.56 0.56 0.56

S. Boeschoten et al.

http://www.tidymodels.org/
http://www.tidymodels.org/

Expert Systems With Applications 213 (2023) 118912

14

Fig. 13. Model performance metrics for the PIMA dataset averaged over two split ratios.

S. Boeschoten et al.

Expert Systems With Applications 213 (2023) 118912

15

package such as available resources and the simplicity of the models.

7. Conclusion and future work

While alternatives are available for separate parts of the machine
learning workflow, the proposed framework can help to find a highly
accurate model in a short time without much expertise. For the imbal-
anced dataset, addressing this problem is an important factor in
increasing model prediction qualities and should not be overlooked.
Data transformation is not always beneficial but might provide a sig-
nificant advantage depending on the underlying dataset. It is easier to
create explainable Naïve Bayes or tree-based classifiers than deep
learning-based models such as deepboost (Cortes et al., 2014). For a
quick model generation, it is better to select algorithms that have simple
asymptotic complexities. For example, the Naïve Bayes classifier is very
fast in comparison to deepboost and the gradient boosting algorithms
and it is able to reach similar performance if the right transformation
step is chosen. This also indicates the importance of feature engineering
and data preparation as it can greatly increase performance. This
framework allows for quick exploration of these possibilities but is by no
means exhaustive. It can be expanded upon by the use of recipes, that
allow for greater automation. Therefore, the extent to which it can be
automated is the extent to which methods can be implemented as rec-
ipes. More recipes allow for more comparisons. Combinations of recipes
allow for greater chances of finding better-performing models.

Data Availability Statement

Data is available at the following webpage: https://github.com/
mooym001/machine_learning. Due to confidentiality reasons, the sam-
ple names have been adapted.

CRediT authorship contribution statement

Sjoerd Boeschoten: Conceptualization, Methodology, Software,
Validation, Writing – review & editing. Cagatay Catal: Conceptualiza-
tion, Methodology, Validation, Writing – review & editing. Bedir
Tekinerdogan: Conceptualization, Methodology, Validation, Writing –
review & editing. Arjen Lommen: Conceptualization, Methodology,
Validation, Writing – review & editing. Marco Blokland: Methodology,
Validation, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data is available at the following webpage: https://github.com/
mooym001/machine_learning. Due to confidentiality reasons, the sam-
ple names have been adapted.

Acknowledgment

Open Access funding provided by the Qatar National Library.

References

12 Using Recipes with train 12 Using Recipes with train | The caret Package. (n.d.).
Retrieved January 7, 2022, from http://topepo.github.io/
caret/using-recipes-with-train.html.

Atramentov, A., Leiva, H., & Honavar, V. (2003, September). In A multi-relational decision
tree learning algorithm–implementation and experiments (pp. 38–56). Berlin,
Heidelberg: Springer.

Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by
chained equations: What is it and how does it work? International Journal of Methods
in Psychiatric Research, 20(1), 40–49. https://doi.org/10.1002/MPR.329

Benedetto, A., Pezzolato, M., Robotti, E., Biasibetti, E., Poirier, A., Dervilly, G., …
Bozzetta, E. (2021). Profiling of transcriptional biomarkers in FFPE liver samples:
PLS-DA applications for detection of illicit administration of sex steroids and
clenbuterol in veal calves. Food Control, 128, Article 108149.

Benedetto, A., Pezzolato, M., Biasibetti, E., & Bozzetta, E. (2021). Omics applications in
the fight against abuse of anabolic substances in cattle: Challenges, perspectives and
opportunities. Current Opinion in Food Science, 40, 112–120.

Bianco, M., Calvano, C. D., Ventura, G., Losito, I., & Cataldi, T. R. (2022). Determination
of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled
to electrospray ionization and high-resolution tandem mass spectrometry. Food
Control, 131, Article 108443.

Bouwmeester, R., Gabriels, R., Van Den Bossche, T., Martens, L., & Degroeve, S. (2020).
The Age of Data-Driven Proteomics: How Machine Learning Enables Novel
Workflows. Proteomics, 20(21–22), 1–6. https://doi.org/10.1002/pmic.201900351

Fig. 14. Common data scientist workflow for making models (Lazzeri, 2022).

Table 19
Comparison of the framework with the state-of-the-art.

Evaluation Dimension Proposed Framework Tidymodels Framework

Learning Curve Quick solutions Steep learning curve
Stability Stable Still under development
Available Resources More resources because

of the CARET
Limited documentation

Automation of Model
Selection

Semi-automated Not automated

Complexity Simple interfaces Many steps and objects
required

Implementation Feels like standard R
language

Pipe oriented

Available Algorithms Many more algorithms Collection of tools for
machine learning

S. Boeschoten et al.

http://refhub.elsevier.com/S0957-4174(22)01930-3/h9000
http://refhub.elsevier.com/S0957-4174(22)01930-3/h9000
http://refhub.elsevier.com/S0957-4174(22)01930-3/h9000
https://doi.org/10.1002/MPR.329
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0015
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0015
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0015
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0015
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0020
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0020
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0020
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0025
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0025
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0025
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0025
https://doi.org/10.1002/pmic.201900351

Expert Systems With Applications 213 (2023) 118912

16

Breuker, K., Jin, M., Han, X., Jiang, H., & Mclafferty, F. W. (2008). FOCUS: DESORPTION
IONIZATION AND MACROMOLECULAR MS Top-Down Identification and
Characterization of Biomolecules by Mass Spectrometry. J Am Soc Mass Spectrom, 19,
1045–1053. https://doi.org/10.1016/j.jasms.2008.05.013

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16,
321–357. https://doi.org/10.1613/JAIR.953

Chemyx. (2021). Basic Principles of HPLC, MS & LC-MS | Chemyx Inc. https://www.
chemyx.com/support/knowledge-base/applications/basic-principles-hplc-ms-lc-ms/
.

Cortes, C., Mohri, M., & Syed, U. (2014, June). Deep boosting. In International
conference on machine learning (pp. 1179-1187). PMLR.

Crookston, N. L., & Finley, A. O. (2008). yaImpute: An R package for kNN imputation.
Journal of Statistical Software, 23, 1–16.

Gibert, D., Planes, J., Mateu, C., & Le, Q. (2022). Fusing feature engineering and deep
learning: A case study for malware classification. Expert Systems with Applications,
207, Article 117957.

Heaton, J. (n.d.). An Empirical Analysis of Feature Engineering for Predictive Modeling.
Hoffmann, W., Jackson, G. P., Hoffmann, W. D., & Jackson, G. P. (2008). Forensic Mass

Spectrometry Clinical and Forensic Markers in Human Hair View project
Fragmentation of oligosaccharides in tandem mass spectrometry View project
Forensic Mass Spectrometry. The Annual Review of Analytical Chemistry Is Online
Annual Review of Analytical Chemistry, 8, 419–440. https://doi.org/10.1146/
annurev-anchem-071114-040335

Ilyas, I. F., & Rekatsinas, T. (2022). Machine Learning and Data Cleaning: Which Serves
the Other? ACM Journal of Data and Information Quality (JDIQ), 14(3), 1–11.

It’s All About the Features – Reality AI. (n.d.). Retrieved January 7, 2022, from https://
reality.ai/its-all-about-the-features/.

Jollife, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/
RSTA.2015.0202.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/SCIENCE.
AAA8415

Liebal, U. W., Phan, A. N. T., Sudhakar, M., Raman, K., & Blank, L. M. (2020). Machine
learning applications for mass spectrometry-based metabolomics. Metabolites, 10(6),
1–23. https://doi.org/10.3390/metabo10060243

Kanter, J. M., & Veeramachaneni, K. (2015). Deep feature synthesis: Towards
automating data science endeavors. Proceedings of the 2015 IEEE International
Conference on Data Science and Advanced Analytics, DSAA 2015. https://doi.org/
10.1109/DSAA.2015.7344858.

Khatir, A. A. H. A., & Bee, M. (2022). Machine Learning Models and Data-Balancing
Techniques for Credit Scoring: What Is the Best Combination? Risks, 10(9), 1–22.

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of
Statistical Software, 28(5), 1–26. https://doi.org/10.18637/JSS.V028.I05

Lazzeri, F. (2022). How to accelerate DevOps with Machine Learning lifecycle management.
Retrieved January 7, 2022, from https://web.archive.org/web/20200807120552/

https://medium.com/microsoftazure/how-to-accelerate-devops-with-machine-
learning-lifecycle-management-2ca4c86387a0.

Loos, G., Schepdael, A. Van, & Cabooter, D. (n.d.). Quantitative mass spectrometry
methods for pharmaceutical analysis. https://doi.org/10.1098/rsta.2015.0366.

Lunardon, N., Menardi, G., & Torelli, N. (2014). ROSE: A Package for Binary Imbalanced
Learning. Undefined, 6(1), 79–89. https://doi.org/10.32614/RJ-2014-008

Muhamedyev, R., Muhamedyev, R. I., Pushkina, K., & Kazakhstan, A. (2015). Machine
learning methods. An overview, 6, 14–29. www.cmnt.lv.

Neves, D. T., Alves, J., Naik, M. G., Proença, A. J., & Prasser, F. (2022). From Missing
Data Imputation to Data Generation. Journal of Computational Science, 61, Article
101640.

Pal, B., Tarafder, A. K., & Shahinur Rahman, M. D. (2020, January 10). Synthetic samples
generation for imbalance class distribution with LSTM recurrent neural networks.
PervasiveHealth: Pervasive Computing Technologies for Healthcare. https://doi.
org/10.1145/3377049.3377115.

Petrovic, M., Díaz-Cruz, S., Barcelo, D., Petrovi, M., Dolores Hernando, M., Silvia Díaz-
Cruz, M., & Barceló, D. (2005). Liquid Chromatography-Tandem Mass Spectrometry
for the Analysis of Pharmaceutical Residues in Environmental Samples: A Review
SedNet View project Globaqua View project Liquid chromatography-tandem mass
spectrometry for the analysis of pharmaceutical residues in environmental samples:
A review. Article in Journal of Chromatography A, 1067, 1–14. https://doi.org/
10.1016/j.chroma.2004.10.110

Qaid, M. M., & Abdoun, K. A. (2022). Safety and concerns of hormonal application in
farm animal production: A review. Journal of Applied Animal Research, 50(1),
426–439.

Rajawat, J., & Jhingan, G. (2019). Mass spectroscopy. Data Processing Handbook for
Complex Biological Data Sources, 1–20. https://doi.org/10.1016/B978-0-12-816548-
5.00001-0

Rinkal, P., & Aluvalu, R. (2014). A Multi-Relational Decision Tree Learning (MRDTL)
Approach: A Survey. IOSR Journal of Computer Engineering, 16(2), 74–81. https://doi.
org/10.9790/0661-16297481

Rocha, D. G., Lana, M. A. G., de Assis, D. C., de Macedo, A. N., Corrêa, J. M., Augusti, R.,
& Faria, A. F. (2022). A novel strategy for the detection of boldenone undecylenate
misuse in cattle using ultra-high performance liquid chromatography coupled to
high resolution orbitrap mass spectrometry: From non-targeted to targeted. Drug
Testing and Analysis, 14(4), 667–675.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988,
November). Using the ADAP learning algorithm to forecast the onset of diabetes
mellitus. In Proceedings of the annual symposium on computer application in
medical care (p. 261). American Medical Informatics Association.

Topçuoğlu, B. D., Lapp, Z., Sovacool, K. L., Snitkin, E., Wiens, J., & Schloss, P. D. (2021).
mikropml: User-friendly R package for supervised machine learning pipelines.
Journal of open source software, 6(61).

Vaishali Advani. (2021). What is Machine Learning | Definition, Tools, how it Works &
Uses. https://www.mygreatlearning.com/blog/what-is-machine-learning/.

Van Buuren, S., & Oudshoorn, C. G. M. (2000). Multivariate Imputation by Chained
Equations: MICE V1. 0 Users’s Manual: TNO Prevention and Health. Public Health.

Yan, Y., & Maintainer,]. (2016). Package “MLmetrics, Machine Learning Evaluation
Metrics.

S. Boeschoten et al.

https://doi.org/10.1016/j.jasms.2008.05.013
https://doi.org/10.1613/JAIR.953
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0060
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0060
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0065
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0065
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0065
https://doi.org/10.1146/annurev-anchem-071114-040335
https://doi.org/10.1146/annurev-anchem-071114-040335
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0080
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0080
https://doi.org/10.1126/SCIENCE.AAA8415
https://doi.org/10.1126/SCIENCE.AAA8415
https://doi.org/10.3390/metabo10060243
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0110
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0110
https://doi.org/10.18637/JSS.V028.I05
https://doi.org/10.32614/RJ-2014-008
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0150
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0150
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0155
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0155
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0155
https://doi.org/10.1016/j.chroma.2004.10.110
https://doi.org/10.1016/j.chroma.2004.10.110
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0170
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0170
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0170
https://doi.org/10.1016/B978-0-12-816548-5.00001-0
https://doi.org/10.1016/B978-0-12-816548-5.00001-0
https://doi.org/10.9790/0661-16297481
https://doi.org/10.9790/0661-16297481
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0185
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0195
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0195
http://refhub.elsevier.com/S0957-4174(22)01930-3/h0195

	The automation of the development of classification models and improvement of model quality using feature engineering techn ...
	1 Introduction
	2 Background and related work
	2.1 Liquid chromatography coupled to mass spectrometry
	2.2 Machine learning
	2.3 Feature engineering
	2.4 Summary of the previous studies and contributions

	3 Research methodology
	3.1 Research questions
	3.2 3.2 HRMS data set of urine profiles
	3.3 Dataset from the university of california at irvine (UCI)

	4 Framework for supporting automated prediction model creation
	4.1 Imputation
	4.2 Transformation
	4.3 Class balancing
	4.4 Training and tuning
	4.5 Validation

	5 Results
	5.1 Currently adopted feature engineering methods (RQ1)
	5.2 Improving classification models with feature engineering methods (RQ2)
	5.3 Automation of classification models (RQ3)

	6 Discussion
	6.1 General discussion
	6.2 Threats to Validity
	6.3 Comparison of the framework

	7 Conclusion and future work
	Data Availability Statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

