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Abstract: Predictive maintenance of production lines is important to early detect possible defects
and thus identify and apply the required maintenance activities to avoid possible breakdowns. An
important concern in predictive maintenance is the prediction of remaining useful life (RUL), which
is an estimate of the number of remaining years that a component in a production line is estimated to
be able to function in accordance with its intended purpose before warranting replacement. In this
study, we propose a novel machine learning-based approach for automating the prediction of the
failure of equipment in continuous production lines. The proposed model applies normalization and
principle component analysis during the pre-processing stage, utilizes interpolation, uses grid search
for parameter optimization, and is built with multilayer perceptron neural network (MLP) machine
learning algorithm. We have evaluated the approach using a case study research to predict the RUL
of engines on NASA turbo engine datasets. Experimental results demonstrate that the performance
of our proposed model is effective in predicting the RUL of turbo engines and likewise substantially
enhances predictive maintenance results.

Keywords: machine learning; production lines; predictive maintenance; data mining; mainte-
nance prediction

1. Introduction

A production line is typically a set of equipment or machines established in a factory
where components are assembled sequentially to make a finished product [1]. Nowa-
days, manufacturers use different kinds of machines for production, and over time, these
machines and the associated equipment may deteriorate, and sometimes even the entire
production line may fail [2]. Breakdowns seriously impact the performance and cost of
production lines and often lead to a dramatic reduction of availability because of the costly
maintenance period [3].

For avoiding these failure cases, the maintenance of resources is often planned in
advance [4]. However, the maintenance cost of some industries can increase by up to 70%
of the total cost [5]. As such, the reduction of maintenance costs is considered a crucial
and substantial advantage to the manufacturer in a highly competitive manufacturing
sector, such as, for example, the semiconductor industry. In many industrial sectors such
as automotive manufacturing, maintenance management is an explicit strategic issue to
take necessary actions on time [6,7]. Fixing the production line after the breakdown can be
more costly than conducting preventive maintenance ahead of the breakdown [8,9]. Also,
the revision of the production plan can cause variability in service and product quality [1].

One of the approaches to reducing maintenance costs is known as preventive mainte-
nance. Preventive maintenance can be considered as a kind of proactive approach, which
systematically inspects and maintain the equipment to avoid breakdowns. There exist
several factors that can complicate the maintenance operation of production lines, such as
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system configurations, cost of maintenance resources, degradation profiles of machines,
maintenance schedule, and recent status of machines [10].

From a machine learning perspective, there are several challenges of preventive
maintenance in production lines. First, it is indeed difficult to acquire machine malfunction
data and label the failure case in practice in the datasets. Second, there exists a huge amount
of process data (i.e., big data) generated in production lines, and processing of this big
data requires a special infrastructure, expert knowledge, and custom smart software. Last,
many companies do not share this type of data publicly due to data privacy, and as such,
researchers in this field are unable to validate new models with more datasets. To this end,
there is a need for further research to come up with effective measures and new models in
order to implement predictive maintenance effectively in production lines.

Remaining useful life (RUL) is a key metric and critical to predicting the failure of a
machine in the production line. The challenge of RUL prediction is that RUL is not mostly
labeled in the training dataset, and therefore, supervised learning algorithms of machine
learning cannot be applied in this case. A health index needs to be correctly defined and
interpolated to map the relationship between features and the RUL. After this interpolation
step, a machine learning-based model can be used to predict the health index by learning
the interpolated data accurately. The machine learning-based approach is expected to
handle the adverse impacts of noise in the dataset and possible sensor problems (i.e., sensor
drift) that might arise during the operation of the production line.

The main objective of our study is to minimize the adverse effects of breakdowns and
build a novel machine learning-based RUL prediction model. We propose and validate
a new machine learning-based model in predicting the failure of equipment (i.e., RUL
prediction) in production lines and analyze the applicability of machine learning algorithms
in predicting the failure of equipment in product lines. Specifically, we focus on jet engines
and use the run-to-failure data of similar jet engines to predict the failures of jet engines.
This data includes several measurements including temperatures, pressures, rotating
speeds of jet engines. During our experiments, different machine learning algorithms,
pre-processing and feature selection techniques, and parameter optimization approaches
are investigated to build a novel model to predict the risk of production line failure.

The concept of RUL is used to evaluate the risk of production line breakdown. For
the case study, the NASA dataset on turbo engines has been used in this study [11]. The
proposed model developed in this case study can also be applied to the other production
lines. The case study demonstrates the effectiveness of our prediction model to predict the
RUL within the scope of predictive maintenance.

The contributions of this study are two-fold, which are listed as follows:

1. We developed a novel RUL prediction approach that utilizes the principal compo-
nent analysis (PCA) feature selection algorithm, grid search parameter optimization
algorithm, and multi-layer perceptron (MLP) machine learning algorithm.

2. Since the RUL was not provided in training datasets, a polynomial function was fitted
to HIs, and the interception between the polynomial and cycle axis was calculated as
the failure point.

The following sections of this article are organized as follows: Section 2 explains the
background and related work. Section 3 presents the data analysis. Section 4 describes
the methodology, and Section 5 explains the experimental results. Section 6 presents the
discussion and threats to validity. Section 7 presents conclusions and future work.

2. Background and Related Work

Four categories of maintenance policies have been suggested in the literature [12]:
run-to-failure (R2F), preventive maintenance (PM), condition-based maintenance (CBM),
and predictive maintenance (PdM). R2F is executed after the failure, and as such, this is the
simplest approach and the costliest one, among others. PM is performed periodically based
on a schedule. CBM checks several conditions, and if one of them indicates that there is
a degradation of the equipment, CBM is directly executed. PdM (a.k.a., statistical-based
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maintenance) applies predictive analytics and tools to determine the required actions.
As in the case of CBM, PdM also performs the maintenance only when it is necessary.
Several authors [12,13] emphasize that CBM and PdM are actually addressing the same
maintenance policy, and as such, they do not distinguish between them.

Many modeling approaches have been used in literature for maintenance policy
analysis and reliability engineering [2]. Some of these approaches are Markov chains [14,15],
Petri nets [16], fault tree analysis [17], and analytic hierarchy process [18]. Also, quantitative
methods have been proposed using heuristic methods [19], simulation techniques [20], and
analytical methods [2].

Seiti et al. [21] used a multi-criteria decision-making (MCDM) method based on fuzzy
probability and D number to evaluate the breakdown risk of a production line. The MCDM
provides a risk rank of a machine breakdown from high to low, which is useful for decision
making. However, the model highly relies on expert knowledge, and the result of the
prediction is subjective to the risk grade given by the expert.

Bayesian network (BN) is an effective algorithm to handle complex systems like
production lines, and the possibility of applying BN in production line lifetime prediction
is investigated by Wang et al. [22]. A simulation model is also an option for lifetime
prediction, and a study showed that the stochastic simulation model achieved high accuracy
in predicting the lifetime of a rectifier system [11]. The drawback of the simulation model
is that it requires expert knowledge to build.

Among approaches used for PdM, machine learning-based ones are considered to be
the most suitable approaches because they can handle high-dimensional problems that
consist of hundreds or thousands of variables such as voltages, flows, and currents [23].
There exist two main categories of machine learning-based techniques for PdM. The first
one is supervised approaches where the failure information exists in the dataset. The
second one is unsupervised approaches, where there is only process information, and no
failure-related information exists [23].

Machine learning methods have been increasingly applied in different areas to per-
form various tasks. Fault diagnosis is the most common application area of machine
learning, which determines whether to send equipment to fix (or to be replaced). This
kind of task mainly uses binary classification or multi-category classification algorithms to
predict failures or malfunctions. Luo and Wang [24] applied random forest to identify the
malfunction of robot arms by learning patterns from the torque sensors. However, there
is a lack of models to predict the remaining lifetime of a machine because there are not
enough indicators to measure the health status of a machine [25]. Also, the health status
is largely affected by the operating environment, and some failure is caused by accident
rather than deterioration.

As a result of the wide adoption of machine learning techniques in many application
fields, recently, researchers focused on the use of machine learning techniques for predicting
the machine lifetime. RUL is mostly used as a risk indicator for preventive maintenance
service. It indicates how long a machine can operate as usual before the breakdown. RUL
modeling requires a run-to-failure dataset from the operation of machines, which is difficult
to acquire.

A set of turbo engine run-to-failure datasets is provided by NASA [26], and the data
is used in many research papers to predict the RUL. Ramasso and Saxena [27] published
a survey on prognostic methods used for the NASA turbo engine datasets and divided
the prognostic approaches into three categories. The first category is the use of functional
mappings between the set of inputs and RUL. For the first category, they reported that the
dominant underlying machine learning algorithm is artificial neural networks (ANNs).
The second category of techniques is the functional mapping between the health index
and RUL. The third category is similarity-based matching techniques. Benchmarking of
prognostic methods has been conducted on the NASA turbo engine dataset, and it was
shown that most of the studies use a health index to map between input features and the
RUL [27].
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Research on RUL prediction can be divided into the following categories [28]:
knowledge-based models (KBM), physical models (PM), data-driven models (DDM), and
deep learning (DL). In knowledge-based models, experts define the rule sets and evaluate
the condition of the equipment based on previous failures and sometimes they result in
contradictions [29]. Physical models model the complete equipment, however, it is expen-
sive and not always achievable. Early data-driven models used statistical and stochastic
approaches such as Markov models, proportional hazard modelling, and Bayesian tech-
niques with Kalman filters [30]. There is an assumption of stochastic models. Identical
components are considered to be statistically identical and random variables are indepen-
dent. However, this assumption is not true for some datasets that include random starting
conditions. In general, statistical approaches form a hypothesis before building the model
and work on several assumptions. Each statistical approach comes with a different assump-
tion. However, in machine learning, algorithms are run on data directly. Also, machine
learning-based approaches often provide better performance than statistical approaches
in terms of accuracy though more computational power is required in recent years. To
avoid the limitations of statistical and stochastic models and achieve higher performance,
we aimed to focus on machine learning approaches instead of developing models using
statistical methods.

Ahmadzadeh and Lundberg [31] published a review article in 2013 and categorized
the RUL prediction studies into the following four categories:

• Physics-based: Physical model, cumulative damage, hazard rate, proportional hazard
rate, nonlinear dynamics

• Experimental-based
• Data-driven: Neural network (NN), support vector machine, Bayesian network, hid-

den (Markov, semi-Markov)
• Hybrid: Statistical model, Fourier transform with NN, statistical model with NN,

fuzzy logic with NN, wavelet transform analysis with a statistical model, dynamic
wavelet with NN.

They also provided the advantages and disadvantages of these approaches. Physics-
based approaches are computationally expensive, too stochastic to model the fault, and
need the evaluation of assumptions. Experimental approaches are costly and required
to verify the theoretical models. Data-driven approaches use nonlinear relationships
and perform pattern recognition. Hybrid methods combine two methodologies such as
statistical methods and neural networks. They reported that the best model is selected
based on the availability of the data [31].

Okoh et al. [32] classified studies into the following RUL prediction methodology
types in 2014: Model-based, analytical-based, knowledge-based, and hybrid. Also, they
presented the following prediction technique types: Statistics, experience, computational
intelligence (CI), physics-of-failure, and fusion. Artificial neural networks are represented
under the CI category. They also presented in a table that while statistics-based approaches
are unable to process large datasets, CI techniques are able to handle large datasets.

Hu et al. [33] categorized RUL prediction techniques into the following three cate-
gories: Physics-based approaches, data-driven techniques (probabilistic, artificial intelli-
gence methods, and stochastic), and hybrid approaches that combine the physics-based and
data-driven techniques. They proposed the state space model (SSM) for RUL prediction.

Si et al. [34] reviewed statistical data-driven approaches and categorized the condition
monitoring (CM) data into direct CM data and indirect CM data. Under the direct CM
data, the following approaches were presented: Regression-based, Wiener process, gamma
process, and Markovian-based. Under the indirect CM data, the following techniques were
provided: Stochastic filtering-based, covariate-based hazard, and hidden Markov model &
hidden semi-Markov model-based. They discussed several challenges related to the RUL
prediction. For example, they stated that a new RUL prediction model is required in the
case of very limited observed failure data or no observed failure data because statistical
models cannot be used in these two cases.
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Djeziri et al. [35] categorized the RUL estimation approaches into the following
categories:

• Expert model-based: Expert models, fuzzy logic
• Data-driven approaches

# Trend modeling methods: Machine learning, statistical models, stochastic
models, deterministic models, probabilistic models

# Machine Learning

• Model-based approaches: Specific degradation models

As we see in these six review articles [28,31–35], different researchers categorized
RUL prediction studies into different categories, however, main techniques, namely ma-
chine learning, statistical models, physics-based techniques, hybrid approaches, and
knowledge/expert-based approaches often appear in these taxonomies.

Recently, deep learning-based RUL prediction models have been proposed. Li et al. [36]
developed a multi-scale deep convolutional neural network (MS-DCNN) and used the
min-max normalization with the MS-DCNN algorithm for RUL prediction. They compared
the performance of their model with other state-of-the-art models and showed that the
new model provides promising results on the NASA C-MAPSS dataset.

Hou et al. [37] developed a deep supervised learning approach using similarity to im-
prove the prediction performance. Since the health indicator (HI) construction techniques
depend on manual labeling or expert opinion, Hou et al. [37] also developed an unsuper-
vised learning approach-based on restricted Boltzmann machine (RBM) to construct the HI.
They showed that their performance provides superior performance compared to the other
traditional approaches. Cheng et al. [38] proposed a transferable convolutional neural net-
work (TCNN) to learn domain invariant features for bearing RUL prediction. They showed
that their model avoids the influence of kernel selection and present a better performance
for RUL prediction. Wang et al. [39] proposed a recurrent convolutional neural network
(RCNN) for RUL prediction and demonstrated its effectiveness based on two case studies.
They showed that the proposed model can predict the RUL prediction of rolling element
bearings and milling cutters effectively. Their model provides a probabilistic result for RUL
prediction and simplifies decision making. Chen et al. [40] developed a recurrent neural
network (RNN) model using an encoder-decoder structure with an attention mechanism
for RUL prediction of rolling bearings. They showed that their model can work with little
prior knowledge and provides better performance than the other models. Wu et al. [41]
proposed a deep long short-term memory (DLSTM) network that uses the grid search
strategy for RUL prediction. They demonstrated that this model provides satisfactory per-
formance for the RUL prediction of turbofan engines. Li et al. [42] applied the generative
adversarial network (GAN) algorithm to compute the distribution of the healthy state
data and proposed a health indicator. Promising results were achieved on two rotating
machinery datasets. Su et al. [43] integrated the variational autoencoder (VAE) algorithm
with a time-window-based sequence neural network (twSNN) for RUL prediction and
demonstrated the effectiveness of their model on a dataset of aircraft turbine engines.

While deep learning-based models can provide better performance for RUL prediction,
there are several limitations of using this type of algorithms. For instance, they need a lot of
data, hyperparameter tuning is required, and there is a high computational cost. To avoid
these limitations, in this study we aimed to develop a novel machine learning model that
is still accurate but does not consist of these limitations.

In our study, MLP that is a special ANN topology, along with other machine learning
methods (i.e., grid search parameter optimization, normalization, and feature selection),
are combined with the interpolation technique, and a novel machine learning-based RUL
prediction model is built. The effectiveness of this new model is investigated on NASA
turbo engine datasets.
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3. Data Analysis

There are four turbofan datasets running on different conditions, as shown in Table 1.
For instance, the dataset FD001 has 100 turbo engine units running under one condition
with only a high-pressure cylinder (HPC) fault. In the training dataset, the turbo running
from a certain point to failure while in the testing dataset, the records stop at a middle
point. The task is to predict the RUL of the turbofan in the testing dataset. In other words,
an algorithm needs to predict when the turbo will break, and the required maintenance is
needed. In Table 2, the data structure of the training dataset is presented, and in Table 3,
the data structure of the RUL dataset is shown. Settings data and sensory data are all
anonymous data.

Table 1. Datasets.

Training Dataset Testing Dataset # of Conditions
Engine Fault ModeDataset Dimension Dataset Dimension Dataset Dimension

FD001_train 20,631 × 26 FD001_test 13,096 × 26 RUL1 100 × 2 1 HPC
Degradation

FD002_train 53,759 × 26 FD002_test 33,991 × 26 RUL2 259 × 2 6 HPC
Degradation

FD003_train 24,720 × 26 FD003_test 16,596 × 26 RUL3 100 × 2 1 HPC & Fan
Degradation

FD004_train 61,249 × 26 FD004_test 41,214 × 26 RUL4 248 × 2 6 HPC & Fan
Degradation

Table 2. The data structures of the training and testing datasets.

Unit Cycle Setting1 Setting2 Setting3 Sensor1 . . . . . . Sensor21

Int Int Float Float Float Float Float Float

Table 3. The data structure of the RUL dataset.

Unit RUL

Int Int

The data distribution of each dataset is different, and this difference is associated with
several operating conditions and fault modes, as shown in Table 1. The setting variables
and sensor variables can be constant, discrete, and continuous. The same variable can have
different data distribution forms in different datasets. For instance, the variable setting1 is
a continuous variable with normal distribution in the dataset FD001_train, as shown in
Figure 1, while it is a discrete variable distributed on six values in the dataset FD002_train,
as shown in Figure 2. Similarly, the variable sensor1 changes from a constant value in the
FD003_train, as shown in Figure 3 to a discrete distribution in the dataset FD004_train, as
shown in Figure 4. In general, features of dataset FD001 and FD003 are mostly continuously
distributed while the features of FD002 and FD004 are discretely distributed.

The value range of each feature varies significantly within the same dataset. In the
dataset FD001_train, setting1 ranges from −0.087 to 0.087, while sensor7 ranges from
549 to 556, as shown in Figure 1. Additionally, the range of the same variable changes
dramatically in different datasets. The range of setting 1 in FDD02 & FD004_train is (0–40),
as shown in Figures 2 and 4 while the range in FD001 and FD003 is (−0.087–0.087) as shown
in Figures 1 and 3. This can be explained by the fact that FD001 has only one operation
condition, while FD002 has six different conditions.
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4. Methodology

Instead of direct measurements of RUL, usually, indirect measures are adopted. For
this reason, the concept of the health index (HI) is often used to estimate the RUL [44].
Instead of directly predicting the RUL, a machine learning model is trained to predict the
HI of a turbo engine in each cycle. Since the RUL is not provided in training datasets, the
use of supervised learning approaches to predict the RUL label is not possible. Then, a
polynomial function is fitted to HIs, and the interception between the polynomial and cycle
axis is the failure point. In Figure 7, this approach and the calculation of RUL is represented.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 21 
 

 

last cycles that have HI = 0. Then, the rest of the data points label can be estimated by 
interpolation. After the interpolation, all points are labeled and supervised learning can 
be applied. 

 

 

Figure 7. The HI prediction and RUL estimation for FD001_test turbo engine unit 84. 

Figure 8 represents the flowchart of our interpolation and machine learning-based 
prediction model. First, a model is trained with partially labeled data. Then, the trained 
model is used to interpolate the rest of the unlabeled training points with HIs. After the 
interpolation, the entire HI labeled dataset is used as a feedback mechanism for the model 
to re-train the model.  

 

 

Figure 8. Flowchart of our RUL prediction approach. 

4.1. Data Pre-Processing 
Some features are constant in the dataset, and thus, their variance is zero. All zero 

variance variables are removed before the training stage because they do not contain use-
ful information for machine learning. Since the value range is substantially different in 
different variables, it can be difficult to find the optimal point for the cost function. It also 

Figure 7. The HI prediction and RUL estimation for FD001_test turbo engine unit 84.

In the training datasets, each turbo machine runs from good health conditions to
failure one. Thus, this research assumes the HI of initial cycles is maximum and the HI of
last cycles is minimum. Therefore, we can assume that N initial cycles that have HI = 1,
and N last cycles that have HI = 0. Then, the rest of the data points label can be estimated
by interpolation. After the interpolation, all points are labeled and supervised learning can
be applied.

Figure 8 represents the flowchart of our interpolation and machine learning-based
prediction model. First, a model is trained with partially labeled data. Then, the trained
model is used to interpolate the rest of the unlabeled training points with HIs. After the
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interpolation, the entire HI labeled dataset is used as a feedback mechanism for the model
to re-train the model.
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4.1. Data Pre-Processing

Some features are constant in the dataset, and thus, their variance is zero. All zero
variance variables are removed before the training stage because they do not contain
useful information for machine learning. Since the value range is substantially different in
different variables, it can be difficult to find the optimal point for the cost function. It also
tends to take a long time to reach the optimum, which uses extra computational power.
Therefore, the training and testing datasets need to be normalized. There are two widely
used methods for normalization, which are Z-scores (Equation (1)) and min-max-scale
(Equation (2)). Both methods are applied, and the one with the best evaluation result
is selected.

x′ =
x−mean(x)

std(x)
(1)

x′ =
x− xmin

xmax − xmin
(2)

The correlation heatmap shown in Figure 6 indicates that half of the features in
the dataset are highly correlated to each other. For avoiding the negative effect of the
covariance, principle components analysis (PCA) is applied for features in the dataset. The
number of PCA components equals the number of features to catch all the variance in the
original data.

4.2. Model Selection

Two different approaches have been applied during the learning process. The first
model learns from the part of the labeled dataset and conducts the interpolation for the rest
of the data points. The second model learns from the entire dataset, and it uses the final
model to predict the HI. For the first model, several algorithms were applied, and the linear
regression (LR) achieved the best interpolation results. The results of other algorithms do
not show a regular degradation trend, and as such, it is difficult to fit with a polynomial
curve. Therefore, a linear regression model is selected to be the first model.

According to our literature search in electronic databases, multi-layer perceptron
neural network (MLP), random forest (RF) [45], and support vector regression (SVR)
algorithms are the three most used algorithms for the PdM category. Therefore, MLP, RF,
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SVR, and LR are applied as the second model to perform the re-training process of the
entire dataset.

The grid search cross-validation method is applied to find the best hyperparameters
of RF and SVR. The best hyperparameters have the lowest HI MSE. For the RF, parameters
are selected as follows: estimator = 100 and depth of tree = 6. For the SVR, the radial basis
function kernel is chosen, and gamma is assigned to 0.1. For the MLP model, units and
cycles are excluded from the inputs, and Table 4 shows the parameters used in this study.

Table 4. MLP model setup.

Connection Number of Units Input Dimension Activation Fun

Input Layer Dense 24 24 Tanh
Hidden Layer-1 Dense 20 - Tanh
Hidden Layer-2 Dense 5 - Tanh
Output Layer Dense 1 - Linear

Loss function Optimizer Learning Rate Belta_1
Compiling MSE Adam 3 × 10−5 0.9

4.3. Interpolation and Model Training

There are three stages in the interpolation and re-train process, which are partial
dataset training, interpolation, and full dataset training, as shown in Figure 8. After the
labeling process, a part of the dataset is labeled with the HI index, which can be used for
supervised learning. The trained model then predicts the rest of the unlabeled data points
so that the whole dataset is labeled with HI. Last, the model is re-trained with the entire
labeled dataset to improve the mean squared error (MSE). 5-fold cross-validation is used to
prevent overfitting in both the first and second stages. The training process stops earlier if
the validation MSE stops decreasing in the next five steps, as shown in Figure 9.
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Figure 10. demonstrates the interpolation process of HI with partially labeled data
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interpolation and predicts a similar HI pattern for each turbo unit.
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4.4. Evaluation

Because the purpose of the machine learning model is to predict the RUL instead of
the HI, the MSE of the training cannot be used to evaluate the performance of the model.
A model may have very low training MSE, but it may have a high deviation in the RUL
prediction. In other words, the tuning of hyperparameters, such as the size of N points,
the number of PCA components, and model parameters, cannot rely on the training MSE.
According to Figure 7, the estimation of RUL is based on a polynomial curve fit. Therefore,
a second-order polynomial (Equation (3)) is fitted to the HI. The coefficient must be a
negative number to ensure that the curve is decreasing.

y = ax2 + bx + c (3)

MSERUL =
1
n

n

∑
i=1

(
Tr − Tp

)
(4)

MSERULVal =
1
n

n

∑
i=1

(
RULr − RULp

)
(5)

In the training dataset, the turbo engines run from healthy conditions to failure one.
Therefore, the RUL at the last cycle of the training data point should be zero. The residue
between the real last cycle and the predicted last cycle can be calculated, as shown in
Figure 12. The RUL MSE can then be calculated based on Equation (4). The n is equal to



Sensors 2021, 21, 932 13 of 20

the number of turbo units in the dataset. Tr and Tp stand for the real last cycle and the
predicted last cycle, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 21 
 

 

 

 

Figure 12. Accuracy of RUL prediction. 

The model is optimized against the MSERUL by tuning hyperparameters. The model 
setting with the lowest MSERUL is used for validation. After training, the model needs to 
be validated with the testing dataset. The testing data is processed with the steps, as in the 
case of training data. The testing data should have the same variables as the training data, 
and it is normalized with the training data mean and variance if Z-scores are performed. 
The testing data is transferred to PCA components with the training data eigenvector ma-
trix. 

Then, the processed testing data is fed to the model to predict HI for each cycle. A 
second-order polynomial is fitted to the HIs with the minimum MSE. The interception 
between the curve and the cycle axis is the prediction of the end cycle. RUL can be calcu-
lated to subtract the last cycle of the test data from the end cycle. The MSERUL_Val can be 
calculated based on Equation (5). The n equals the number of turbo units in the dataset. 
RULr and RULp stand for the real RUL of the test data and the predicted RUL, respec-
tively. 

5. Experimental Results 
A dataset with multiple fault modes and multiple operation conditions achieved 

higher HI training MSE than the dataset with single fault mode and single operating con-
dition. The re-training of the interpolated data improves the HI MSE in all algorithms, as 
shown in Table 5. Similar to the HI MSE, dataset FD004, which has the most complex data 
composition, has the highest RUL training MSE, whereas FD001 has the lowest RUL train-
ing MSE for all algorithms. Validation RUL MSE has the same pattern as the training RUL 
MSE, where the MSE increases as the data becomes more complex. Validation MSE of 
units with a cycle greater than 100 tends to have a lower value compared with the valida-
tion MSE of the unit with all cycles. Figures 13 and 14 show a comparison between short 
cycle prediction and long cycle prediction. The unit 84 prediction accuracy outperforms 
the unit 85 prediction because more information is provided in unit 84. In Figure 15, the 
correlation between the HI MSE and the RUL validation MSE is presented. 

 
Table 5A,B show that LR with PCA has a lower HI training MSE and RUL validation 

MSE compared to the LR without PCA. Particularly, the MSE drop is significant for the 

Figure 12. Accuracy of RUL prediction.

The model is optimized against the MSERUL by tuning hyperparameters. The model
setting with the lowest MSERUL is used for validation. After training, the model needs to be
validated with the testing dataset. The testing data is processed with the steps, as in the case
of training data. The testing data should have the same variables as the training data, and
it is normalized with the training data mean and variance if Z-scores are performed. The
testing data is transferred to PCA components with the training data eigenvector matrix.

Then, the processed testing data is fed to the model to predict HI for each cycle. A
second-order polynomial is fitted to the HIs with the minimum MSE. The interception
between the curve and the cycle axis is the prediction of the end cycle. RUL can be
calculated to subtract the last cycle of the test data from the end cycle. The MSERUL_Val can
be calculated based on Equation (5). The n equals the number of turbo units in the dataset.
RULr and RULp stand for the real RUL of the test data and the predicted RUL, respectively.

5. Experimental Results

A dataset with multiple fault modes and multiple operation conditions achieved
higher HI training MSE than the dataset with single fault mode and single operating
condition. The re-training of the interpolated data improves the HI MSE in all algorithms,
as shown in Table 5. Similar to the HI MSE, dataset FD004, which has the most complex
data composition, has the highest RUL training MSE, whereas FD001 has the lowest RUL
training MSE for all algorithms. Validation RUL MSE has the same pattern as the training
RUL MSE, where the MSE increases as the data becomes more complex. Validation MSE of
units with a cycle greater than 100 tends to have a lower value compared with the validation
MSE of the unit with all cycles. Figures 13 and 14 show a comparison between short cycle
prediction and long cycle prediction. The unit 84 prediction accuracy outperforms the unit
85 prediction because more information is provided in unit 84. In Figure 15, the correlation
between the HI MSE and the RUL validation MSE is presented.
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Table 5. (A) Linear Regression, (B) Linear Regression + PCA, (C) MLP + PCA, (D) RF + PCA, (E) SVR + PCA; HI Training
MSE stands for the MSE of the partial data training; HI Retrain MSE stands for the MSE of the retrain on the whole dataset;
Training RUL MSE represents the evaluation of RUL with the training data; Validation RUL MSE represents the validation
result of RUL estimation of the test data; Validation RUL MSE represents the validation of RUL in test data with cycle > 100.

Dataset HI Training MSE HI Retrain MSE Training RUL MSE Validation
RUL_MSE

Validation RUL_MSE
(cycle > 100)

FD001 3.18 × 10−3 8.60 × 10−4 20 668 499
FD002 3.87 × 10−2 2.90 × 10−3 26 1031 390
FD003 3.57 × 10−2 7.66 × 10−4 32 1332 1162
FD004 5.88 × 10−2 2.20 × 10−3 149 2181 1108

(A)
FD001 3.71 × 10−2 2.48 × 10−4 21 558 468
FD002 3.61 × 10−2 4.41 × 10−4 36 748 358
FD003 3.34 × 10−2 2.31 × 10−4 35 1387 1186
FD004 4.07 × 10−2 5.38 × 10−4 94 1904 1094

(B)
FD001 3.65 × 10−2 1.47 × 10−4 55 509 504
FD002 3.62 × 10−2 1.92 × 10−4 43 746 364
FD003 3.36 × 10−2 9.69 × 10−5 21 1259 1100
FD004 4.25 × 10−2 8.56 × 10−5 94 1427 1031

(C)
FD001 3.69 × 10−2 1.46 × 10−3 18 701 511
FD002 3.60 × 10−2 4.40 × 10−3 21 857 436
FD003 3.37 × 10−2 3.56 × 10−3 136 1895 1411
FD004 4.09 × 10−2 1.05 × 10−2 316 1994 1613

(D)
FD001 3.70 × 10−2 8.40 × 10−4 71 800 568
FD002 3.62 × 10−2 6.10 × 10−3 23 776 382
FD003 3.36 × 10−2 1.55 × 10−3 85 1089 947
FD004 4.29 × 10−2 1.01 × 10−3 162 1575 1199

(E)
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Table 5A,B show that LR with PCA has a lower HI training MSE and RUL validation
MSE compared to the LR without PCA. Particularly, the MSE drop is significant for the
FD001 and FD002, which have simpler data composition. The MSE does not change
obviously for the datasets FD003 and FD004, which are multi-fault modes and multi-
operation conditions.

By comparing these results, we have noticed that the MLP algorithm provides the
lowest RUL validation MSE. Also, MLP has lower HI MSE than the other algorithms. It
has a notably better result in the prediction of FD001, which has a single fault mode and a
single condition.

6. Discussion
6.1. Main Discussion

By assuming initial points with HI = 1 and endpoints with HI = 0, a linear interpolation
of the rest of the points HI assigns labels to all samples. Then, the use of supervised learning
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approaches becomes possible, and the machine learning model can learn from the whole
dataset. The interpolation process, as demonstrated in Figure 12, shows a clear trend line
of the turbo deterioration. The matched trend line predicts the RUL accurately with a small
training RUL MSE, as shown in Table 5. The positive correlation among the training HI
MSE, training RUL MSE, and the validation RUL MSE prove that the interpolation and
training process is valid and effective.

The results show that PCA is an effective data pre-processing algorithm to improve
prediction accuracy. First, PCA can reduce the adverse impact of noise in the dataset.
Second, the dataset is highly correlated, and correlated feature pairs can lead to lower
prediction accuracy. PCA can avoid the effect of covariance and correlation by transferring
data into a new space where all components are orthogonal to each other. The data is
transferred to an equal number of PCA components to catch all original variances, and all
PCA components are independent of each other.

The result shows that the MLP-based prediction model provides the best performance
in predicting the RUL. It has a significantly better performance compared to the RF and
SVR. However, the validation RUL MSE of MLP does not significantly outperform the LR.
A small dataset might compromise the performance of MLP. The neural network-based
model has higher performance on a large training dataset, whereas the training dataset
size in this case study is relatively limited. In the scenario of the production lines, MLP
may have higher performance as more data is available, and the task is more complex. The
accuracy of the prediction is largely affected by the dataset type. In all predictions, the
performance on FD001 outperforms the performance on FD002. FD001 has only data from
the sea level operational condition, while the data of FD002 is from six different operational
conditions. However, the FD002 data size is only 150% greater than the size of FD001.
Consequently, there are fewer training points for each condition in FD002 than the FD001.
Hence, FD001 has a smaller HI MSE and RUL MSE than that of the FD002. According to
the result shown in Table 5, datasets FD001 and FD002 have a better overall validation RUL
prediction accuracy compared to the datasets FD003 and FD004 for all models. The low
performance on FD003 and FD004 might be largely related to the mix of fault modes in
these two datasets. In the data analysis, there are two fault modes, namely HPC fault, and
Fan fault. The HPC fault may be independent of the turbofan fault, and whichever part
fail may lead to the turbo failure. Therefore, the ideal way of RUL prediction is to predict
each fail mode separately and see which part fails first. Two independent health indexes
should be used for each working mode. However, the training datasets only have single
fault mode training data for HPC, and there is no separate fault mode training data for the
fan fault.

The validation RUL MSE for cycle >100 has a significantly lower value than that of
the full-cycle units, which contain units with cycle <100 because fewer cycles unit provides
less information to the model to judge its HI development trend. The HI degradation is
insignificant at the early stage, and the degradation accelerates as the cycle grows larger.
Hence, units with more cycles tend to have more obvious degradation patterns for the
polynomial to fit and to predict the RUL. For instance, the turbo unit 85, as shown in
Figure 13 of FD001_Test with 34 cycles, has a much higher RUL prediction error than that
of unit 84, as shown in Figure 14 in the same dataset.

In the scenario of production line risk management, the machine learning-based RUL
prediction can help managers to evaluate the possibility of a machine failure before a
maintenance window. In large scale manufacturing, the maintenance time is fixed, and
multiple machines are maintained in one maintenance window. It is not possible and
economical to maintain all machines in one window. Thus, the manager needs to decide on
which machines to conduct the maintenance in the scheduled maintenance window. The
machine learning-based RUL model can generate a density chart of RUL prediction error.
To this end, the manager can estimate the possibility of a machine to fail before the next
maintenance window, as shown in Figure 16. The management team can decide whether to
add a machine to the current maintenance list or leave it to the next maintenance window.
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Although several deep learning-based models have been developed for RUL predic-
tion recently, they have some limitations such as requiring a lot of data for training, the
difficulty of hyperparameter tuning, and high computation cost. Since our aim was to
build a model that can work even with limited data, we did not focus on deep learning
algorithms in this research. However, as part of new research, we can compare the per-
formance of our model with the recently developed deep learning-based RUL prediction
models. Since our focus was not the use of deep learning, we did not compare our results
with models that utilize deep learning.

6.2. Threats to Validity

This study aims to develop an effective way of predictive maintenance tasks by
using machine learning algorithms. A limited number of machine learning algorithms,
pre-processing methods, and parameter optimization techniques are evaluated. The perfor-
mance of this machine learning-based prediction model can be further improved by other
advanced machine learning techniques. For instance, some researchers apply machine
learning directly to predict the RUL instead of mapping to a HI. Furthermore, feature
information, such as the name and properties, are not fully explained in the public datasets.
Thus, all features are treated equivalently in our study, whereas in the real situation, experts
can filter out some irrelevant features based on the available information of features. This
extra time can save a lot of work for data processing, and improve the prediction accuracy.

The machine learning approaches adopted in this study work better with a single fault
working mode dataset. The performance of the multi-fault modes dataset is not accurate
enough for real practice. As such, the machine learning-based model proposed in this
paper requires the single fault mode training data to perform effectively. Also, the data size
of this study is limited, which restricts the applicability of the machine learning model in a
broader context. In the real production line scenario, the data size is larger because a large
amount of data is generated continuously, and the single fault mode data is difficult to
achieve. Generally, data generated from the production line contains malfunction signals
from different components. Extra data analysis may need to be taken to extract data for
a single fault mode, which is expensive and time-consuming. More research is needed
to be conducted to improve the performance of the machine learning-based model with
multi-fault modes of training data.
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7. Conclusions

In this article, we have provided a machine learning-based predictive maintenance
approach for production lines. We have applied the production line case study for turbo
engines. This study on the turbo engine RUL prediction demonstrates the possibility of
using interpolation and machine learning algorithms to predict the RUL of production
lines. The interpolation method can effectively map the relationship between features
and the RUL, and the MLP-based prediction model provides the best performance in
predicting RUL from the interpolated HI. The proposed model applies normalization and
feature selection techniques (i.e., principle component analysis) during the pre-processing
stage, utilizes from interpolation, uses grid search for parameter optimization, and is
built with multilayer perceptron neural network (MLP) machine learning algorithm. Our
novel model has been implemented and evaluated to predict the remaining useful life
(RUL) of engines on NASA turbo engine datasets. The result of the prediction provides
useful guidance to the management to conduct proactive maintenance before production
line failure. Experimental results demonstrate that the performance of our proposed
model is remarkable in predicting the RUL of turbo engines, and predictive maintenance
is beneficial.

The performance of machine learning for RUL prediction is primarily affected by
the data property, including size, dimension, noise level, fault modes, and environmental
variation. Training data with a single fault mode and single operation environment can
improve the RUL prediction significantly; however, acquiring single environment data is
difficult in the real production environment.
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