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A B S T R A C T   

Precision Nutrition research aims to use personal information about individuals or groups of individuals to 
deliver nutritional advice that, theoretically, would be more suitable than generic advice. Machine learning, a 
subbranch of Artificial Intelligence, has promise to aid in the development of predictive models that are suitable 
for Precision Nutrition. As such, recent research has applied machine learning algorithms, tools, and techniques 
in precision nutrition for different purposes. However, a systematic overview of the state-of-the-art on the use of 
machine learning in Precision Nutrition is lacking. Therefore, we carried out a Systematic Literature Review 
(SLR) to provide an overview of where and how machine learning has been used in Precision Nutrition from 
various aspects, what such machine learning models use as input features, what the availability status of the data 
used in the literature is, and how the models are evaluated. Nine research questions were defined in this study. 
We retrieved 4930 papers from electronic databases and 60 primary studies were selected to respond to the 
research questions. All of the selected primary studies were also briefly discussed in this article. Our results show 
that fifteen problems spread across seven domains of nutrition and health are present. Four machine learning 
tasks are seen in the form of regression, classification, recommendation and clustering, with most of these uti-
lizing a supervised approach. In total, 30 algorithms were used, with 19 appearing more than once. Models were 
through the use of four groups of approaches and 23 evaluation metrics. Personalized approaches are promising 
to reduce the burden of these current problems in nutrition research, and the current review shows Machine 
Learning can be incorporated into Precision Nutrition research with high performance. Precision Nutrition re-
searchers should consider incorporating Machine Learning into their methods to facilitate the integration of 
many complex features, allowing for the development of high-performance Precision Nutrition approaches.   

1. Introduction 

Remarkable progress has been made over the last few decades in 
understanding how nutrition interacts with health. However, despite 
this abundance of knowledge, health conditions related to nutrition are 
rampant and, in some cases, increasing. Statistics from the World Health 
Organization show that obesity has almost tripled since 1975, diabetes 
has almost quadrupled since 1980 and raised blood pressure has almost 
doubled since 1975 [1]. The multifactorial nature of these conditions 
makes pinpointing their exact etiology difficult, although one idea that 
has emerged in recent years is that current approaches to managing 
these conditions and others do not take into account interindividual 
variability. Evidence for recommendations for healthy eating guidelines 
is often obtained from epidemiological or large clinical studies, wherein 
averages or generic cut-off points are made in an attempt to supply 
nutritional advice on a population level. However, such generalisation, 

although practical, fails to capture the individualized nature of the 
biological effects of nutrition [2]. Such variability is known to exist in 
bodyweight in response to the same dietary intervention [3], post-
prandial glycaemia [4,5], physiological response to salt [6], caffeine 
metabolism [7], vitamin metabolism [8], and likely many other areas. 
Such variability can be attributed to factors such as sex, ethnic origin, 
genetics, metabolic traits, environment, microbiome composition, and 
probably other yet to be discovered factors [2]. Hence, the concept of 
precision nutrition (used synonymously here with personalized nutri-
tion; both abbreviated PN) on an individual or stratified level has been 
put forward as an answer to this problem. 

Aside from the management of chronic diseases, nutrition person-
alization is also of use conditions requiring specific dietary consider-
ations. Phenylketonuria (commonly known as PKU) is such an instance 
and is also one of the earliest examples of nutrition personalization. 
Patients with PKU have mutations in the gene coding for the enzyme 
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responsible for converting phenylalanine to tyrosine. A diet restrictive of 
phenylalanine and tyrosine supplementation are the only ways to avoid 
grave complications [9]. The case of PKU represents a fundamental 
example of how personal information about an individual (in this case, 
genetics) can shape dietary requirements. Personalized approaches to 
nutrition would have applicability in the maintenance of general health 
and for athletes maximising sports performance [10]. It is already the 
case that genetic testing to supply nutrition advice (among other in-
formation) is becoming commercially available and gaining interest 
[11]. Some studies have also shown increased adherence or more 
effective behavior change in response to personalized approaches [12, 
13]. For example, the Food4Me was a large randomised controlled trial 
investigating personalized versus generic nutrition advice for inducing 
dietary behavior change. After 6 months, it was clear that the person-
alized advice groups implemented and sustained more dietary changes 
thought to be better for their health than the generic group [12]. Results 
such as these suggest promise that nutrition personalization can improve 
the health of individuals to a greater degree than generic, 
population-level advice. 

Whilst conceptually PN may be appealing, PN approaches can 
involve the processing of lots of data of different kinds in a way that has 
not been possible in the past. However, the development of big data 
analytics, cloud computing, artificial intelligence, and machine learning 
(ML) has facilitated such data processing in a way and on a scale un-
matched by humans. For PN, this means that complex arrays of factors 
can be integrated to provide precise nutritional advice on an individual 
or stratified level, facilitating prediction of postprandial glycemia [14], 
triglycerides [4] and the prediction of cancer [15]. In these scenarios, 
the use of sophisticated techniques such as ML and deep learning (DL) to 
interpret multiple factors is of great utility. Aside from the final output of 
PN, ML is also helpful in the data collection stages required to obtain the 
data used as features (i.e., the input) for the model. The number and type 
of features for PN models highly depend on the desired outcome but they 
can contain in themselves large amounts of data. Common features that 
are currently being investigated for ML application to acquire data 
include energy (food and drink) intake, physical and sedentary activity 
across the day, glycemia and sleep tracking. It is likely more are to come 
as new features are further identified or methods are developed that 
facilitate ML-orientated data extraction and data processing. 

This integration of ML into both prediction models for PN and data 
extraction for PN is exciting for the prospect of deriving more accurate 
PN models. For this reason, knowing how and in which situations ML 
can be applied would help facilitate future PN work. However, until now 
this has not been explored in detail. This forms the basis for the moti-
vation of the current review. The literature across multiple databases 
including Web of Science, Scopus, PubMed, and Science Direct was 
systematically searched to find all literature that was related to PN and 
used ML in their methodology. The objectives were to provide an 
overview of where and how ML has been used in PN from various as-
pects, what such ML models use as input features, what the availability 
status of the data used in the literature is, and how the models are 
evaluated. A full list of the research questions is in Section 3.1. To the 
best of our knowledge, this is the first Systematic Literature Review 
(SLR) study that synthesizes the research performed in Precision 
Nutrition. 

The structure of the remaining sections is as follows: Section 2 dis-
cusses PN further and describes some similar reviews on the topic before 
explaining the details of ML further; Section 3 presents the research 
questions, outlines the applied research methodology, and provides an 
overview and description of the research papers found; Section 4 dis-
cusses the results; Section 5 offers a discussion and describes threats to 
validity; and Section 6 concludes and suggests avenues for future work. 
The contribution of this review to the literature is it provides a base for 
all information relevant to PN-related research utilizing ML, which is 
currently lacking. Researchers and practitioners can use this review as a 
reference to gain an understanding of the application of ML in PN- 

related research areas, inspiring future work, and progressing the 
research area. 

2. Background and related work 

In Section 2.1 PN is discussed in more detail, including related work 
in the field. Section 2.2 then briefly explains ML and elaborates in 
concepts relevant to this review. 

2.1. Precision nutrition 

Precision nutrition is a relatively new discipline, and this is reflected 
in its nomenclature. There is no universally agreed-upon definition for 
the terms precision nutrition or personalized nutrition [16]. In some 
cases, the terms are used with close overlap [17], whilst elsewhere a 
distinction between the two is attempted [18]. Since there is currently 
no consensus, the present review makes no distinction between the two. 
One thing that can be said about these types of approaches, however, is 
that they aim to use personal information about individuals or groups of 
individuals to deliver nutritional advice that, theoretically, would be 
more suitable than generic advice. Note that PN can occur on a group 
level and still be considered personalized as long as the groups are made 
based on key characteristics that make the nutritional advice the same 
for all members within the same group. This is known as stratification 
and can be considered as a level above PN on an individual level [19]. 
According to Zeisel, personalization on a stratified level is the real goal 
of PN since personalization on an individual level will never be possible 
[17]. Whilst it is certainly true that stratified approaches will be suitable 
enough in the vast majority of cases, the concept of individualization 
does not seem unachievable in some circumstances. Predicting post-
prandial glycemia seems to be one instance where an individual 
approach could be applicable and suitable. In this regard, Zeevi et al., in 
2015 published one of the most prominent papers in PN research. Pre-
diction of glycemia for each individual was attempted based on meal 
content, meal timing features (e.g., time of consumption, time since 
prior meal, etc.), activity, blood features, continuous glucose monitoring 
(CGM) data, and data about the microbiome [5]. Although the methods 
of assessment in this research may currently be infeasible on a large 
scale, that may change in the future as data gathering methods become 
more affordable, and this would certainly be an example on an indi-
vidualized level. However, it could also be that groups of individuals 
within the data can be identified that respond in the same way to the 
same meal. The level of detail that PN reaches to will ultimately depend 
on how much the differences within the same stratified group make to 
the final prediction outcome; how well these differences can be detected 
by the technology in use; and the cost-effectiveness trade-off between 
these two. Indeed, taking these points into account, stratification seems 
likely to be the dominant choice. 

PN is founded upon the concept of biological variability between 
individuals in response to nutrition [19]. Thus, if the variables respon-
sible for causing this variation and their effect on a desired outcome 
variable can be known, the outcome variable can be predicted, and this 
can be translated into nutrition advice. What, then, are these variables? 
The answer to this question depends on the desired outcome variable. 
There is no set of fixed variables that will provide any given output. 
Instead, features thought to be of importance to predicting the outcome 
are selected on a per situation basis. In some cases, this can reach to 
large numbers of individual features. However, they can be separated 
into groups, here referred to as PN elements. One common PN element is 
genetics. Genetics is understood as a reason for many obvious examples 
of variation, such as eye color and hair color, and this is extended to 
response to nutrition [9]. Indeed, in some circumstances such as PKU, 
genetics is an extremely relevant feature for PN approaches. There is 
also some known relationships between genetics and weight manage-
ment [20], lactose (as in the case of lactose intolerance) [21], metabolic 
syndrome [22], and more [17]. However, unlike with eye and hair color, 
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what has become clear is that genetics can rarely explain nutritional 
response entirely. In some cases, the genetic contribution is virtually 
absent, as Berry et al. witnessed when predicting postprandial tri-
glycerides [4]. Another relevant factor is not only genes alone but also 
their interaction with nutritional intake, termed nutrigenomics [23]. 
Genetic variation impacts metabolism of dietary components, but also 
dietary components regulate gene expression and signaling [23]. Failing 
to account for this interaction will naturally lead to compromised ac-
curacy of PN models, meaning dietary information is often collected in 
PN approaches. Gene-diet interactions for various chronic conditions are 
known and as more continue to be discovered, PN approaches consid-
ering nutrigenomics can be improved [24]. 

Dietary information is also collected independent of genetics, as a 
feature in its own right. Information on diet is particularly important in 
PN approaches to bodyweight management [25–27]. In some cases, not 
only dietary features in the long term but also the content of an indi-
vidual meal and the timing features of the meal (e.g., timing of the meal, 
time elapsed since the previous meal, etc.) are required to be known. 
This is the case in research investigating postprandial meal responses, 
where the composition of an individual meal in relation to its post-
prandial effect is relevant to know [4,5,28]. Meal timing features are 
relevant due to their impact on health [29]. Metabolomics is an 
increasingly popular field that quantifies the presence of small mole-
cules in a sample with high accuracy using sophisticated techniques such 
as nuclear magnetic resonance and mass spectrometry [30]. As the field 
of metabolomics develops further and these techniques become more 
frequently used, metabolomics will have a role to play in PN such as by 
investigating how different individuals metabolize foods and by estab-
lishing phenotypes [19]. However, the measurement of clinically rele-
vant biochemical parameters measured with traditional methods (i.e., 
not assessed from a metabolomics perspective) is currently more 
commonly seen and represents features in the group of clinical 
biochemical parameters. Included here are common clinical measures 
such as blood-sugar, hormonal levels, blood counts, and other parame-
ters deemed to be relevant for a given PN intervention. Other PN fea-
tures are the microbiome, due to its emerging role in health and 
relationship with nutritional intake [31]; activity parameters (PA 
amount and intensity, sedentary behavior, and energy expenditure 
(EE)), due to their established interaction with health and disease; 
anthropometric features, such as height, weight, body mass index (BMI), 
etc.; and personal features, which includes information about in-
dividuals that can have an impact on model outcome such age, medical 
information and disease status, medication use, socioeconomic status, 
stress, and sleep. We present an overview summary of currently relevant 
feature elements in PN is in Fig. 1. Indeed, it is likely that certain 
components of these elements will be separated out to become elements 
in their own right as their perceived importance changes. It is also true 
that this will differ between studies, as feature importance differs greatly 
between research topics. Regardless, the elements outlined in this sec-
tion can help provide an overview of the features used in PN models 
between studies. 

2.2. Machine learning 

ML can aid in multiple stages of PN including data extraction, such as 
gathering dietary and PA data, and in integrating the features of the 
model to provide the output. The algorithm learns patterns within the 
dataset(s) and uses these patterns to make a maximum likelihood pre-
diction about the outcome [32]. Some common ML algorithms include 
random forests [33], decision trees [34], support vector machines [35], 
k-means clustering [36], Multi Layer Perceptron (MLP) [37], and 
Bayesian classifiers [38]. Four types of ML can be considered: 

• Supervised Learning. The data used to train the algorithm has la-
bels (i.e., the output variable is known). Once the task has been 
completed by the algorithm, the labels allow a way to check how well 

the task was performed by comparing the predicted values to the 
actual values (i.e., the labels on the data). Human intervention has a 
large role to play in supervised learning and can thus be considered 
time-consuming and expensive. This is true not only for data label-
ling but also processing of the data, such as algorithm feature se-
lection (the features the algorithm uses to generate the output) and 
parameter selection (modifiable constraints inherent to the model).  

• Unsupervised Learning. In contrast to supervised learning, labels 
are not present for the data in unsupervised learning. Hence, the 
algorithm looks for patterns within the data in order to complete the 
task. Unsupervised approaches may also be used for feature selection 
as a preprocessing step so that only features of relevance are used in a 
subsequent main ML task in order to reduce the correlation. 
Although accuracy cannot be assessed, evaluation methods do exist 
for unsupervised approaches. For example, a well-known unsuper-
vised learning task is clustering, which consists of grouping data 
together based on similar features. Here, measures such as cluster 
purity (i.e., the extent to which each cluster contains a single class) 
can be used.  

• Semi-supervised Learning. As the name implies, this contains a 
portion of both supervised and unsupervised. Labelling occurs on 
only a very small portion of the data (e.g., 10%–20%) whilst the rest 
remains unlabelled. This tries to capitalise on the benefits that each 
offers, i.e. higher accuracy, and lower time and cost of operation for 
supervised and unsupervised, respectively.  

• Reinforcement Learning. Actions are taken by an agent in a virtual 
environment to achieve an outcome. Depending on this outcome, the 
action is either rewarded or punished. The algorithm updates itself in 
response to this in order to maximise reward. Complex tasks in a 
dynamic environment are suitable for reinforcement learning 
application. Algorithms based on this learning type are applied in 
online games and autonomous vehicles. 

ML algorithms can have their work divided into tasks. Six common 
ML tasks are listed below: 

Fig. 1. Data from any of these feature elements can be integrated into machine 
learning models and used to generate nutritional advice on a personalized basis. 
Created with Biorender.com. 
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• Classification. A supervised approach to assigning unseen data 
values to a given class based on the properties it has. Binary classi-
fication is common, where the data can be categorized into one of 
two classes (i.e., 1 or 0, yes or no). Multiple classification is also 
possible, wherein class number is greater than two. An example of 
classification could be predicting presence or absence of disease from 
medical variables. 

• Regression. A supervised task that takes a collection of input vari-
ables and uses them to predict a real numerical value as an outcome 
variable. Predicting blood cholesterol from relevant physiological 
variables is an example of regression.  

• Clustering. An unsupervised method of grouping portions of data 
together based on similar characteristics. Because it is unsupervised, 
the logical underpinning that ultimately drives the grouping process 
may not be apparent beforehand. Hence, patterns can be identified in 
the data that humans would be unable to notice. Grouping subjects 
together based on shared characteristics such as metabolic pheno-
type is an example of clustering.  

• Recommendation. Recommendation systems ultimately use the 
information available to it to predict the preference a user will have 
for an output variable. Historical data about the user is used to 
predict preference, although this differs depending on type of 
recommender system (i.e., collaborative filtering or content-based 
systems).  

• Dimensionality Reduction. Dimensionality reduction refers to 
transforming high—dimensional data to low-dimensional data, 
typically as a preprocessing step before performing a task. This 
means that only input variables that contribute to the model output 
are maintained for model input. Reducing input variables in this way 
improves model performance. It is also possible to reduce the num-
ber of data points (i.e., rows) in addition to the features (i.e., 
columns).  

• Anomaly detection. Anomaly detection refers to the process of 
identifying results that deviate largely from what could be expected 
[AD]. However, because anomalies, by definition, occur only rarely, 
having sufficient samples for training data can be an issue. Hence, 
such anomaly detection algorithms attempt to respond to this issue. 
Anomaly detection has its most common application in detection of 
fraudulent bank transactions. 

Deep learning (DL) is a sub-branch of ML. It is based on artificial 
neural networks (ANNs), which are networks designed based on the 
neuronal connections in the human brain. The term “deep” is added to 
reflect the number of hidden layers the network has, and this extra depth 
allows the network to deal with a greater level of complexity than 
shallow learning (i.e., traditional machine learning) approaches. In this 
way, DL can deal with certain complex tasks that shallow learning would 
not perform adequately. However, to do this they require a great deal 
more data and computational power. Although, if this data can be used 
for the algorithm, performance will increase, unlike with shallow 
learning algorithms, which tend to plateau. Note that ANN is not a DL 
technique per se; its categorization as deep or shallow depends on its 
depth, namely the number of hidden layers. A shallow ANN with a single 
hidden layer can be referred to as a Multi-Layer Perceptron (MLP). Ex-
amples of DL techniques include Deep Belief Networks [39], Restricted 
Boltzmann Machines [40], Recurrent Neural Networks (RNN), Long 
Short Term Memory (LSTM) [41], and Convolutional Neural Networks 
(CNN) [42]. 

Deep Belief Networks are structured the same as MLPs but are 
trained differently. Restricted Boltzmann Machines (a type of ANN) are 
stacked upon one another, and patterns recognized from the previous 
layer is used to train the next. This is repeated across all layers until the 
output is generated. This can be done unsupervised, where features are 
detected, or by providing a small set of labelled samples to be associated 
to the patterns. Either way, this saves largely on labelling time. RNNs 
differ from traditional ANNs in that they deal with sequential data, 

which means the input order of the data also has meaning. This is the 
case in sentences of words, for example, where the word order is rele-
vant to convey information. This is achieved by using both new data and 
previously processed data as input, instead of only forward propagation 
as in traditional ANNs. Hence, instead of being propagated once only, 
the network is propagated a number of times equal to the number of 
sequential steps in the sample. Long Short-Term Memory is the most 
common RNN algorithm used. Text generation, such as in chatbots, 
translation, and speech recognition can be attempted using RNNs [41]. 

CNNs are also based on neural networks and are specialized in 
pattern recognition, making them suitable for the task of image recog-
nition. Since CNNs are largely used for image recognition generally and 
were mostly used for image recognition in the current literature, they 
will be explained from an image recognition point of view. CNNs contain 
convolutional, pooling layers, and fully connected layers stacked on top 
of one another. In the convolutional layer, filters take an array of pixels 
(i.e., a small portion of the entire set of pixels) as an input to generate 
features, which fundamentally represent pieces of information that are 
distinctive for the image or objects in the image. This array convolves 
across all the pixels in the whole image, calculating scaler products, and 
generates features at all positions to form a feature map (or activation 
map). This is then transformed by a rectified linear unit, making nega-
tive values in the scaler product zero, and used as input to the next layer. 
Pooling layers take each of these filtered arrays in the feature map and 
make a much smaller image by taking the highest number from each 
scaler product (i.e., down-sampling), and this again acts as the input for 
the next layer. Doing this allows the most distinctive features within the 
image to be retained whilst making the overall size much smaller, 
reducing computational power. It is often the case that convolutional 
and pooling layers are stacked multiple times before reaching the final 
fully connected layer. The fully connected layer forms the final output as 
in a standard ANN via classification [42–44]. To avoid overfitting in 
CNN-based models, dropout and batch normalization layers are also 
utilized. 

3. Research methodology 

ML has already been applied in some areas of PN-related research. 
However, no work has currently looked to review the application of ML 
in PN related areas. The current review aims to fill this knowledge gap in 
the literature. Due to the young age of both PN and ML as disciplines, it 
is understandable that few articles exist that focus solely on using ML to 
generate nutritional advice as a PN output. For this reason, a broader 
stance was taken to encompass the use of ML in surrounding research 
areas that relate indirectly to PN, i.e., those that do not contain nutri-
tional advice as a model output but are relevant to PN in other ways, 
such as data collection for PN input variables. The review follows the 
guidelines set out by Kitchenham et al. which are systematic literature 
review guidelines for medical literature that has been adopted for soft-
ware engineering review papers [45]. This consist of identifying 
research questions (Section 3.1); defining search strategy, such as search 
strings and databases used for searches (Section 3.2.1); defining inclu-
sion and exclusion criteria (Section 3.2.2); grading the paper quality 
based on a quality assessment tool (Section 3.3); and finally, data 
extraction for all of the remaining papers (Section 3.4). An overview of 
the SLR process can be seen in Fig. 2. 

3.1. Research questions 

The following research questions were sought to be answered in the 
current review:  

• RQ-1: In which domains of Precision Nutrition-related research has 
machine learning been applied?  

• RQ-2: For which specific Precision Nutrition-related problems has 
machine learning been applied? 
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• RQ-3: Which Machine Learning tasks are used in Precision Nutrition- 
related problems?  

• RQ-4: Which Machine Learning types are used in Precision Nutrition- 
related problems?  

• RQ-5: Which Machine Learning algorithms are used in Precision 
Nutrition-related problems?  

• RQ-6: What features are used by the Machine Learning models these 
studies?  

• RQ-7 What is the availability status of the datasets used in the 
literature?  

• RQ-8: Which evaluation approaches have been used to assess model 
efficacy?  

• RQ-9: Which evaluation metrics have been used to gauge model 
efficacy? 

Note that the research questions refer to the final output of the ML 
process and not pre-processing steps. It was sometimes the case that 
feature selection via dimensionality reduction was performed before the 
main algorithm was used. This occurred frequently in image recognition 
papers where convolutional neural networks (CNN) were used. This type 
of preprocessing was typically excluded and was only retained if it 
composed a significant portion of the paper. In the majority of the cases 
and unless otherwise stated, the research questions apply to the main 
algorithm(s) of the papers. 

3.2. Primary study selection 

3.2.1. Search terms and databases 
PN models can consist of tens to over one hundred individual fea-

tures at a time. Searching to include information on ML in all of the 
potential features used in PN models would be infeasible. Hence, it was 
decided that the most-encompassing search terms that also returned the 

highest proportion of relevant papers was: 

“ “Machine learning” + nutrition “. 

Although a sub-division of ML, papers utilizing DL approaches did 
not always mention the term ML. Hence, for completeness, a second 
search was also performed: 

“ “Deep learning” + nutrition “. 

The databases selected for the search were ScienceDirect, PubMed, 
Scopus, and Web of Science. Papers were selected based on the title and 
the abstract. The number of papers returned using these search terms 
and databases is shown in Table 1. Additionally, the Google Scholar 
“related articles” and “cited by” features were used with the [5] paper to 
identify an extra one and eight papers, respectively. This was performed 
because the prominence of this paper in the field of PN means that it is 
highly unlikely any relevant article will not cite [5] in their work. The 
search strategy and the number of papers in each stage are presented in 
Fig. 3. 

Fig. 2. The SLR process undertaken by us.  

Table 1 
The number of papers returned from each database using both search queries.  

Search terms Before/After 
abstract & title 
screening 

Database 

PubMed Scopus Web of 
Science 

Science 
Direct 

““Machine 
learning” +
nutrition” 

Before 462 385 167 3038 
After 23 25 9 14 

““Deep 
learning” +
nutrition” 

Before 67 94 29 688 
After 4 16 3 3  
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3.2.2. Inclusion and exclusion criteria 
Next, the selected articles were read in full while the inclusion and 

exclusion criteria were applied. All peer-reviewed papers that used ML 
for PN or PN-related research were included. The exclusion criteria were 
as follows:  

• Article is not related or relevant to human nutrition (e.g., PN for farm 
animals)  

• Article unrelated to PN  
• Article language is not English  
• The full text is unavailable 
• Article is not a primary study (i.e., review, book chapter, commen-

tary, etc)  
• Article is related to consumer acceptance of precision nutrition  

• Article is not of sufficient quality according to the applied quality 
assessment scale (discussed below) 

3.3. Quality assessment 

After selecting the papers and applying the inclusion and exclusion 
criteria, papers were graded according to the quality assessment criteria 
presented by Kitchenham et al. as seen in Table 2 [45]. 

As shown in Fig. 4, 64 papers were quality assessed, after which four 
were removed leaving a total of 60 papers as the final literature 
selection. 

Fig. 3. The search methodology for identifying relevant papers.  
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3.4. Data extraction 

Data from the remaining papers occurred mostly in line with 
answering the research questions. Hence, for each paper the domain of 
nutrition and health, the specific problem the paper or algorithm 
attempted to solve, ML task, ML type, ML algorithm, model features, 
information relating to the data used, evaluation approaches, and 
evaluation metrics were extracted. Additionally, information about the 
research process and the scope was extracted to provide descriptions for 
each of the papers. 

3.5. Data synthesis and reporting 

In total, following application of the inclusion and exclusion criteria, 
60 articles were maintained in the final literature selection. All of these 
papers are listed in the following two tables. Each paper is provided with 
an ID number which is referred to later in the text (namely, Table 5 and 
Table 6). The tables are split according to the strength of the relationship 
with PN. Papers that produced an output that could be translated to 
supply nutritional advice to the individuals from which the data was 
generated were labelled as being directly related to PN and are shown in 
Table 3. The remaining papers were mostly composed of papers that 
used ML to generate data for PN models and considered indirectly 
related to PN, as shown in Table 4. All of the papers are described in 
Section 4.10. 

4. Results 

4.1. RQ-1: In which domains of precision nutrition-related research has 
machine learning been applied? 

The overall distribution of the papers across domains of nutrition can 
be seen in Fig. 5. Dietary intake monitoring (i.e., calorie counting/food 
logging) and PA monitoring are both important features in many PN 
models and are very suitable for ML application. Hence, these groups 
composed more than half of the total selection of papers (dietary intake 
monitoring 38%, PA monitoring 25%). The group Dietary Intake 

Table 2 
The quality assessment criteria presented by Ref. [45]] as a means of assessing 
paper quality.  

No. Questions Yes 
(2) 

Partial 
(1) 

No 
(0) 

Q1 Are the aims of the study clearly stated?    
Q2 Are the scope and context of the study clearly 

defined?    
Q3 Is the proposed solution clearly explained and 

validated by an empirical study?    
Q4 Are the variables used in the study likely to be 

valid and reliable?    
Q5 Is the research process documented adequately?    
Q6 Are all study questions answered?    
Q7 Are the negative findings presented?    
Q8 Are the main findings stated clearly in terms of 

creditability, validity, and reliability?     

Fig. 4. The distribution of papers at each possible grade on the quality 
assessment scale. 

Table 3 
The subset of papers that relate directly to PN.  

Paper 
ID 

Reference Title  

Metabolic Health 
MH1 Berry et al. [4], Human postprandial responses to food and 

potential for precision nutrition 
MH2 Colmenar et al. 

[28], 
Predicting Glycemia in Diabetic Patients By 
Evolutionary Computation and Continuous 
Glucose Monitoring 

MH3 Hall et al. [46], Glucotypes reveal new patterns of glucose 
dysregulation 

MH4 Korem et al. [47], Bread Affects Clinical Parameters and Induces Gut 
Microbiome-Associated Personal Glycemic 
Responses 

MH5 López et al. [48], Single Nucleotide Polymorphism relevance 
learning with Random Forests for Type 2 diabetes 
risk prediction 

MH6 Mendes-Soares 
et al. [14] 

Assessment of a Personalized Approach to 
Predicting Postprandial Glycemic Responses to 
Food Among Individuals Without Diabetes 

MH7 Mendes-Soares 
et al. [49] 

Model of personalized postprandial glycemic 
response to food developed for an Israeli cohort 
predicts responses in Midwestern American 
individuals 

MH8 Sowah et al. [50], Design and Development of Diabetes Management 
System Using Machine Learning 

MH9 Wu et al. [51], The Gut Microbiota in Prediabetes and Diabetes: A 
Population-Based Cross-Sectional Study 

MH10 Zeevi et al. [5], Personalized Nutrition by Prediction of Glycemic 
Responses  

Bodyweight 
BW1 Babajide et al. 

[52], 
A machine learning approach to short-term body 
weight prediction in a dietary intervention 
program 

BW2 J. Kim et al. [53], Identifying people based on machine learning 
classification of foods consumed in order to offer 
tailored healthier food options 

BW3 Montañez et al. 
[54], 

Deep Learning Classification of Polygenic Obesity 
using Genome Wide Association Study SNPs 

BW4 Montañez et al. 
[55], 

Evaluation of Phenotype Classification Methods for 
Obesity Using Direct to Consumer Genetic Data 

BW5 Ramyaa et al. [26], Phenotyping women based on dietary 
macronutrients, physical activity, and body weight 
using machine learning tool 

BW6 Rodríguez-Pardo 
et al. [56], 

Decision tree learning to predict overweight/ 
obesity based on body mass index and gene 
polymporphisms 

BW7 Zellerbach & Ruiz 
[27], 

Machine Learning to Predict Overeating from 
Macronutrient Composition  

Nutritional Management of Chronic Disease 
CD1 Baek et al. [57], Hybrid clustering based health decision-making for 

improving dietary habits 
CD2 Kim & Chung [53], Knowledge-based hybrid decision model using 

neural network for nutrition management  
Cancer 

CA1 Shiao et al. [15], Personalized Nutrition—Genes, Diet, and Related 
Interactive Parameters as Predictors of Cancer in 
Multiethnic Colorectal Cancer Families  

Orofacial Cleft 
OC1 Zhang et al. [58], Machine Learning Models for Genetic Risk 

Assessment of Infants with Non-syndromic 
Orofacial Cleft  

D. Kirk et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 133 (2021) 104365

8

Monitoring consists of attempting to track food intake by two ways: 
imaging and via detection of chews and swallows. The concept of uti-
lizing imaging for tracking food intake is attractive because smartphones 
can be used to take pictures of food, reducing the burden of manual 
entry. Detection of chews and swallows mostly consists of aiming to use 
audio or piezoelectric data to categorize foods or amount of food 
consumed based on these movements. Only one paper used the change 
of weight on a plate of food to quantify amount of food consumed [74]. 

PA monitoring revolves around classifying activity type. Only two of 
the 15 articles in Activity Tracking directly dealt calculating EE [89,90]. 
Metabolic Health was mostly centered around blood-sugar prediction, 
with one studying also investigating other parameters of metabolic 
health [4]. Otherwise, this category included a recommender system for 
diabetics [50], explored the role of the microbiota in insulin sensitivity 
[51], and predicted diabetes status based on genetics. The domain of 
Bodyweight consists of obesity risk prediction [54–56], demographic 
prediction for healthy food recommendation [25], obesity phenotyping 
[26], predicting weight change to dietary intervention [52], predicting 
overeating [27], and the relationship of weight regain with the micro-
biome [97]. 

Nutritional Management of Chronic Disease had two papers that 
both offered more health-suitable alternative food solutions based on 
the user’s health or disease status [53,57]. Although Orofacial Cleft is 
not in the domain of nutrition generally, the authors of the only study in 
this category found PN could play a key role in preventing orofacial cleft 
development in the unborn babies of pregnant Chinese women [58]. 
Finally, the only paper in the Cancer group focused on identifying risk 
factors in CRC [15]. They identified healthy eating and certain nutri-
tional components as modifiable risk factors, meriting its inclusion in 
the topic of PN. 

Table 4 
The subset of papers that relate indirectly to PN.  

Paper 
ID 

Author (Date) Title  

Dietary Intake Monitoring 
DI1 Kalantarian et al. [59], A comparison of piezoelectric-based inertial 

sensing and audio-based detection of 
swallows 

DI2 Lo et al. [60], A novel vision-based approach for dietary 
assessment using deep learning view 
synthesis 

DI3 Fang et al. [61], An end-to-end image-based automatic food 
energy estimation technique based on 
learned energy distribution images: Protocol 
and methodology 

DI4 Kalantarian & 
Sarrafzadeh [62], 

Audio-based detection and evaluation of 
eating behavior using the smartwatch 
platform 

DI5 Jia et al. [63], Automatic food detection in egocentric 
images using artificial intelligence 
technology 

DI6 Pouladzadeh et al. [64], Cloud-based SVM for food categorization 
DI7 McAllister et al. [65], Combining deep residual neural network 

features with supervised machine learning 
algorithms to classify diverse food image 
datasets 

DI8 Yigit & Ozyildirim [66], Comparison of convolutional neural network 
models for food image classification 

DI9 Merchant & Pande [67] ConvFood: A CNN-Based Food Recognition 
Mobile Application for Obese and Diabetic 
Patients 

DI10 Liu et al. [68], Deepfood: Deep learning-based food image 
recognition for computer-aided dietary 
assessment 

DI11 Shermila & Milton [69], Estimation of protein from the images of 
health drink powders 

DI12 Pouladzadeh et al. [70], Food calorie measurement using deep 
learning neural network 

DI13 Hussain et al. [71], Food intake detection and classification 
using a necklace-type piezoelectric wearable 
sensor system 

DI14 Christodoulidis et al. 
[72], 

Food recognition for dietary assessment 
using deep convolutional neural networks 

DI15 Shen et al. [73], Machine Learning Based Approach on Food 
Recognition and Nutrition Estimation 

DI16 Mertes et al. [74], Measuring and Localizing Individual Bites 
Using a Sensor Augmented Plate during 
Unrestricted Eating for the Aging Population 

DI17 Mezgec et al. [75], Mixed deep learning and natural language 
processing method for fake-food image 
recognition and standardization to help 
automated dietary assessment 

DI18 Pouladzadeh & 
Shirmohammadi [76], 

Mobile multi-food recognition using deep 
learning 

DI19 Kalantarian et al. [77], Monitoring eating habits using a 
piezoelectric sensor-based necklace 

DI20 Mezgec & Seljak [78], Nutrinet: A deep learning food and drink 
image recognition system for dietary 
assessment 

DI21 Priyaa et al. [79], Nutrition monitoring and calorie estimation 
using internet of things (IoT) 

DI22 Alshurafa et al. [80], Recognition of nutrition intake using time- 
frequency decomposition in a wearable 
necklace using a piezoelectric sensor 

DI23 Farinella et al. [81], Retrieval and classification of food images  
Activity Tracking 

AT1 Fergus et al. [82], A machine learning approach to measure 
and monitor physical activity in children 

AT2 Bastian et al. [83], Automatic identification of physical activity 
types and sedentary behaviors from triaxial 
accelerometer: laboratory-based 
calibrations are not enough 

AT3 Dobbins et al. [84], Detecting physical activity within lifelogs 
towards preventing obesity and aiding 
ambient assisted living 

AT4 Golla et al. [85],  

Table 4 (continued ) 

Paper 
ID 

Author (Date) Title 

Developing Novel Machine Learning 
Algorithms to Improve Sedentary 
Assessment for Youth Health Enhancement 

AT5 Chowdhury et al. [86], Ensemble Methods for Classification of 
Physical Activities from Wrist Accelerometry 

AT6 Pavey et al. [87], Field evaluation of a random forest activity 
classifier for wrist-worn accelerometer data 

AT7 Ahmadi et al. [88], Free-living Evaluation of Laboratory-based 
Activity Classifiers in Preschoolers 

AT8 O’Driscoll et al. [89], Improving energy expenditure estimates 
from wearable devices: A machine learning 
approach 

AT9 Ahmadi et al. [90], Laboratory-based and free-living algorithms 
for energy expenditure estimation in 
preschool children: A free-living evaluation 

AT10 Trost et al. [91], Machine learning for activity recognition: 
Hip versus wrist data 

AT11 Ahmadi et al. [92] Machine learning models for classifying 
physical activity in free-living preschool 
children 

AT12 Chowdhury et al. [93], Prediction of relative physical activity 
intensity using multimodal sensing of 
physiological data 

AT13 Jones et al. [94], Towards a portable model to discriminate 
activity clusters from accelerometer data 

AT14 Fridolfsson et al. [95], Workplace activity classification from shoe- 
based movement sensors 

AT15 Kingsley et al. [96], Wrist-specific accelerometry methods for 
estimating free-living physical activity  

Bodyweight 
BW8 Thaiss et al. [97], Persistent microbiome alterations modulate 

the rate of post-dieting weight regain  
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Table 5 
Specific Precision Nutrition-Related problems coded with an index letter for 
correspondence with the graphs. The number of papers that deal with each 
problem and a brief description of the problem as it relates to PN are also pro-
vided. The final column also provides the paper IDs listed in Tables 3 and 4 for 
reference.  

Letter Specific Precision 
Nutrition-related 
problem 

N.o. 
Papers 

Explanation Paper ID(s) 

P01 Activity Tracking 
and Energy 
Expenditure 

15 Quantifying energy 
expenditure activity is 
important for calculating 
energy balance. 
Measuring activity is 
relevant as a measure for 
heath, as well as a means 
for calculating energy 
expenditure. Activity 
data is a common feature 
in PN models. 

A1, A2, 
A3, A4, 
A5, A6, 
A7, A8, 
A9, A10, 
A11, A12, 
A13, A14, 
A15 

P02 Classification of 
Glucose Response 

1 This problem contained 
only one paper [46] that 
dealt with classifying 
subjects based on their 
glycaemic responses via 
clustering. Early 
recognition of glucose 
dysregulation as well as 
the foods that enhance it 
in an individual allows 
personalized preventive 
treatment. 

MH3 

P03 Dietary 
Recommendation 

4 The papers in this 
category dealt with 
recommending healthier 
foods based on personal 
information about the 
users through ML 
techniques. 

BW2, CD1, 
CD2, MH8 

P04 Genetic-Based 
Obesity Prediction 

3 Genetic information is 
used to predict obesity. 
Identifying personal 
genetic predisposition 
can increase awareness of 
weight management and 
encourage earlier 
treatment [54–56]. 

BW3, 
BW4, BW6 

P05 Genetic-Based 
Orofacial Cleft 
Prediction 

1 In this study, Zhang et al. 
[58] looked for SNPs 
associated with orofacial 
cleft in Chinese 
populations. Defects in 
variants related to folic 
acid and vitamin A in 
pregnant women were 
shown to pathologically 
contribute to cleft 
development in the baby, 
showing the need for 
personalized nutritional 
supplementation in 
individuals with such 
variants. 

OC1 

P06 Genetic-Based 
Prediction of 
Diabetes 

1 López et al. [48] used 
SNPs to predict the risk of 
T2D. Genetically 
informed-risk prediction 
can allow preventive 
treatment approaches or 
treatment from an early 
stage. 

MH5 

P07 Identifying 
Bodyweight 
Phenotypes 

1 Ramyaa et al. [26] used 
dietary, PA and personal 
data to predict 
bodyweight and then 
identify phenotypes in 
women via clustering. It 

BW5  

Table 5 (continued ) 

Letter Specific Precision 
Nutrition-related 
problem 

N.o. 
Papers 

Explanation Paper ID(s) 

is suggested that these 
phenotypes might reflect 
biological response to 
macronutrients, meaning 
personalized dietary 
recommendations for 
bodyweight alteration 
would be valuable. 

P08 Macronutrient- 
Based Prediction of 
Overeating 

1 Based on the idea that 
nutritional deficiencies 
may lead to overeating, 
public food diaries were 
used by Zellerbach & 
Ruiz [27] to attempt to 
identify instances where 
daily calorie intake 
exceeds the target 
amount. Such 
macronutrient-based 
prediction can allow 
personalized food 
recommendations to 
reduce overeating 
instances. 

BW7 

P09 Microbiome-Based 
Prediction of 
Bodyweight 

1 It is becoming clear that 
the microbiome interacts 
with many systems and 
parameters of health 
across the body, 
including bodyweight 
[97]. Hence, PN 
approaches can benefit 
from including 
microbiome analysis. 
Moreover, since the 
microbiome is 
modifiable, it can also be 
a target for changes in 
health. Thaiss et al. show 
that the microbiome can 
be used to predict 
bodyweight change in 
mice. From this, targeting 
the microbiome in a 
personalized manner 
could be considered to 
prevent weight regain 
following weight loss. 

BW8 

P10 Microbiome-Based 
Prediction of 
Insulin Resistance 

1 Wu et al. [51] predict 
impaired glucose 
tolerance from 
microbiome data. The 
microbiome may thus 
represent a preventive or 
treatment outlet for those 
with impaired glucose 
tolerance. This may occur 
medically, but since the 
microbiome can also be 
altered nutritionally, a 
PN approach may be 
effective in the future. 

MH9 

P11 Prediction of 
Colorectal Cancer 

1 More so than other 
cancer types, CRC is 
influenced by diet. In this 
study, multiple dietary 
parameters were 
identified as predictors of 
CRC with a ML approach 
[15]. Especially in those 
predisposed to CRC, these 
parameters represent 
factors that can be 
modified with a 

CA1 

(continued on next page) 
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4.2. RQ-2: for which specific precision nutrition-related problems has 
machine learning been applied? 

In addition to nutrition domains, it is also valuable to know how ML 
tasks and algorithms are used in relation to the specific problems they 
are trying to solve. In many cases, solving these problems will lead to PN 
models with better performance, and thus more utility for end-users or 
patients. These problems are listed below in Table 5. For readability, 
each problem is coded with a problem number that corresponds to a 
position on the x-axis of the graphs that follow. 

4.3. RQ-3: which machine learning tasks are used in precision nutrition- 
related problems? 

Of the ML tasks discussed in Section 2.2.3, four appear in the present 
study and their distribution is shown in Fig. 6. Classification takes up the 

Table 5 (continued ) 

Letter Specific Precision 
Nutrition-related 
problem 

N.o. 
Papers 

Explanation Paper ID(s) 

personalized dietary 
approach. 

P12 Prediction of 
Postprandial 
Glycemic Response 

5 It has now been shown 
that variability between 
people in response to the 
same food exists [4,5,46]. 
Hence, generalized 
approaches to 
blood-sugar control make 
little sense. In this 
category, ML techniques 
are used to predict 
glycaemic response to 
foods. Accurate 
predictions can allow 
more precise of control of 
blood-glucose at the 
individual level. 

MH2, 
MH4, 
MH6, 
MH7, 
MH10 

P13 Prediction of 
Postprandial 
Metabolic 
Responses 

1 This category is the same 
in principle as the above, 
however Berry et al. [4] 
predicted also 
postprandial responses of 
other metabolic 
parameters, namely 
triglycerides and 
C-peptide. 

MH1 

P14 Prediction of 
Weight Loss 

1 Utilizing ML, weight loss 
in response to a dietary 
intervention is predicted. 
If weight change can be 
predicted, personalized 
adjustments can be made 
to diets based on weight 
projections to facilitate 
weight loss success. 

BW1 

P15 Quantification of 
Energy Intake and 
Food Tracking 

23 Logging of dietary intake 
is important in many PN 
approaches. All instances 
in this category revolve 
around utilizing ML in 
order to obtain food 
consumption 
information, which may 
eventually be used for 
logging purposes. 

DI1, DI2, 
DI3, DI4, 
DI5, DI6, 
DI7, DI8, 
DI9, DI10, 
DI11, 
DI12, 
DI13, 
DI14, 
DI15, 
DI16, 
DI17, 
DI18, 
DI19, 
DI20, 
DI21, 
DI22, DI23  

Table 6 
Precision nutrition-related problems and the features the machine learning al-
gorithms attempting to solve them use.  

Precision Nutrition- 
Related Problem 

Independent variables 
(features) used in algorithm 

Paper IDs 

P01 (Activity Tracking +
Energy Expenditure) 

Accelerometer Data AT1, AT2, AT3, AT4, 
AT5 AT6, AT7, AT8, 
AT9, AT10, AT11, 
AT13, AT14, AT15 

Heart Rate AT3, AT8, AT12 
Electrodermal Data AT12 
Skin Temperature AT8, AT12 
Changes in Blood Volume AT8  

P02 (Classification of 
glucose response) 

Continuous Glucose 
Monitoring Data 

MH3  

P03 (Dietary 
Recommendation) 

Food Preference Data CD1, CD2, MH8 
Healthcare Data CD2 
Dietary Nutrition Data BW2, CD2 
Images of Food MH8  

P04 (Genetic-based 
obesity prediction) 

Genetic Information BW3, BW4, BW6  

P05 (Genetic-based 
orofacial cleft 
prediction) 

Genetic Information OC1  

P06 (Genetic-based 
prediction of diabetes) 

Genetic Information MH5  

P07 (Identifying 
bodyweight 
phenotypes) 

Dietary Nutrition Data BW5 
Physical Activity Data BW5 
Ethnicity BW5 
Age BW5 
Disease Status BW5 
Anthropometric Data BW5 
Socioeconomic Score BW5 
Marital Status BW5  

P08 (Macronutrient- 
based prediction of 
overeating) 

Dietary Nutrition Data BW7  

P09 (Microbiome-based 
prediction of 
bodyweight) 

Microbiome Data BW8  

P10 (Microbiome-based 
prediction of insulin 
resistance) 

Microbiome Data MH9  

P11 (Prediction of 
colorectal cancer) 

Age CA1 
Sex CA1 
Genetic Data CA1 
Anthropometric Data CA1 
Dietary Nutrition Data CA1  

P12 (Prediction of 
Postprandial Glycemic 
Response) 

Microbiome Data MH4, MH6, MH7, 
MH10 

Dietary Nutrition Data MH6, MH7, MH10 
Meal Content MH2, MH6, MH7, 

MH10 
Meal Timing Features MH6, MH7, MH10 
Age MH6, MH7, MH10 
Sex MH6, MH7, MH10 
Personal Features (see 
Ref. [5] Supplemental 
Experimental Procedures) 

MH6, MH7, MH10 

HbA1c MH6, MH7, MH10 
Activity Data MH6, MH7, MH10 
Clinical Biochemical Data MH10 
Continuous Glucose 
Monitoring Data 

MH2, MH6, MH7, 
MH10 

(continued on next page) 
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vast majority (66%) of the tasks in the literature. The remaining tasks 
were composed of regression (23%), clustering (8%), and recommen-
dation (3%). 

Fig. 7 shows which ML tasks were required to solve each of the 
problems. In Activity Tracking and Energy Expenditure (P01) and 
Quantification of Energy Intake and Food Tracking (P15) classification 
is clearly the most used task, with regression also being used. Most of the 
papers in P1 dealt with categorizing activity types such as walking, 
running, cycling, etc. from physiological data, mostly accelerometer 
data. Many of the articles in P15 were concerned with classifying food 
types from images or classifying between different food types from 
audio- or piezoelectric-based methods for detecting chews and swal-
lows. In P15 it was also sometimes the case that volume estimation was 
used to predict caloric content, in which case regression became the task 
at hand. Regression was used twice in A and only one article took a 
clustering approach to group similar activity patterns. In Prediction of 
Postprandial Glycemic Response (P12) regression was the most utilized, 
although classification was used once. Korem et al. [47] predicted which 
bread type, sourdough or white, would induce high postprandial glucose 
response using microbiome data. Genetic-Based Obesity Prediction 
(P04) had three articles. Since all of these articles were concerned with 
obesity status as a binary independent variable, they fall under classi-
fication. Recommendation was only used twice in the group Dietary 
Recommendation (P03). On five occasions two tasks were used in the 
same article, causing the number of task usage to exceed the number of 
papers [26,50,53,70,97]. 

4.4. RQ-4: which machine learning types are used in precision nutrition- 
related problems? 

In all cases, the ML types could be broken down into either super-
vised or unsupervised. Although semi-supervised and reinforcement 
learning are also possible, these instances were not present in the liter-
ature of the current review. As Fig. 8 depicts, most of the time a su-
pervised approach was taken. More than half of the instances of 
unsupervised were clustering. 

4.5. RQ-5: which machine learning algorithms are used in precision 
nutrition-related problems? 

Fig. 9 shows how many times each ML algorithm was used across the 
papers. For clarity, only algorithms used more than once were displayed 
on the figure, however, 19 other algorithms were used once and are 
listed in Supplementary Section 1. Given that most of the papers dealt 
with classification (66%; see Fig. 4), it is unsurprising that RF and SVM, 
two strong classification algorithms, are the most used. This is also re-
flected in the distribution of papers using ML only, DL only, or both; two- 
thirds of the papers utilise ML only, limiting the number of times DL 
algorithms appear (Fig. 10). Other classification algorithms such as 
decision trees, k-NN, and Bayesian also make up a substantial portion of 
the results. DL was most often used for food recognition in articles uti-
lizing imaging technology for food logging, though did also appear in 
Bodyweight [54], Metabolic Health [50] and Nutritional Management 
of Chronic Disease [53,57]. This is likely due to the fact that deep 
learning performs well in image recognition, yet its higher computa-
tional burden makes it less suitable for more basic tasks like classifica-
tion. Finally, three regression algorithms appear in total 11 times in the 
figure and finally, k-means was used for clustering four times. In situa-
tions where a paper used multiple algorithms and their performance 
could be compared and ranked, the best performing algorithm was 
noted. These results are discussed further in Supplementary Figure 1, 
but RF performed best on around half of these occasions. 

Fig. 11 shows PN-related problems in relation to the algorithms that 
were used to solve them. The problem of Quantification of Energy Intake 
and Food Tracking (P15) was most often attempted with CNN. Most of 
the articles (17 of the 23 articles in P15) used images of food to identify 

Table 6 (continued ) 

Precision Nutrition- 
Related Problem 

Independent variables 
(features) used in algorithm 

Paper IDs 

Anthropometric Data MH6, MH7, MH10 
Insulin Doses MH2  

MP13 (Prediction of 
postprandial metabolic 
responses) 

Microbiome Data MH1 
Dietary Nutrition Data MH1 
Meal Content MH1 
Meal Timing Features MH1 
Age MH1 
Activity Data MH1 
Sex MH1 
Personal Features MH1 
Clinical Biochemical Data MH1 
Genetic Data MH1  

P14 (Prediction of weight 
loss) 

Age BW1 
Anthropometric Data BW1 
Sex BW1 
Fat Mass BW1 
Fasting Glucose BW1 
Energy Expenditure BW1 
HOMA-IR BW1 
Fasting Insulin BW1  

P15 (Quantification of 
Energy Intake) 

Sound DI1, DI4 
Piezoelectric Data DI13, DI19, DI22 
Images of food DI2, DI3, DI6, DI7, DI8, 

DI9, DI10, DI11, DI12, 
DI14, DI15, DI17, 
DI18, DI20, DI21, DI23 

Images (general) DI5, DI7 
Weight change on plate (of 
food) 

DI16  

Fig. 5. The proportion of papers in each nutrition domain in the final litera-
ture selection. 

Fig. 6. The proportion of ML tasks that was dealt with in each paper.  

D. Kirk et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 133 (2021) 104365

12

foods consumed. DL algorithms have demonstrated particularly strong 
performance in this area, explaining the dominance of CNN in P15. 
Detected chews and swallows comprised 6 articles in this group. Since 
this is a classification task, RF, SVM and Bayesian are seen as the next 
largest. Activity Tracking and Energy Expenditure (P01) was also mostly 
concerned with classification but was mostly dealt with via ML, 
explaining the dominance of RF (9) and SVM (7) P01. Other classifiers 
MLP, decision trees, kNN and Bayesian classifiers had four, four, three 
and three, respectively. Clustering was only attempted once in this 
group [94]. Although only containing one article, Identifying Body-
weight Phenotypes (P07) used first regression for bodyweight prediction 
with a variety of algorithms, before using k-means to cluster the data for 

phenotyping and then kNN again for bodyweight prediction [26]. Pre-
diction of Postprandial Glycemic Response (P12) was mostly composed 
of regression. Of the five articles in this group, three were related [14, 
49]. followed closely the methodology of [5] and used the same 
modelling framework, as they mention in the articles [14,49]. A fourth, 
the article of [47]; originated from the same lab, the Segal lab in Isreal, 
as the PN landmark [5] article [47]. All of these four articles made use of 
gradient boosting regression for their ML algorithm. As with Fig. 9, only 
algorithms used more than once were included. However, exceptions 
were made for spectral clustering and generalized regression as they 
were the only algorithm that was used in their problems (P02 and P11, 

Fig. 7. Each of the individual problems in the papers of the final literature and the number of times each machine learning task was used to solve them.  

Fig. 8. The proportion of ML types used in the literature.  
Fig. 9. The number of times each algorithm appeared in the final literature. For 
conciseness, only algorithms that appeared more than once were included in 
the figure. 
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respectively). 4.6. RQ-6: what features are used by the machine learning models ın these 
studies? 

Machine learning algorithms use features to generate an output. 

Fig. 10. The percentage of articles that used shallow learning (i.e., traditional machine learning), deep learning, or both, in the final literature selection.  

Fig. 11. Each of the individual problems in the papers of the final literature and the number of times each machine learning algorithm was used to solve them. Only 
algorithms used more than once were shown, except for spectral clustering and generalized regression, which were shown because they were the only algorithm used 
to solve their respective problems. 
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Knowing which features are used to solve problems in PN-related 
research can guide researchers on which variables should be included 
in model. Hence, Table 6 shows each of the problems and features that 
were used in the ML algorithm to solve them. In some cases, many 
features were used in the model. For example, the model of Zeevi et al. 
[5] used 137 and that of Berry et al. [4] used 110. In other cases, such as 
those utilizing imagery, features consisted of precise components of the 
image such as color and shape [70]. In these situations, an attempt was 
made to summarize groups of similar features together to provide an 
overview. For example, Zeevi et al. [5]; Mendes-Soares et al. [49] and 
Mendes-Soares et al. [49] have an element they describe as “Personal 
Features”, which consists of other features about the person such as 
stress, sleep, smoking status, etc. Berry et al. [4] also has this element, 
although the composition is slightly different. In this case, to reduce 
complication in Table 6, the heading features name “Personal Features” 
was used, as is used in Zeevi et al. [5]. If, however, specific features 
within “Personal Features” were used in other studies of the present 
review (as was the case with Age, Anthropometric Data, Sex, Activity 
Data) then this was separated as a feature in itself. If specific details 
about features are required, readers are encouraged to check the papers 
via the paper IDs corresponding to each problem and feature. Moreover, 
it should be noted that Table 5 reveals the features that were ultimately 
used in the model but does not show their contribution in producing the 
output. Hence, researchers taking inspiration from Table 6 are again 
encouraged to refer to the individual articles within the specific problem 
categories to obtain information on the contribution of individual fea-
tures; sometimes information on feature contribution is provided [4,15]. 

4.7. RQ-7 what is the availability status of the datasets used in the 
literature? 

The availability of data is relevant to know in the world of computer 
science since data represents the raw materials that lead to discovery. 
Datasets in the papers fell into one of five categories, the name of which 
and the amount of papers belonging to each can be seen in Fig. 12. Most 
papers do not mention the availability status of the data they use. This is 
a necessary distinction from the category “Not available” in that access 
to the data may be possible in some conditions (e.g. contact with the lead 
author, on the website of the lab group), but it is not mentioned in the 
article itself. Papers had their data categorized as not available as data 
could not be accessed. This occurred on all three occasions due to 
webpage errors after clicking hyperlinks to the data, or broken links [48, 
60,81]. One paper [86] used two datasets that the authors declared as 
private. The remaining datasets could either be downloaded freely for 
use or would be granted to researchers who requested it, such as online 
application or correspondence with article authors. Note that the 

number of datasets exceeds the number of articles because some papers 
used multiple datasets or had different accessibility for different parts of 
their data. 

4.8. RQ-8: which evaluation approaches have been used to assess model 
efficacy? 

Once an ML algorithm has been selected to solve a problem, re-
searchers often wish to know how effective it is at doing so. Selecting 
model parameters that lead to better training performance is natural, 
however, an issue in selecting these parameters based purely on training 
data is the occurrence of overfitting. Overfitting occurs when a model 
performs very well on training data but poorly on unseen data. It is the 
consequence of the model becoming highly trained to one set of data 
without regard for generalizability, which is not reflective of real-world 
scenarios where unseen data will be the input. To deal with this, various 
evaluation approaches exist that allow testing of the model with unseen 
data to get a truer representation of model quality. 

The evaluation metrics that were encountered in the literature of the 
present study are shown in Fig. 13. Not all articles evaluated model 
performance, meaning the number of evaluation approaches was less 
than the total number of articles. The approaches are described here:  

• Split Data: One obvious approach is to simply leave some of the data 
out from analysis and use it for testing and evaluation. This is 
denoted in Fig. 13 as “Split Data” and is also known as the hold-out 
method. This approach was opted for 15 occasions.  

• Cross-Validation: Cross-validation methods still consist of splitting 
the data into training and evaluation sets, but the model is trained on 
all of the data; that is, in each iteration one portion of the data is used 
for testing whilst the rest of the data is used for training. This is 
repeated until every portion of data has been used for training. 
Commonly, k-fold cross-validation is used, where the data is split 
into k number of data chunks of equal size. Also included in this 
category is leave-one-out cross-validation (LOOC) and leave-one- 
subject-out (LOSO) cross-validation, since they are the same in 
principle, but these latter approaches consist of training the model at 
the level of k = n, meaning every individual data point is used once to 
evaluate the model. This provides a much better measure of perfor-
mance, but at the cost of higher computational expense. Cross- 
validation was most often seen and is currently a popular method 
for evaluating ML models.  

• Independent Cohort Validation: Validation on an independent 
cohort is an evaluation approach seen more often in life sciences 
research utilizing ML. Here, a model is trained entirely on one set of 
data and evaluated on an unseen, cohort. One way in which this 

Fig. 12. The number of articles present in each of the five categories of data 
availability in the final selection of papers. 

Fig. 13. The four groups of evaluation methods that were identified in the 
final literature. 
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differs from previously mentioned approaches, however, is that the 
unseen cohort may differ in some way from the cohort used for 
training. A prime example of this is in the paper of Mendes-Soares 
et al. [49]; wherein a model for blood-glucose prediction trained 
on an entirely Israeli cohort was tested on an American cohort. The 
difference in nationality encompasses different genetics, diet and 
lifestyle, which means generalizability can be thoroughly 
investigated.  

• Akaike Information Criterion: Akaike Information Criterion with 
correction (AICc) is a statistical approach that allows comparison 
between models based on maximum likelihood estimates the number 
of independently adjusted parameters in the model [98]. Only one 
paper took this approach [15]. 

4.9. RQ-9: which evaluation metrics have been used to gauge model 
efficacy? 

After developing ML models to solve a problem, it is pertinent to 
gauge how effective the model is at solving this problem. This differs 
between problems, depending on which aspect of model performance is 
most relevant to the problem, and between models, depending on the 
approach of the model to solving the problem. Moreover, even within 
the same model and the same problem, multiple evaluation metrics are 
often used to assess the performance across multiple parameters (e.g., 
specificity, sensitivity, accuracy, etc.). This can mean comparing models 
is not always straightforward. Fig. 14 shows the evaluation metrics that 
were used to gauge model efficacy. Again, only evaluation metrics used 
more than once are presented. A full list of all of the evaluation metrics 
can be seen in the Supplementary Section 3. 

A description of each of the evaluation metrics shown in Fig. 14 is 
provided as follows:  

• Accuracy refers to the percentage of correctly predicted values. 

Accuracy=
Predicted Positive

Total Positive
(1) 

Accuracy is the most common evaluation metric and is especially 
common in classification tasks. Since most of the literature in this review 
dealt with classification, this is logical. It is not uncommon to see ac-
curacy given as the only metric for the evaluation of a model’s 
performance.  

• Recall is synonymous with Sensitivity. It is the measure of true 
positives predicted by the model divided by the total number of 
predicted values. An alternative way to word this is to say it is the 
number of true positives divided by the combined sum of true posi-
tives and false negatives 

Recall=
True Positives

True Positives + False Negatives
(2)    

• AUC (Area Under the Curve) refers to the area under a Receiver 
Operating Characteristics (ROC) curve. The ROC plots true positive 
rate (typically on the Y-axis) against false positive rate (X-axis). In 
this way, a curve is made where superior performance is indicated by 
a curve that approaches the maximum value on the Y-axis and a 
minimum on the X-axis, indicating a higher true positive and a lower 
false positive rate. The area under this curve is thus the measure of 
this where 1 refers to best performance (all positives correctly 
identified, and negatives incorrectly identified as positives) and 0 is 
the opposite of this. The AUC value of a prediction model should be 
larger than 0.5, which is the AUC value of random guessing.  

• F1 Score, F Score and F-Measure are all synonymous and consider 
model quality from two aspects: precision and recall. Since the 
equation takes both of these factors into account, it can be helpful for 
gauging model quality when there is no preference for one to be 
higher than the other. To obtain the F score, the following equation is 
used: 

F1 Score= 2*
Precision*Recall

Precision + Recall
(3)    

• Precision calculates the proportion of correctly identified positives. 
It is calculated as follows: 

Precision=
True Positives

True Positives + False Positives
(4)   

• Pearson’s r, r, or Pearson’s Correlation is a measure of the corre-
lation between two variables. Pearson’s R is typically a statistical 
method for assessing correlation between two variables, but also has 
utility in gauging ML model efficacy. This occurs in situations where 
values predicted by the model are compared with real values. Hence, 
Pearson’s r was seen in models predicted postprandial glucose [4,5, 
14,49]. 

• Root Mean Square Error (RMSE) is a representation of the differ-
ence between the predicted values versus the observed values. 
Hence, the larger RMSE, the worse the model was at predicting 
outcomes. Regression models often used RMSE as a model evaluation 
metric [14,26,90]. It is constructed as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Predictedi − Actuali)
2

N

√

(5)    

• Specificity refers to the rate of true negatives identified. It is 
formulated in Equation (6). 

Specificity=
True Negatives

True Negatives + False Positives
(6)    

• Mean Absolute Error (MAE)/Mean Absolute Percentage Error 
(MAPE) is another metric that evaluates the error between observed 
and predicted. MAE is very similar to RMSE, although MAE operates 
on the absolute level, and thus does not require squaring and square 
rooting 

MAE=

∑N
i=1|Predictedi − Actuali|

N
(7) 

MAPE is similar, except now expressed as a ratio 

MAPE=
1
N

∑N

i=1

⃒
⃒
⃒
⃒
Predictedi − Actuali

N

⃒
⃒
⃒
⃒ (8)    

• Kappa or Cohen’s kappa is another method for comparing observed 
and expected values. Specifically, Cohen’s kappa compares the 
observed values with values that could be expected based on 

Fig. 14. All of the evaluation metrics that were used more than once in the 
final selection of literature and the number of times they were used for model 
scoring is shown. 
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expected values based on a random system with a given set of 
baseline constraints. Only three articles used kappa as an evaluation 
metric [65,88,99].  

• Error (in relevant units) refers to the situation in which model 
quality was evaluated based on average error without further 
manipulation. Thus, the evaluation metric is the same despite the 
difference in units. Articles using this method were [26,61,69].  

• Cross-Entropy Loss, also known as Log Loss, is used to measure 
performance of classifiers. Where the model predicts few of the 
categories correctly, log loss is at its highest; as the model approaches 
completely correct categorization, log loss decreases. Cross-entropy 
loss was used by Refs. [50,74].  

• R Squared is a metric for representing the proportion of variance of 
one variable that is predicted by another. It is an indicator of model 
fit. It is calculated by squaring the value obtained when calculating 
Pearson’s r. It was used by two articles [26,52].  

• False Positives represent the results incorrectly identified in binary 
classification. It is often represented as a rate 

False Positive Rate =
False Positives

False Positives + True Positives
(9)    

• False Negatives represents the results incorrectly identified as 
negative in binary classification. It is often represented as a rate 

False Negative Rate =
False Negatives

False Negatives + True Negatives
(10) 

It is unsurprising that accuracy is the most common evaluation 
metric used in the literature given that the domain with the most papers 
in the review was Dietary Intake Monitoring, which mostly consisted of 
attempting to classify foods based on images or audio and piezoelectric 
data. Especially in the case of computer vision, accuracy is a suitable 
metric. Recall and precision are commonly seen in statistics and ML as 
performance metrics where they may be represented (along with accu-
racy and specificity) in a confusion matrix. AUC is another common ML 
evaluation metric. It is convenient not only because of its ease of 
interpretation as a value between 0 and 1, but also because it can be 
represented graphically. As the line on the graph approaches the top left 
corner (i.e., the maximum Y value and the minimum X value), model 
quality increases. Pearson’s r, as stated above, is not typically an ML 
evaluation metric. However, in regression problems where the model is 
predicting values of some sort, a predicted value can be plotted against 
an observed value. When the predicted and observed values are plotted 
against each other on one graph, calculating correlation provides a way 
to see how closely these values align with each other. Interestingly, 
many of the papers that made use of this were not ML focused papers, 
but papers in biomedical science that made use of ML as a means to an 
end [4,5,49,97]. It may be that an evaluation metric that is more 
familiar with a non-mathematical audience, easy to interpret and easy to 
visualize may be more appreciated in disciplines like this. Pearson’s r 
was also used to assess agreeability between models [89,96]. Similarly, 
RMSE focuses on the errors between the predicted and observed values 
and is also commonly when measuring model quality. 

4.10. Description of the studies 

4.10.1. Articles directly related to precision nutrition 
The articles in this section are those which align exactly with or 

closely to the core of PN in that they all consist of utilizing personal 
information to provide a nutritional recommendation expected to have 
better health outcomes than generalized advice. They consist of classic 
nutrition domains such as Metabolic Health, Bodyweight and Nutri-
tional Management of Chronic disease. However, also included are do-
mains of health that have a nutritional element such as Cancer (namely 
CRC) and Orofacial Cleft, since they have a nutritional element that 
makes them suitable for PN approaches. 

The articles are separated first by domain, and then by the problems 
each article deals with. 

4.10.2. Metabolic Health 
Metabolic health is a pressing issue in the modern world and solu-

tions are urgently needed. It is thus unsurprising that of all the articles in 
Table 3 almost half (10/21) come from the domain of Metabolic Health. 

Prediction of Postprandial Glycemic Response. The most prolific 
paper in Table 3 in the realm of PN, Zeevi et al. [5] used 137 individual 
features on 800 participants to predict glycemic response to food with a 
stochastic gradient boosting model [5]. The research was based on the 
fact that individuals differ largely in glycemic response to the same food 
[100,101]. This was also seen in the Zeevi et al.‘s article itself, where an 
example is given wherein the postprandial response to a banana and a 
cookie in two subjects is provided. Banana in one subject caused blood 
glucose to increase whilst a cookie did not, and this was exactly opposite 
in the other subject. Prediction quality was assessed using Pearson’s 
correlation of predicted versus actual blood-sugar measurements. The 
model performed with Pearson’s r values of 0.68 and 0.70 on the main 
cohort of 800 and a validation cohort of 100, respectively, showing 
drastic improvements on existing glycaemia prediction methods. The 
features contributing most to this were identified, and also here inter-
individual variation was seen. Following on from this, Mendes-Soares 
et al. [49] and Mendes-Soares et al. [49]; as companion reports but 
with different focuses, validated the tool developed by Zeevi et al. by 
using the same model and a similar methodology of data collection in an 
American cohort and a subset of the Israeli cohort of Zeevi et al. [14,49]. 
This was again successful (r = 0.62 when model was trained on both 
Israeli and American cohorts, and r = 0.60 when trained on only the 
Israeli but used on the American cohort). Another similarly aligned 
article was that of Korem et al. [47]; which, like that of Zeevi et al. came 
from the Segal lab in Israel [47]. Blood-glucose was predicted in 
response to two different breads in a cross-over design, and this could be 
predicted based on microbiome data alone, without other variables. 

A final article centered around blood-sugar prediction was that of 
Colmenar et al. [28]; which was attempted by using insulin doses, CGM 
data and estimated carbohydrate content of meal in three diabetic 
women [28]. Four models were assessed (i.e., non-linear regression, 
symbolic regression, k—nearest neighbor (kNN), and grammatical 
evolution), of which grammatical evolution performed best. Good re-
sults were obtained, however incorporating other information about 
meal content would have improved the results since carbohydrate 
counting alone is a poor predictor of postprandial glycemia [5]. 
Furthermore, the effect physical activity has on blood sugar should also 
be considered to improve long-term model accuracy [102]. Finally, the 
small sample size must be taken into account. On a larger scale, less 
variation would be captured by the limited variables used in the present 
study due to the interindividual variability in response to foods and 
macronutrients, as seen in Zeevi et al. [5] and Berry et al. [4]. However, 
Zeevi et al. and Berry et al. also showed repeatability of glycemic 
response to the same foods within the same individual. This means that 
although having other features such as those seen in the articles above 
provides higher explanatory power, it should also be possible to relate 
foods consumed to effect on glycemia to a reasonable degree of accuracy 
from simply food data (meal content and meal timing features), activity 
and blood glucose readings. To achieve this, Colmenar would have to log 
food data on the food level (rather than only carbohydrates) and relate 
foods consumed to effect on blood sugar via CGM data through their 
model. This would reduce the cost and complexity associated with in 
depth biological profiling used in other studies, like Zeevi et al. and 
Berry et al. 

Prediction of postprandial metabolic responses. Berry et al. [4] 
aimed to predict postprandial values not only glucose but also tri-
glycerides and peptide-C in 1002 healthy adults in the United Kingdom 
using random forest (RF) [4]. They collected similar features to that of 
Zeevi et al. [5] and the model performance was slightly higher for 
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glucose (r = 0.77) and modest for triglycerides (r = 0.47), with similar 
performance also in a US validation cohort. They also attempted to 
predict postprandial C-peptide but were unsuccessful in doing so (r =
0.30). Lower results for triglycerides and C-peptide could be due to the 
lower number of test meals used for model training of these outputs. 
Other interesting findings here included that the genetic contribution to 
postprandial blood triglycerides was virtually null (0%), whereas for 
glucose this was much higher (48%). However, modifiable features such 
as meal composition and meal context (including meal timing, exercise, 
sleep and circadian rhythm, and microbiome) were strong contributors. 
Although CGM monitors used here and in other studies are not 
commercially available currently, this will likely change in the future, 
facilitating such real-time monitoring of blood glucose. Along with Zeevi 
et al. the study of Berry et al. can be considered a study at the pinnacle of 
PN research. 

Classification of glucose response. Hall et al. [46] did not predict 
glycaemia but instead used CGM data to identify what they term “glu-
cotypes”, referring to time spent in a given glycemic pattern [46]. Using 
spectral clustering, three patterns were identified in increasing severity 
of dysregulation. Interestingly, some individuals that showed as having 
severe dysregulation would not be classified as diabetic or prediabetic 
based on other diabetes diagnosis tests. Thus, treatment can begin 
sooner and lessen complications. The tool could be used on a stratified 
or, potentially, individualized level for personalized glycemic control. 

Microbiome-based prediction of insulin resistance. Wu et al. [51] 
was a cross-sectional study that investigated the link between the 
microbiome and glucose tolerance [51]. Microbiome composition was 
shown to be predictive of T2D or combined glucose intolerance (AUC =
0.70 in the discovery and 0.64 in the validation cohorts) using RF. This 
has bidirectional implications; microbiome composition can be used to 
guide glycemic control approaches, and the microbiome itself, as a 
modifiable entity via the diet, can also be targeted through a PN 
approach. 

Dietary recommendation. Sowah et al. [50] describe a software 
system to support diabetics in Ghana to make better dietary decisions 
[50]. Users can upload an image of the proposed food for consumption 
and, if it is deemed unsuitable, an alternative is recommended using 
kNN. Conceptually, systems such as this can provide guidance for those 
unsure how their diet can impact their health conditions, especially in 
lower-income countries with lower rates of education. However, this 
form of personalization is not as strong as others seen in this section. 
Caloric intake requirements were calculated using the Harris-Benedict’s 
equation, an equation that uses weight and height. This is a step forward 
from population-level estimates, but also not close to true personaliza-
tion. However, the fact that users have the ability to upload foods of 
their own diet (utilizing an ANN) and have recommendations for 
healthier alternatives also means suggestions can be tailored to the 
eating habits of the individual user. Previous meal preferences are also 
taken into account. In this way, healthier recommendations match more 
closely the desires of the user, meaning adherence to the personalized 
meal will likely to be higher. The system also tracks glycaemia and 
physical activity in the form of distance walked (but not calories 
burned). Indeed, as the authors discuss themselves, future work on this 
system would do well to incorporate glycaemia with other modules of 
the system and incorporate more sophisticated forms of activity 
tracking. In this way, the system could become much more personalized 
to the users without the additional expenses of the biological measure-
ments seen in the studies at the start of this section. 

Genetic-based prediction of diabetes. Finally, in the domain of 
Metabolic Heath, López et al. [48] graded the contribution of short 
nucleotide polymorphisms (SNPs) in diabetes prediction in a genetic 
approach to type 2 diabetes (T2D) risk prediction through RF, support 
vector machines (SVM) and logistic regression [48]. Such knowledge of 
risk can allow earlier implementation of nutritional strategies for better 
glycemic control. RF performed best, but the models were comparable. 
The SNPs’ relevance could be shown with an AUC of 0.89. Such 

identification of SNPs is useful for furthering understanding of diabetes 
etiology but use of information from SNPs alone will have little impact 
on PN approaches in metabolic health due the multifactorial nature of 
diseases relating to metabolic health. 

In summary, the articles contained within the domain of Metabolic 
Health give personalized advice in the form how a food will affect gly-
caemia before the individual decides to eat it, information relating the 
microbiome to glycemia, or encourage glycemic control awareness from 
an earlier time point – potentially at birth – in order to appropriately 
manage in the genetically vulnerable. 

4.10.3. Bodyweight 
Statistics on obesity and overweight in the world at the current time 

are alarming. The World Health Organization found 39% of adults in the 
world to be overweight and 13% obese [1]. These statistics vary by 
country, but in America obesity rates have been estimated as 42% [103]. 
PN will have a role to play in weight management in the coming years. 
Seven articles in Table 3 tackled the problem of bodyweight 
management. 

Identifying bodyweight. Ramyaa et al. [26] first predicted body-
weight numerically and categorically (i.e. BMI) with various ML algo-
rithms in women using dietary, PA and personal variables [26]. This was 
not particularly successful, and so was followed up first performing 
clustering to identify phenotypes within the data and then using kNN to 
predict bodyweight. This improved results significantly in terms of 
bodyweight prediction. The authors consider bodyweight prediction 
from dietary and PA variables a first step in predicting bodyweight 
change in nutrition approaches, which could be relevant for PN ap-
proaches in the domain of Bodyweight. Furthermore, dietary and PA 
variables could be associated with the clusters. It is suggested that in-
dividuals in each cluster are particularly vulnerable to the variable that 
their cluster associates with. For example, cluster 4 associates with the 
macronutrient fat. Hence, this group may benefit disproportionally from 
dietary management of fat compared to other groups, for which carbo-
hydrates, protein, or other dietary components may be more relevant. 
Although this remains speculative without further investigation, it is an 
intriguing concept for which PN would have prime application. There is 
also some support of this suggestion elsewhere the literature [3]. 

Macronutrient-based prediction of overeating. Zellerbach & Ruiz 
[27] used publicly available diet logs for prediction of overeating from 
macronutrients via RF and decision tree, with RF showing superior 
performance [27]. This is an interesting concept because it would allow 
identification of how one’s own eating pattern influences overeating 
instances, allowing pre-emptive planning of one’s diet to reduce such 
instances. However, it could be the case that an individual’s macronu-
trient composition is a result of – rather than the cause of – overeating. 
The authors do not state if this is accounted for in their work. There are 
also other key contributors to satiety (which may reduce overeating 
instances) such as food volume (water content), fiber [104], PA [105], 
salt [106], micronutrients [107], and also overeating itself such as stress 
[108], sleep [109] and alcohol consumption [110,111]. A model 
incorporating this information instead of just macronutrient content 
would be expected to perform much better. Indeed, personalized models 
showed an average AUC of only 0.531 and a precision of 0.297. 

Prediction of weight loss. Babajide et al. [52] wanted to predict 
bodyweight at the end of a 10-week diet using personal, dietary and 
biochemical features [52]. Being able to predict bodyweight change in 
response to a dietary intervention allows proactive dietary adjustments 
to be made to facilitate adequate weight loss. Furthermore, it lays the 
groundwork for future work in development of diets more effective on a 
personal level with less time spent for trial and error. Linear regression, 
SVM, RF and ANN were the ML algorithms investigated. RF performed 
best, with the lowest error and highest r squared (0.96). 

Dietary recommendation. J. Kim et al. [25] attempted to use food 
logging records to figure out person’s demographic information (J [25]. 
The ultimate goal of this was that if demographic information can be 
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deduced from food logging data, healthier food options can be recom-
mended on a stratified level based on the estimated characteristics of the 
individual. RF was the best of the models investigated (models were not 
stated) and predicted gender, age group and race correctly 61%, 43% 
and 44% of the time, respectively. Although performance was not great, 
tools like this that personalize suggestions based on demographic data 
may mean healthier suggestions are more likely to be accepted by the 
individual since they can be afforded or are more relatable. 

Genetic-based obesity prediction. The remaining articles in Body-
weight looked at genetic contribution to overweight/obesity develop-
ment. Montañez et al. [55] did this via SVM [55], Montañez et al. [54] 
used a DL approach with MLP deep neural network [54], and [56] used 
decision trees [56]. Awareness of genetic susceptibility can encourage 
nutritional strategies for weight management before overweight is 
present. Again, however, the multifactorial nature of obesity means 
genetic approaches as a stand-alone approach will be ineffective in 
treating obesity entirely. 

All in all, the papers in the domain of Bodyweight provide as their PN 
output advice on which food choices might be more suitable for weight 
management; information that can be helpful for dieters to adjust their 
diet accordingly; and genetic vulnerability to reduce the risks associated 
with overweight and obesity across one’s lifespan. 

4.10.4. Nutritional Management of Chronic Disease 
Dietary Recommendation. Nutritional Management of Chronic Dis-

ease is a group composed of two articles that recommended healthier 
food options to users of the systems according to their chronic disease 
status. J. C. Kim & Chung [53] developed a system that recommends 
healthy foods based on the user’s physical and mental health through 
dietary nutrition, food preference, and healthcare personal data in an 
ANN (J. C [53]. In the proposed system, data regarding the user’s body 
and mental status is collected through online services and smart devices. 
A hybrid approach is used to overcome the shortcomings of each indi-
vidual recommender system used. For example, collaborative filtering is 
used to predict preference based on correlation with the preference of 
other users but leads to what is known as the cold-start problem, 
wherein an insufficient amount of data is present to generate any out-
comes; however, the use of a neural network is able to overcome this. 
Testing was performed on 100 participants. The model performed suit-
ably against other conventional methods, though also came with the 
benefit of solving the cold-start problem. In terms of user satisfaction, it 
scored 3.92/5. 

Baek et al. [57] aim to provide nutritional support to individuals 
with chronic disease in the form of recommendation of suitable dietary 
alternatives [57]. They outline how different chronic diseases come with 
different nutritional requirements and that this should be taken into 
account when aiming to improve dietary habits. Korean National Health 
and Nutrition Survey data is used, from which chronic disease data, 
personal features and biochemical and physiological features become 
features for clustering to identify groups from the data through hybrid 
clustering. Food products are recommended to each cluster in a strati-
fied approach, although an individual’s food preference is also consid-
ered when making recommendations. Foods recommended to the user 
groups are also clustered via k-means in order to recommend similar 
products. This clustering is done on the basis of calories, macronutrients, 
sodium, cholesterol, saturated fat and trans-fat. The service ontology has 
the relations between the health data and the food data. Collaborative 
filtering is also used to predict universal preference (preference of so-
ciety in general for the food). Thus, the current system is a hybrid model 
that combines these factors to ultimately provided a food recommen-
dation on a stratified level with regards to chronic disease status and on 
a personal level in terms of food preference. Upon evaluation, the hybrid 
model performs best by allowing both health information and prefer-
ence data to be integrated. The concept of using applications like this is 
attractive because individuals may be unsure how their dietary choices 
affect their chronic conditions and having constant access to 

recommendations on food choices is a convenient and efficient way to 
help this. Furthermore, digital platforms for nutritional advice delivery 
pose some other advantages such as scalability, more effective behavior 
change and, in the future, reduced costs [13]. The model could be 
improved by also incorporating other components of food that affect 
health, such as fiber, micronutrients, vitamins, etc. Although this would 
complicate the model, such components can have profound impacts on 
health and failing to capture this may mean their intake is neglected in 
users of the service, leading to other health issues. 

Nutritional Management of Chronic Disease presents two recom-
mendation systems that aim to provide nutritional support for those 
with chronic diseases. The development of AI is allowing specialized and 
personalized information to be delivered to individuals or disease 
groups at all times and represents a promising avenue for chronic dis-
ease management. 

4.10.5. Cancer 
Prediction of colorectal cancer. Generally speaking, cancer would 

be considered in the domain of health and not nutrition. However, 
certain cancer types have a link to nutrition and of these the link be-
tween nutrition and colorectal cancer (CRC) is particularly strong [112]. 
Knowing this, Shiao et al. [15] set out to investigate how diet, genes, the 
interaction between the two, and other factors could be used to predict 
CRC in 53 multi-ethnic CRC patients and 53 paired family members 
[15]. The genes were specific to folate metabolism due to a pre-existing 
link between this and CRC occurrence. After collecting demographic 
data, information on dietary intake, anthropometric data, and total 
number of gene polymorphism mutation in the five genes assessed, the 
most influential predictors were selected. These were, in descending 
order of importance, age (under or over 56), gender, total poly-
morphisms, a total vegetable intake of 10 ounces, folate intake of 100% 
the recommended daily intake (RDI), a healthy eating index score (HEI) 
of 77, overweight BMI, 150% RDI of vitamin B12, 100% of thiamine 
intake, and MTHFR mutations at position 677 (MTHFR 677). Interaction 
profiles were also assessed, where it was found that HEI and thiamine 
intake, BMI status and gender, and BMI status and MTHFR 677 poly-
morphism. Generalized regression models were generated on these 
interaction factors; four individual parameters associated with these 
interactions (BMI overweight, thiamine, gender, overweight) and four 
other individual parameters (age, total polymorphisms, vegetable 
intake, MTHFR 677 SNP). The best performance saw an area under the 
curve (AUC) of 0.86 and a misclassification rate of 0.21 using general-
ized regression with Elastic Net LOO cross-validation as an evaluation 
approach. 

HEI score, folate intake, vegetable intake, thiamine intake and 
vitamin B12 intake are observed as modifiable risk factors for CRC. 
Although the identification of these itself is not in the realm of PN, it can 
give those with a family history of CRC specific dietary intake targets 
beyond generic advice to “eat healthy”. Since total gene polymorphisms 
in the genes of the pathway investigated here already enhances CRC risk, 
eating in a way to reduce the risk of these other, modifiable risk factors 
can minimize this risk further. This is similar for BMI and MTHFR 677. 
Whilst BMI should be appropriately managed for many health reasons, 
advice can be provided specifically to those harboring the MTHFR 677 
because there is an interaction between the two risk factors, as seen 
here. These results are interesting because it shows that PN can have 
applications beyond classic domains of nutrition and has the potential to 
show promise elsewhere, in this case cancer. The genes analyzed were 
chosen based on the results of existing research, but it could also be that 
this selection is expanded in the future as more correlations between 
genetic variants and dietary intake are found, providing further 
specialized advice. 

In summary, the only paper identified with a PN theme in the domain 
of Cancer showed that total genetic polymorphisms of the folate meta-
bolism pathway and modifiable dietary factors are predictors of CRC. 
Individuals known to harbor such SNPs in these genes can look to adjust 
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their diet based on the dietary factors identified by Shiao et al. [15] in 
order to prevent additional CRC development risk. 

4.10.6. Orofacial cleft 
Genetic-based orofacial cleft prediction. Many syndromes lead to 

the development of orofacial cleft, but the most dominant is non- 
syndromic cleft lip with or without cleft palate (NSCL/P), representing 
70% of cases worldwide. NSCL/P development is multifactorial, having 
both genetic and environmental components. Within the environmental 
component, nutrition is to know to play a role. Namely, folic acid and 
vitamin A are reported to be known to be preventive in when consumed 
in adequate amounts during pregnancy. However, excessive vitamin A 
consumption can also increase NSCL/P risk, meaning appropriate 
amounts must be provided. Zhang et al. [58] aimed to validate how 
effective 43 candidate SNPs were in predicting NSCL/P development in 
Chinese populations [58]. Multiple ML models were used to assess the 
risk of these 43 SNPs in causing NSCL/P in Han and Uyghur populations, 
of which logistic regression performed best. Ultimately, four genetic 
variants of three genes involved in folic acid and vitamin A were shown 
to have important roles in NSCL/P development. The knowledge of these 
genetic defects can lead to personalized nutritional amendment in 
pregnant women to reduce NSCL/P occurrence. Although this particular 
case uses only one element of PN (the genetic element) to produce a 
nutritional recommendation, this may be sufficient to prevent cleft 
development of the unborn child. Whilst it is true that sufficient folic 
acid and vitamin A intake is advised in all women during pregnancy for 
various health reasons [113], the knowledge provided by such SNPs 
allows an emphasis to be placed on these components in those at risk. 
This example is different from the other articles discussed above since 
the relevance of the advice is limited to the time during pregnancy only. 

4.10.7. Articles indirectly related to precision nutrition 
The articles in this section represent the remaining articles found 

with the search terms in the databases used and are all listed in Table 4. 
Their relevance to the topic of PN is more peripheral than the articles in 
the previous section. All but one of the articles fall within two domains: 
Dietary Intake Monitoring or Activity Tracking. Their connection with 
PN is that of tracking energy intake or activity (such as classifying ac-
tivity types or predict energy expenditure), which are important for data 
collection for the dietary intake and activity parameters elements of PN, 
respectively. Both of these elements are used in many instances of 
nutrition personalization, and so utilizing ML to help with these pro-
cesses will improve accuracy in PN applications. The only other paper 
belonged to the domain of Bodyweight and showed how microbiome 
affects weight regain following a diet in mice. The potential to modulate 
the diet microbiome through specific dietary changes makes the 
microbiome an interesting target for PN approaches. However, since this 
was not done in the study, it is considered to PN only indirectly. 

4.10.8. Dietary Intake Monitoring 
Dietary intake is an element of PN in many studies. Especially in 

areas of nutrition such as metabolic health and overweight and obesity, 
the relationship between intake and health outcomes is intimate. To 
varying degrees of specificity, dietary intake assessment is required in 
these domains and others. Currently, despite known pitfalls of methods 
such as dietary recall (24 h or some other time frame, such as 3 days or 
one week) and food frequency questionnaires [114,115], their use is 
widespread. More recently, smartphones and applications for food 
tracking food allow convenient and real-time food logging, reducing 
recall errors. However, manual entry can also be laborious. Hence, ML 
techniques in this domain look at ways to make this easier or, alterna-
tively, provide methods of tracking for population groups that may be 
unable to such as the sick or elderly. Due to the large number of articles 
in this domain covering the same PN-related problem (Food Tracking 
and Quantification of Energy Intake), articles are divided by their 
approach to solving this problem into imaging or detection of chews and 

swallows. 
Food tracking and quantification of energy intake - imaging. 

Seventeen of the 23 papers in this section attempted food logging via 
imaging. Pouladzadeh et al. of Ottawa University makes up three of 
these and rely on user smart phones for photos for calorie tracking. 
Pouladzadeh et al. [116] put forth a cloud-based method for food clas-
sification utilizing SVM [64]. Color, shape, texture, and size were used in 
the model to distinguish between foods with high accuracy on single 
foods and much lower accuracy on mixed foods. The method is part of a 
proposed system that also uses before eating and after eating pictures of 
the food to estimate volume and therefore calories. Pouladzadeh et al. 
[70] attempt calorie estimation, but instead of before and after pictures 
propose two other methods of volume estimation: using the thumb of the 
user for image scaling and using distance estimation to gauge volume 
and measure calories [70]. Both perform comparably and overall stan-
dard error of calorie estimation is low. For image recognition prior to 
calorie estimation, a convolutional neural network (CNN) is used, which 
performs excellently on single foods. Finally, Pouladzadeh & Shirmo-
hammadi [76] aims to recognize multiple items within the same meal 
[76]. Bounding circles are drawn by the user on the image to reduce 
noise. Accuracy is further increased by using region mining to identify 
key features in images that allow discrimination between other foods. 
Using a dataset developed by themselves in 2015 [64], a high average 
accuracy is obtained (94.11%). 

Such a bounding box approach was also included by Liu et al. [68] 
and increased classification accuracy [68]. Cropping and adding 
boundaries to images in this way is attractive owed to its ease on 
smartphones due to touch screen technology. Their system also makes 
use of smartphone images for food recognition with a CNN with an 
Inception module. The Inception module allows convolutional layers to 
be added at these modules, increasing the depth of the network [73]. 
also use variations of CNN and found Inception-v3 and Inception-v4 
perform best on the authors own datasets, as well the Food-101 data-
set [73]. Whilst overall accuracy is high, high variability is seen between 
food types. 

Comparisons between CNNs are seen elsewhere. For example, Mer-
chant & Pande [75] aim to develop a system for diabetics and the obese 
[67]. For this, they present a table comparing different models for food 
classification on the Food-101 dataset. The shallow ML algorithm RF 
performs poorly (32.72%), whereas most CNNs such as GoogLeNet, 
Inception-v3 and AlexNet perform well. This is unsurprising since CNNs 
perform particularly well on image recognition tasks compared to 
shallow ML approaches. Yigit & Ozyildirim [66] compare pre-trained 
structures AlexNet and CaffeNet to CNNs trained from scratch for the 
purpose of food recognition in Food-101 and Food11 datasets. Perfor-
mance was comparable across the various models [66]. McAllister et al. 
[65] used two pretrained CNNs (GoogLeNet and ResNet-152) to extract 
features from Food 5 K, Food-11, RawFooT-DB and Food-101 datasets 
[65]. The ML algorithms ANN, SVM, RF and Naive Bayes were trained 
using the deep features. The advantage of doing this is that the volume of 
data and computational power required is lowered. Results varied be-
tween the datasets, but high accuracy could be achieved in all datasets 
by at least one of the algorithms. 

Mezgec & Seljak [78] developed a food and drink recognition system 
called NutriNet that used a CNN architecture and compared this to other 
CNNs and various solver types [78]. Solver types determine the method 
that minimizes loss in the model, meaning the model performs better. 
Using a self-built image dataset from Google images, high classification 
(86.72%) and detection accuracy (94.47%) is attained with NutriNet. 
Results vary across the tested conditions. Since the model is being 
developed as part of app for Parkinson’s patients, it was also tested on 
self-acquired images combined with smartphone shots from Parkinson’s 
patients, with an accuracy of 55%. Mezgec et al. [75] analyzed food 
recognition under the fake food buffet (FFB) conditions [75]. Although 
this was based on fake food and thus did not use real food, it is 
conceptually the same as other studies in terms of food recognition and 

D. Kirk et al.                                                                                                                                                                                                                                     



Computers in Biology and Medicine 133 (2021) 104365

20

does not need to be excluded on this basis. Accuracy was high (92.18%), 
however real food may not always appear as clearly and demarcated as 
in the FFB. For the purposes of the research intended it for, however, the 
fully convolutional network performs well. 

Christodoulidis et al. [72] used a CNN to develop a food classifier 
based on images of mixed food but with demarcation between each food 
on a plate (i.e. foods are not mashed together or piled upon one another) 
[72]. Their approach was an ensemble method, where overlapping 
patches on the image are voted on for categorization by the CNN. The 
food is assigned the class with the most votes and this is repeated across 
all the foods in the image. Various model parameters were experimented 
with, although all were comparable (accuracy range: 83.5–84.9%). 
Shermila & Milton [69] made a database of images of protein powder 
food products taken with various weights and angles and used this to 
predict protein content [69]. This was attempted via linear regression 
using SVM, and CNN. They also investigated the most important features 
for prediction. Efficacy was measured by average protein prediction 
error, where CNN performed best (average error of 1.96 g protein). 

In order to estimate volume for calorie calculation when using im-
aging for dietary intake, the users’ thumb or distance estimation can be 
used [64]. Lo et al. [60] propose an alternative that uses a depth sensor 
to capture the image [60]. This image can be converted to a partial point 
cloud where image coordinates are converted to camera coordinates. It 
can then be fed to a point completion network, ultimately allowing 
volume estimation. In this way, even foods that are occluded (e.g. such 
as by other foods, which naturally occurs on a plate of food) can have 
their volumes estimated. For experimentation, the Yale-CMU-Berkeley 
object dataset is used and a maximum accuracy of 95.41%, out-
performing current approaches. The concept of using depth-sensing 
technologies for dietary intake logging is rapidly becoming more 
feasible as new smartphones are increasingly already equipped with 3D 
cameras. 

Fang et al. [61] take a different approach to calorie estimation by 
using their self-named concept of food energy distribution [61]. 
Generative Adversarial Network is used to train a generative model 
based on eating occasion images. From this, an image can be generated 
where it can be seen which foods contain more energy and which less. 
For example, a pear would be present with less radiance on the image 
than a slice of pizza. From the learned energy distribution images, 
regression via CNN is used to predict calorie content. This was tested 
with study participants and an average error of 209 kcal was obtained, 
although at times there was huge underestimation. 

Jia et al. [63] suggest that having to manually use a smartphone for 
every eating occasion is not ideal for food logging since it may be 
laborious and also may alter eating behavior [63]. Taking photos can 
also be inconvenient in certain situations. Instead, they experiment 
using a wearable camera named the eButton to detect eating occasions 
continuously across the day. Detection of food and drinking via the 
Clarifai CNN - a CNN with a good reputation in the computer vision 
community - is investigated in the Food-5K dataset and two sets of im-
ages acquired from participants wearing the device, where sensitivity 
and specificity is high across the datasets. Although this approach poses 
some advantages, there is also clear privacy concerns due to constant 
filming. Furthermore, food consumed outside of times wearing the 
camera (e.g. breakfast, late night snacks) can be missed. 

Priyaa et al. [79] combined food images taken via a USB camera and 
a load sensor in order to obtain calorie estimation as part of a phone 
application [79]. Although accuracy is high on the tested foods, the 
additional equipment required make it more burdensome than some of 
the other techniques discussed, such as depth-sensing via imaging alone. 
Finally, Farinella et al. [81] used CNN only as a comparison to other 
methods and not as a means to an end in itself [81]. It performed poorly 
in comparison to the other methods used and also in comparison to other 
papers discussed here, although the authors point out that the training 
data in this study was not as large as is required for sufficient CNN 
performance. This shows the importance of having sufficient volumes of 

data for CNN training. 
Food tracking and quantification of energy intake - detection of 

chews and swallows. Six papers aimed to deal with tracking food intake 
through three approaches to detection of chews and/or swallows. These 
approaches may be suitable for dietary intake monitoring in populations 
with less independence, such as the disabled or the elderly. Moreover, 
since they currently cannot distinguish foods to the degree of precision 
that vision-based approaches can, they be more useful in situations 
where food of consumption is known but volume must be quantified. It 
could be that this is done through communication with a smartphone via 
an application, reducing the burden of weighing. 

Kalantarian et al. [77]; Alshurafa et al. [80]; and Hussain et al. [71] 
used a piezoelectric-based necklace to detect chewing and swallows. 
Kalantarian et al. [62] use a Bayesian classifier to classify motions into 
swallowing of food, liquid, or nothing (i.e. saliva) [77]. Since motions 
like walking and running can also cause interference, the necklace 
comes with an accelerometer to reduce misclassification rate (though 
they do not use accelerometer data in this work). It is part of a system 
that communicates with a phone application for dietary assistance. In a 
30-subject experiment, solid and liquid foods were suitably distin-
guished (F-measure 0.837 and 0.864, respectively). Across two experi-
ments, Alshurafa et al. [80] classified between liquid and solid and hot 
and cold, and also attempted classification of a small number of foods 
[80]. kNN, Bayesian network and RF were investigated as classifiers. It 
was found that RF consistently performed the best and high F-measures 
were found across the various experiments. Liquids, solids, and food 
types could be distinguished with reasonable accuracy. Hussain et al. 
[71] employed a similar approach but were more adventurous in their 
testing by investigating 17 different food groups [71]. They also tested 
how walking whilst eating affected results. Impressive results were seen 
across the food groups, with detection of intake averaged at 89.8% and 
food classification its highest at 80.3%, with RF as a classifier. 

Audio-based detection of eating behavior is another option for 
tracking food intake. Kalantarian & Sarrafzadeh [62] used a smartwatch 
to investigate this possibility [62]. This can have the advantage of higher 
user acceptability over, for example, the necklace-based options 
described above. Ten subjects were used for investigation of swallow 
detection whilst wearing the watch and eating apple, potato chips or 
drinking water. Furthermore, background noise (a shopping mall 
recording) was added to the audio-clips to make for a more realistic 
scenario for the model during classification. RF classified these foods, 
drink, and activity (e.g. talking), reasonably well, although apple was 
often misclassified as chips. One flaw with such a watch-based method is 
that energy consumed with the non-watch hand might not be accounted 
for. This is particularly a problem since wrists are often worn on 
non-dominant hands, whereas eating occurs frequently with dominant 
hands (particularly snacking and foods consumed with a spoon or 
chopsticks). Kalantarian et al. [59] subsequently compared a piezo-
electric with an audio-based throat microphone method [59]. Across 
two experiments investigating a total five different food types and water 
via RF classifier, audio-based showed clear superiority. 

Finally in Dietary Intake Monitoring was Mertes et al. [74]; whose 
approach for detecting bites utilized a weight sensor integrated into a 
plate [74]. The change in weight and weight distribution on the plate 
allows both total volume of food consumption and the amount of each 
food (providing that the starting distribution of the foods on the plate is 
known) to be calculated. Their experiment was ran in the elderly, where 
this approach for food logging may have more utility than methods such 
as imaging that require more capability of using technology. In an 
experiment with 24 aging adults, a precision of 0.78 and 0.76 of bite 
detection using a RF classifier was achieved. However, clearly this 
method as a stand-alone has no way to discriminate between food types, 
naturally limiting application. 

All in all, dietary intake monitoring contributes to PN by facilitating 
more accurate or convenient assessment of food intake through imaging 
or by the detection of chews and swallows. It is likely that applications of 
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these will differ between population groups requiring food logging for 
PN, and indeed some of the methods discussed above may cease to be 
used in the future. 

4.10.9. Activity Tracking 
PN approaches – especially those relating to bodyweight and meta-

bolic health – use measures of PA in their models. Such measures can 
include tracking of sedentary versus active time, intensity of activities, 
and estimating EE. However, measures of these are not always accurate. 
In some situations, this information is obtained via only questionnaire. 
The recent surge in wearable technology is facilitating more accurate 
and convenient ways to measure PA, and ML is playing an important role 
in this. The collection of papers in this section is focused on using data 
obtained from wearable devices to classify activity or estimate energy 
expenditure. Having such information to incorporate into PN models 
will improve the accuracy of nutritional recommendations. As with the 
previous domain, a large number of papers are dealing with the same 
problem (Activity Tracking + Energy Expenditure) in Activity Tracking, 
so these papers are split by their approach to solving this. 

Activity tracking + energy expenditure - accelerometer data. 
Twelve of the 15 articles in Activity Tracking used solely accelerometer 
data. Ahmadi et al. [88] used 31 children in free play in a free-living (i.e. 
outside of the lab) environment to classify activity as sedentary, light, 
moderate, walking or running [88]. Accelerometers were worn on both 
the hip and the non-dominant wrist and RF and SVM were used for data 
processing. Accuracy was modest and highly similar in both models 
(66.4% for hip, 59.1% for wrist in RF). Values were lower than in lab-
oratory cross-validation, and accuracy was especially low for walking 
(9–15%), although this may be attributed to different movement pat-
terns in preschoolers. Some limitations were addressed by the authors, 
including the 15 s prediction window being too long to capture the 
sporadic movements of children, and failure to acknowledge temporal 
features (such as variability in the preceding and succeeding windows of 
data). To address some of the shortcomings of Ahmadi et al. [88]; 
Ahmadi et al. [92] employed the same data analysis across various 
window sizes and including temporal features [92]. However, only RF 
was used, and it was trained only on free-living data. The results were 
much improved, especially for walking. Finally, Ahmadi et al. [90] used 
a similar design but for EE estimation, with a lab and free-living com-
parison, wrist and hip accelerometers, and 20-min free play, again in 
children. RF, SVM and ANN were used for EE estimation [90]. Estimates 
varied between models and situations. Unlike other studies and that 
earlier seen by Ahmadi et al. [88]; free-living versus laboratory results 
were comparable. 

A decrease in classification accuracy when going from a laboratory- 
based to a free-living experiment is commonly seen in the articles of this 
section. Bastian et al. [83] investigated how laboratory and free-living 
values differed [83]. This was done by applying a previously devel-
oped laboratory-trained algorithm (Bayesian classifier) on 
semi-free-living data involving twenty participants performing various 
movement activities. On this occasion, in line with expectations at the 
time, significant differences were observed between the laboratory and 
free-living values. Recalibrating with free-living data also improved 
accuracy. Thus, caution must be taken when interpreting 
laboratory-obtained results from accelerometer studies. 

[85] trained ML algorithms on free-living and laboratory-controlled 
datasets using hip and thigh accelerometers [85]. SVM, RF, conditional 
random fields and hidden Markov model were used as algorithms. The 
focus was on sitting versus standing since they are particularly difficult 
to classify. F1-scores were variable under different conditions, with RF 
performing best under free-living conditions. 

Pavey et al. [87] and Chowdhury et al. [86] looked at wrist data. 
Wrist-worn devices have a higher compliance, making them desirable 
over accelerometers placed elsewhere. Pavey et al. [87] compared how a 
wrist-worn accelerometer in laboratory and free-living conditions with a 
RF classifier could predict activity [87]. In order to have a reference for 

difficult activity classification such as stationary versus non-stationary, a 
thigh-worn accelerometer capable of detecting posture and steps was 
used. Compared to the laboratory values, the classifier had a lower ac-
curacy during the free-living situation, particularly between stepping 
and non-stepping. The approach of Chowdhury et al. [86] revolved more 
around the ML algorithm choice rather than the accelerometer [86]. 
Three unrelated wrist accelerometer datasets with different activity 
categories were used to assess the performance of Bayesian, kNN, SVM, 
ANN and ensemble classifiers. The ensemble consisted of RF, boosted 
DTs, bagged DTs, and a custom ensemble composed of the fusions of the 
four individual classifiers. Ensembles consistently outperformed indi-
vidual classifiers, with RF performing best of the classic ensembles but 
the custom ensemble having the best overall performance. It is thus not 
surprising that RF, being an ensemble itself, is often the algorithm of 
choice for accelerometer data analysis. 

On a set of 110 free-living adults, Kingsley et al. [96] investigated 
how nine wrist-specific accelerometer models (three linear and six ANN) 
compared to an established hip model for PA activity estimation [96]. 
Differences were observed between the models in terms of their agree-
ment with the results of the hip-worn accelerometer, particularly at the 
level of sedentary, light and moderate PA where models performed 
poorly to differentiate. This has clear implications for PN as it shows 
how algorithm and device choice can impact PA logging results and, 
subsequently, input variables for PN models. Ultimately, a linear model 
was shown to be closest to the reference values. Similarly, Trost et al. 
[91] compared wrist and hip data in children and adolescents across 12 
activities [91]. Both exhibited acceptably high accuracies, even between 
light or stationary PA types such as walking, standing, and sitting. 
However, it should be noted that this experiment was conducted in a 
laboratory setting. 

Jones et al. [94] took an approach unique to rest of the literature 
discussed in this section in that they used unsupervised clustering to 
categorize activities from wrist-worn data [94]. Unsupervised ap-
proaches infer patterns without the requirement of labels, which is ad-
vantageous since labelling is time expensive. Two labelled laboratory 
datasets trained a k-means model, which was then applied to three in-
dependent datasets, one of which was free-living. Evaluation occurred 
via measuring the extent a cluster contained one dominant class (cluster 
purity); the proportion of a class found in one cluster compared to in 
other clusters (average cluster purity); and the combined purity. Strong 
results were seen for most of the activity types across the laboratory 
data. The free-living data was assessed via the proportion of activity type 
in each cluster, with correspondence to thigh-based accelerometer 
activPAL for the ground truth on sedentary, standing and stepping. Time 
spent in each as assessed by k-means was also compared to activPAL 
time spend in each, since this accelerometer also measures time in each 
activity. Based on these assessment methods, some differences were 
seen. An interesting observation, however, is that the choice of wrist was 
not important in this model. Despite these efforts, there is no suggestion 
that an unsupervised approach to PA classification would perform su-
perior to a supervised classification approach. 

Fridolfsson et al. [95] was the only group in the present review to 
attempt PA classification using a shoe-based sensor, which may have 
utility in physically active work environments [95]. The study consisted 
of a laboratory (n = 35) and validation (n = 29, workers were followed 
by an observer in the workplace) part, with subjects performing various 
activities in each. Of the three algorithms used – RF, SVM and kNN – RF 
consistently performed best. Despite this, accuracy was low in the 
free-living (43%) compared to the laboratory (83%). This can be owed in 
large part to the difficulty a shoe-based sensor has in distinguishing 
activity types like sitting and standing. When these activities were 
combined together into “sedentary”, accuracy greatly increased. 
Although this is a clear downfall, the authors suggest health effects 
between these two activity types are similar. Regardless, given the 
increasing popularity of smart devices such as watches, it seems unlikely 
shoe-based accelerometers will play much of a role in PA estimation for 
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PN. 
Activity tracking + energy expenditure - accelerometer and physi-

ological data. Dobbins et al. [84] use both accelerometer and HR data 
for PA detection [84]. The system is part of a proposed app that allows 
smart watch communication so users can visualize their data. Data is 
obtained from two datasets composed of 22 subjects performing nine 
activities. Multiple accelerometers and a heart-rate monitor were used 
to obtain the data. Ten algorithms, most of which were non-traditional 
ML algorithms, were tested for best performance. Feature selection 
and oversampling was also applied, which improved results. Across the 
various scenarios, Bayesian classifier was a strong performer 
throughout. 

O’Driscoll et al. [89] made use of accelerometer, HR, body temper-
ature, galvanic skin response and participant characteristics such as age, 
height, body composition and weight to determine EE [89]. Data was 
collected from various commercial wearables and RF was used for pre-
diction on various activity tasks. The ground truth for EE was assumed 
by metabolic cart (Vyntus CPX), a method that uses oxygen and carbon 
dioxide in the breath of the patient to estimate EE. All of the models with 
various combinations of data showed good correlation (r ≥ 0.85). 
Models with accelerometer data showed the greatest predictive power, 
whereas HR data was less valuable. This is encouraging given the extra 
burden associated with HR straps. Although the activity types assessed 
were not particularly diverse, the study suggests promise for acceler-
ometers in estimating EE for PN. The experiment would have to be 
repeated in a free-living situation for a truer reflection of integrity. 

Finally, Fergus et al. [82] investigated PA in children [82]. Their 
approach consisted of utilizing an ANN with accelerometer data during 
drawing, jogging, free-play and walking. Multiple features and combi-
nations of features were investigated, with accelerometer count of the 
hip and wrist along and direct observation performing best (accuracy 
99.8%). However, direct observation is not a long-term feasible feature 
for PN in research or the real-world, and nor were other features used in 
this study (e.g. existing EE estimates, VO2 data). 

Activity tracking + energy expenditure - physiological data. 
Chowdhury et al. [93] was the only study in this section not to make use 
of accelerometer data, and instead used HR, electrodermal activity and 
skin temperature data for the goal of PA intensity classification [93]. RF, 
SVM and ANN were the algorithms of choice investigated for best per-
formance on 22 participants across five activities in a non-laboratory 
environment. Rate of perceived exertion was asked from the partici-
pants after activity completion as a reference. The algorithms performed 
comparably, with SVM offering a slight edge. The clear conclusion from 
the study is that HR was the best feature for prediction of PA intensity. 
Even when features were combined and modest improvement was seen, 
it was non-significant compared to HR alone, demonstrating that other 
features offered nothing additional to HR data. This is in contrast to the 
findings of O’Driscoll et al. [89]. Some differences that may explain this 
include choice of strap, location of strap, different research environ-
ments, and different levels of precision (i.e. EE versus PA intensity). 
Regardless, Chowdhury et al. [93] is suggestive that wrist-strap obtained 
HR data can be used to classify PA intensity, which could aid with PA 
data for PN models. 

To conclude Activity Tracking for PN, various methods were found in 
the literature that made use of ML for PA classification, PA intensity 
estimation or EE estimation. Having more precise ways of measuring 
such components of PA is important to providing PN models with more 
accurate input. This is especially important in PN approaches looking at 
bodyweight or metabolic health, where activity and EE can be crucial 
components. Incorrectly gauged self-report data in these scenarios 
would taint PN model accuracy and make PN-based recommendation 
less valuable. 

4.10.10. Bodyweight 
Microbiome-based prediction of bodyweight. The final paper is in 

the domain of Bodyweight. Thaiss et al. [97] investigated the role of the 

microbiome in weight gain following a diet [97]. The microbiome has 
gained attention in recent years due to its impact on many aspects of 
health. One of these is known to be bodyweight [117]. Thaiss et al. [97] 
showed that this is the case in mice by identifying a microbiome 
signature that remains following weight loss in mice susceptible to 
weight regain. This signature could almost perfectly (AUC = 0.96) 
predict obesity history, and prediction of the extent of weight regain 
following reintroduction of high-fat diet also showed good accuracy (R 
= 0.72). 

Further research is required to verify if this also remains true in the 
human situation. If this is the case, there are implications for PN. Firstly, 
with the knowledge that individuals have a microbiome signature that 
makes them susceptible to weight regain following a diet, diets can be 
adjusted accordingly. It is noted in the study that obesity-induced 
metabolic derangements are restored upon weight loss much faster 
than changes in the microbiome. Thus, designing diets that aim to cover 
not only the weight-loss period but also time it takes for the microbiome 
to change could be much more successful for long-term weight loss. 
Moreover, the modifiable nature of the microbiome also makes it an 
interesting target of personalized approaches. Although this can occur 
medicinally, the microbiome is also responsive to dietary changes [118]. 
Hence, PN approaches could include specific dietary modulations or 
supplementation to alter such microbiome signatures and facilitate long 
term weight management. However, since such nutritional modulation 
was not investigated in Thaiss et al. [97]; it can only be speculated and 
must remain as an article only peripherally related to the topic of PN. 

In conclusion, knowledge that the microbiome is a modifiable entity 
through diet and that it interacts with parameters of health makes it an 
interesting aspect of PN, as both a feature for model construction and a 
target variable for modulation. Understanding how PN approaches can 
alter the microbiome means personalized dietary decisions can be made 
in response to such microbiome signatures. 

5. Discussion 

5.1. General discussion 

The current review represents the first study to systematically review 
the literature of applications of ML in research areas related to PN. Sixty 
papers were identified across four extensive databases using search 
terms designed to be as comprehensive as possible to obtain research 
relevant to PN. Furthermore, a quality assessment scheme ensured the 
papers were of a given standard. Both the disciplines of ML and PN are 
relatively new, as is highlighted by the fact that none of the papers found 
in the final literature dated to before 2014. It is highly likely that in the 
coming years the numbers of papers utilizing ML in PN will greatly in-
crease, which is why providing a summary of the current state of the 
literature as presented here can be helpful for researchers in developing 
the field of PN. Both PN and ML are complex and have many individual 
considerations. Hence, a reference that provides all of this information 
available in one place makes this process less troublesome. The current 
review considers not only ML application in the final stage of PN (i.e., 
the generation of a nutrition recommendation outcome) but also in the 
data collection stages for various elements of PN. A model is only as 
good as the data it uses for input, and so utilizing ML to enhance the 
accuracy of data collection will consequently lead to improvements in 
PN model accuracy. In any of the papers, whenever the availability 
status of the data was mentioned it was noted, as presented in Section 
4.7. In many cases, this was available for research, if not publicly 
available. Furthermore, it is possible that many of the papers that do not 
mention the status of their data could be available from the author upon 
request. The ability to access data in this way allows researchers to 
develop their own models on the same data, which means better models 
can be generated. All these points highlight the strength of the current 
review. 

From the findings, some observations can be made. Despite a total of 
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60 papers being present in the final literature, only seven domains of 
nutrition and health were present, showing that the use of ML in PN is 
currently being concentrated in a small number of nutrition and health 
areas. In the case of obesity and metabolic health, there is clear moti-
vation to invest more time and resources in solving these crises, given 
their prominence across the world. Personalized approaches look 
promising to reducing the burden of these conditions. However, PN also 
demonstrated application in some other domains such as that of cancer 
and in the prevention of orofacial cleft development. This can be taken 
as a sign to suggest that PN may have a broad application. Indeed, as the 
fields of nutrigenomics, metabolomics, the microbiome, and PN in 
general develop further, situations where PN can be applied will become 
more apparent. Research areas known to have a nutritional link should 
consider combining ML and PN for treatment, prevention, or mainte-
nance of optimal health. 

The table of features from Table 6 shows how many features various 
papers required for their models. It should be noted that papers repre-
senting prominent research in the field of PN usually utilise multiple 
features of groups of features. Whilst this not a requisite for PN models, 
it is certainly in line with the idea that multifactorial diseases such as 
obesity, diabetes, and cancer will probably not be solved with PN ap-
proaches without the use of a lot of data across multiple PN elements. 
This calls for the need for adequate technology and data processing for 
effective PN. No papers were identified that included metabolomics in 
their approach. Metabolomics is concerned with the identification of 
small molecules in a sample. Whilst the human metabolome is still being 
characterised, estimates of size are in the degree of tens of thousands, 
incorporating molecules of many different types [119]. For this reason, 
papers that used measurements of small molecules as features in models 
were only considered from a metabolomics perspective if they explicitly 
stated they took a metabolomics approach or used the sophisticated 
analysis techniques that is seen in metabolomics research [30]. Other-
wise, these features were grouped as “Clinical Biochemical Data”. This 
only occurred on two occasions, and in both studies they authors use 
similar group names for such features [4,5]. One reason no papers were 
found utilizing metabolomics could be that this discipline uses other 
methods of analysis, rather than ML. It can also be that advances in 
metabolomics that make it suitable for application in PN have occurred 
relatively recently [19]. Only recently have attempts been made to 
categorize reference values for components of the human metabolome 
[120], and a recent paper used metabolite profiles to characterise 
interindividual response to diet, showing that metabolomics is more and 
more being incorporated into PN [121]. 

There is a fairly clear separation between ML and DL use in the final 
literature; that is, DL is largely used for imaging for dietary intake 
assessment, and if ML is used here then DL shows superior performance. 
Conversely, shallow learning is preferred in other domains. The reason 
for this is that DL techniques show particularly good performance in 
computer vision. In order to perform so well, however, they require lots 
of data and computational power, making them unsuitable in circum-
stances without these prerequisites. Despite this, if these requirements 
are met, they can be expected to perform better than shallow learning 
techniques, as facilitated by the complexity of their learning architec-
ture. As data increases in abundance and computational power increases 
whilst its price decreases, DL approaches may be employed more so and 
in other domains of PN. 

5.2. Potential threats to validity 

The current article is not without limitations. Firstly, the search 
terms of the review are naturally restrictive; namely, the use of “nutri-
tion” as a search term (the other being “machine learning” or “deep 
learning”) in the searches means articles using machine learning for data 
collection for some elements of PN will not be found. For example, in 
models where sleep quality is of importance, ML could be used to aid 
with sleep categorization [122,123]. Despite this shortcoming, it is hard 

to imagine a situation where an article directly related to PN is not 
returned with the search terms used, with the same being said for many 
of the indirectly related articles. Next, the databases used to search may 
have meant some articles were missing in the final literature. Aside from 
the four databases used in the current study, other databases exist that 
may contain papers that are absent in the ones we used. In order to 
reduce the chances of this, Google Scholar and Wiley Online Library 
were also searched, but after returning no extra results after looking 
through more than two-thirds of the papers returned from the search, 
they were ultimately abandoned as databases. 

In terms of ML, the current review did not pay attention to machine 
learning for pre-processing of the data such as feature selection or 
dimensionality reduction as a separate process to the main outcome. The 
reason for this is that these are generic processes that can be performed 
across any discipline, and so have less direct relevance to PN. However, 
their inclusion may paint a more complete picture of ML in PN. When 
discussing the features used in the papers, different levels of specificity 
were used. For example, papers using imaging for dietary intake 
assessment sometimes had features such as color, shape, and texture 
listed; however, these were simply grouped together and listed as the 
feature “Images”. The same is also true for papers such as Zeevi et al. and 
Berry et al. who had some features in their papers under the grouping 
“Personal Features”, with the same being followed here (see Table 6). As 
discussed in Section 4.6, this was done for the sake of conciseness and to 
provide an overview of the features that could be expected in directly or 
indirectly related PN articles using ML. However, such overviewing may 
mask the use of specific features in PN. Table 6 also does not take into 
account the contribution of the features to the model. This may dilute 
the importance of certain features, whilst making others seem more 
relevant than they are. Not all of the studies identified had an equally 
close relationship with PN. Whilst some can be considered as core PN 
approaches [4,5,15], others were not designed as PN studies and did not 
perform consequential experiments to test the efficacy of their findings 
in impacting health in human subjects. For example [48], aimed to 
identify relevant SNPs to diabetes. Whilst not at the same degree of 
complexity and personalization as other studies in the review, it still 
makes use of personal information to generate a nutritional recom-
mendation as an outcome, which in this case is appropriate management 
of blood-glucose in those harboring such SNPs. Whilst it could be rightly 
argued that adequate management of blood-glucose is in the interest of 
everybody, more effort can be made and from a younger age in those 
with the knowledge that such personalized approaches provide, miti-
gating negative effects that might otherwise be more pronounced. This 
logic is the same in the articles relating genetics to obesity, justifying 
their inclusion in the current review [54–56]. Regardless, they do not 
display the same strength as papers like [4] and Zeevi et a. (2015) 
proving the efficacy of PN approaches. 

Aside from the systematic literature review, some challenges to PN 
generally can also be discussed. Some elements of data collection are 
reliant on methods with questionable efficacy, such as assessing dietary 
intake by self-report. Moreover, even with the employment of more 
advanced methods of assessing these such as the methods discussed in 
the current review, assignment of calorie estimates is reliant on the 
accuracy of food database systems. This will inevitably impact the ac-
curacy of PN results. In some cases, PN models do not take into account 
gender, age, medicine use, sleep quality, demographic information and 
other variables. Whilst it is infeasible to incorporate every possible 
contributing variable into a PN model, some of this information repre-
sents basic personal information that can have a significant effect at 
reducing the error in PN outcomes [124]. It should also be stated that 
although PN approaches show promise in outperforming 
population-based in terms of results, this is not guaranteed. This hy-
pothesis should be tested with rigorous large-scale trails to test that this 
is indeed true [18]. However, in some cases PN systems appear to be far 
superior to existing methods, as is the case with blood sugar prediction 
[4,5]. It may also be the case that PN performance exceeds other 
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methods but may fail from a cost-benefit perspective. Whilst techniques 
for gathering data and presenting PN outcomes can be expected to drop 
in price and become increasingly more convenient, it may take a long 
time until this is feasible. 

None of the articles made use of online learning methods. Unlike in 
traditional ML approaches where an equation is optimized on a batch of 
offline, fixed data, in online learning methods a model is that continually 
updates itself in response to continuous inflow of new data [125]. If PN 
has the success of being deployed and used in everyday life circum-
stances (for example, in mobile phone apps or something similar), it 
seems likely that online learning methods will have a role to play in 
ensuring nutritional recommendations remain accurate with regard to 
new data continually flowing in. However, as discussed above, PN still 
has hurdles to overcome and must prove itself to be effective and worth 
the investment before being deployed for use. Thus, it is understandable 
that research for now has not yet reached these more practical points. 
Regardless, this is certainly something for future research to consider 
implementing. Finally, PN must embrace explainable AI in order to fulfil 
its potential in the coming years. Explainable AI refers to developing 
models that not only solve problems, but also present their 
decision-making process in a way that it is interpretable by humans. The 
importance of explainable AI has been highlighted in disciplines like 
medicine [126] and finance [127], where the output of ML models can 
have important implications and there is a need for professionals to 
understand how models have arrived at their conclusion and convey this 
to patients or clients. In PN, it may be the case that models advise against 
the consumption of one’s favorite foods or encourage lifestyle changes 
that could require quite some effort to implement. In this regard, it is 
pertinent for those on the receiving end of PN approaches to know what 
has motivated such changes. In the current SLR, some studies presented 
feature importance in their articles [4,5], which indeed sheds some light 
on the features most relevant for driving decision-making, however 
concrete explanations on the processes that lead to the ultimate outcome 
are lacking. Future work should look to incorporate explainable AI into 
PN models. 

6. Conclusion 

The current work used a robust search methodology to review the 
literature on research related to PN that uses ML. To the best of our 
knowledge, this is the first systematic literature review to do so. Nine 
research questions were designed to facilitate the extraction as much 
relevant information as possible to provide an overview of ML in the 
field of PN. This included PN-orientated questions, such as the domain of 
the work and the specific problems tackled; ML-orientated questions, 
such as ML types, tasks, algorithms, features, evaluation, and data 
availability status; and a combination of the two, as specific problems of 
PN were linked to ML tasks and algorithms. We offer a contribution to 
the literature by summarising this information, providing a reference for 
future PN work looking to utilise ML to go by. To progress the field of PN 
further, researchers should consider other areas of health known to have 
a relationship with nutrition. PN and ML in such areas may allow 
progress due to the fusion of two promising and powerful avenues in 
disease prevention and treatment. Future work may also benefit from 
developing systems to integrate various information in PN approaches to 
deliver to the general population or patients, as was done in a few cases 
[50,53,57]. Whilst currently PN research is happening in controlled 
experimental conditions, PN will play a role in everyday life of the 
general population. Having interfaces such as smartphone apps that can 
allow user interaction and regular dietary support or delivery of nutri-
tional advice will be more convenient than having to discuss such 
matters during appointments with experts, such as doctors or nutri-
tionists. Finally, research to investigate the actual efficacy of PN, the 
ability of PN to alter behavior, and cost-benefit analyses is required 
before full confidence that PN can solve the problems that nutrition and 
health currently faces can be achieved. 
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S. Braverman, S. Rozin, S. Malitsky, M. Dori-Bachash, Y. Kuperman, I. Biton, 
A. Gertler, A. Harmelin, H. Shapiro, Z. Halpern, A. Aharoni, E. Segal, E. Elinav, 
Persistent microbiome alterations modulate the rate of post-dieting weight 
regain, Nature 540 (7634) (2016) 544–551, https://doi.org/10.1038/ 
nature20796. 

[98] H. Akaike, A new look at the statistical model identification, IEEE Trans. 
Automat. Contr. 19 (6) (1974) 716–723, https://doi.org/10.1109/ 
TAC.1974.1100705. 

[99] P. Fergus, A. Hussain, J. Hearty, S. Fairclough, L. Boddy, K.A. Mackintosh, 
G. Stratton, N.D. Ridgers, N. Radi, A machine learning approach to measure and 
monitor physical activity in children to help fight overweight and obesity, Lect. 
Notes Comput. Sci. 9226 (2015) 676–688, https://doi.org/10.1007/978-3-319- 
22186-1_67. 
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