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A B S T R A C T

Non-intrusive load monitoring (NILM) is a key cost-effective technology for monitoring power consumption
and contributing to several challenges encountered when transiting to an efficient, sustainable, and competitive
energy efficiency environment. This paper proposes a smart NILM system based on a novel local power
histogramming (LPH) descriptor, in which appliance power signals are transformed into 2D space and short
histograms are extracted to represent each device. Specifically, short local histograms are drawn to represent
individual appliance consumption signatures and robustly extract appliance-level data from the aggregated
power signal. Furthermore, an improved k-nearest neighbors (IKNN) algorithm is presented to reduce the
learning computation time and improve the classification performance. This results in highly improving the
discrimination ability between appliances belonging to distinct categories. A deep evaluation of the proposed
LPH-IKNN based solution is investigated under different data sets, in which the proposed scheme leads to
promising performance. An accuracy of up to 99.65% and 98.51% has been achieved on GREEND and UK-
DALE data sets, respectively. While an accuracy of more than 96% has been attained on both WHITED and
PLAID data sets. This proves the validity of using 2D descriptors to accurately identify appliances and create
new perspectives for the NILM problem.
1. Introduction

Buildings are responsible on more than 32 percent of the overall
energy consumed worldwide, and this percentage is expected to be
doubled by 2050 as a result of the well-being improvement and wide
use of electrical appliances and central heating/cooling systems (Elattar
et al., 2020). Specifically, this is due to population growth, house
comfort enhancement and improvement of wealth and lifestyle. To that
end, reducing wasted energy and promoting energy-saving in buildings
have been nowadays emerged as a hot research topic. One of the
cost-effective solutions is via encouraging energy-efficiency behaviors
among building end-users based on analyzing energy consumption foot-
prints of individual appliances. Therefore, tailored recommendations
can be generated to help end-users improve their behavior (Sardianos,
Varlamis, Chronis et al., 2020).

In this regard, load monitoring of appliances can not only provide
the end-users with their fine-grained consumption footprints, but it
promptly contributes in promoting sustainability and energy efficiency
behaviors (Sardianos, Varlamis, Dimitrakopoulos et al., 2020). More-
over, it can significantly contribute in elaborating and developing reli-
able smart-grid demand management systems. On the other hand, load
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consumption monitoring principally encompasses two wide groups,
namely intrusive load monitoring (ILM) and non-intrusive load mon-
itoring (NILM), respectively. ILM necessitates to install smart-meters at
the front-end of each electrical appliance aiming at collecting real-time
energy consumption patterns. Even though this strategy presents high
performance in accurately gathering appliance-specific data, it requires
a heavy lifting with high-cost installation, where a large number of
sun-meters are installed. In addition an intrusive transformation of the
available power grid is essential (Alsalemi, Himeur, Bensaali, Amira,
Sardianos, Chronis et al., 2020). On the contrary, no additional sub-
meter required when the NILM strategy (named energy disaggregation
as well) is adopted to infer device-specific consumption footprints since
the latter are immediately extracted from the main load using feature
extraction and learning models (Himeur, Alsalemi, Bensaali, & Amira,
2020a).

In this context, the NILM issue has been investigated for many years
and extensive efforts are still paid to this problematic because of its
principal contributions to improve energy consumption behavior of
end-users (Liu, Yu, Wu, Chen, & Wang, 2020; Pereira & Nunes, 2020).
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Specifically, it can help in achieving a better comprehending of con-
sumers’ consumption behavior through supplying them with specific
appliance data. Therefore, put differently, the NILM task indirectly
aims at (i) promoting the energy efficiency behavior of individuals,
(ii) reducing energy bills and diminishing reliance on fossil fuel, and
(iii) reducing carbon emissions and improving environmental condi-
tions (Alsalemi, Himeur, Bensaali, Amira, Sardianos, Varlamis et al.,
2020).

Two crucial stages in NILM are the feature extraction and inference
and learning procedures. The feature extraction step aims at deriving
pertinent characteristics of energy consumption signals to help rep-
resenting appliances from the same category with similar signatures
while differencing between power signals from different classes (We-
likala, Dinesh, Ekanayake, Godaliyadda, & Ekanayake, 2019). On the
other hand, the inference and learning step is essentially reserved to
train classifiers in order to identify appliances and extract appliance-
level power footprints (He et al., 2019). It can be achieved either
by using conventional classification models, such as artificial neural
networks (ANN), support vector machine (SVM), k-nearest neighbors
(KNN), etc. or novel classifiers, including deep neural networks (DNNs).
Consequently, the identification of electrical devices simultaneously
operating through an interval of time in a household is the central
part of the NILM architecture. Its performance is highly dependent on
the deployed feature extraction and inference model. To that end, the
development of robust schemes belonging to these two modules attracts
a considerable interest in recent years (Ma et al., 2018; Park, Baker, &
Franzon, 2019).

In this paper, recent NILM systems are first reviewed based on
the principal components contributing into the implementation of such
architectures including feature extraction and learning models. In this
respect, techniques pertaining to three main feature extraction cate-
gories are described among them graph signal processing (GSP), sparse
coding features and binary encoding schemes. Following, a discussion
of their limitations and drawbacks is also presented after conducting
a deep comparison of their performances and properties. Moving for-
ward, a non-intrusive appliance identification architecture is proposed,
which is mainly based on a novel local power histogramming (LPH)
descriptor. The latter relies on (i) representing power signals in a 2D
space, (ii) performing a binary power encoding in small regions using
square patches of 3 × 3 samples and (iii) returning back to the initial 1D
space through extracting histograms of 2D representations. Following,
an improved k-nearest neighbors (IKNN) is introduced to effectively
identify appliance-level fingerprints and reduce the computation cost.
This has resulted in very short appliance signatures of 256 samples,
in which each power signal is represented with a unique histogram,
and thus leads to a better appliance identification performance at a low
computational complexity. Moreover, it is worth-noting that to the best
of the authors’ knowledge, this paper is the first work that discusses the
applicability of 2D local descriptors for identifying electrical appliances
using their power consumption signals. Overall, The main contributions
of this paper can be summarized as follows:

• We present a comprehensive overview of recent trends in event-
based NILM systems along with describing the their drawbacks
and limitations.

• We propose a novel NILM framework based on an original 2D
descriptor, namely LPH, which can be considered as an inter-
esting research direction to develop robust and reliable NILM
solutions. Explicitly, after converting appliance power signals into
2D space, the appliance identification becomes a content-based
image retrieval (CBIR) problem and a powerful short description
is extracted to represent each electrical device. According, LPH
operates also as a dimensionality reduction, where each resulted
appliance signature has only 256 samples.

• We design a powerful IKNN model that efficiently aids in recog-
nizing appliances from the extracted LPH fingerprints and reduc-
2

ing significantly the computational cost.
• We evaluate the performance of the proposed LPH-IKNN based
NILM system on four different data sets with distinct sampling
frequency rates and in comparison with various recent NILM
systems and other 2D descriptors.

The remainder of this paper is structured as follows. An overview of
NILM systems is introduced in Section 2 along with a discussion of their
drawbacks and limitations. In Section 3, the main steps of the proposed
NILM system based on the LPH descriptor and IKNN are described in
details. The performance results of the exhaustive empirical evaluation
conducted in this framework are presented and thoroughly discussed
in Section 4, in which different comparisons are conducted with state-
of-the-art works. Finally, Section 5 concludes the paper, discusses the
important findings and highlights the future works.

2. Related work

2.1. Overview of NILM techniques

NILM frameworks can be categorized into two major groups. The
first one called non-event-based approaches, which focus on using al-
gorithms without depending on the training/learning procedures (using
data from a particular building). They can segregate the main power
signal collected from the overall circuit into various appliance-level
fingerprints. An explicit example of this kind of techniques that have
been typically studied is related the deployment of statistical analysis,
including hidden Markov models (HMM) (Makonin, Popowich, Bajić,
Gill, & Bartram, 2016), higher-order statistics (HOS) (Guedes, Ferreira,
Barbosa, Duque, & Cerqueira, 2015) or probabilistic models (Ji et al.,
2019). The second group deals with methods allowing the identification
of state changes occurred in power consumption signals using different
types event detectors, classifiers, and further implementing appropri-
ate techniques to calculate an individual load usage fingerprint for
each electrical device. In this section, we focus on describing recent
NILM systems pertaining to the second category because the proposed
framework is an even-based NILM framework.

Explicitly, this category of NILM systems deploys two principal
components. The first one is a feature descriptor to extract pertinent
characteristics of electrical appliances, while the second is a learn-
ing algorithm that can help in detecting and classifying each device
based on its features. Conventional NILM methods have been basi-
cally concentrated on extracting features related to steady-states and
transient-states, in addition to the adoption of conventional machine
learning (ML) classifiers. On the other side, novel strategies are in-
troduced in recent years to deal with the NILM issue based on the
use of new signal analysis procedures and innovative learning models.
This class of NILM frameworks is defined as non-conventional, they are
classified into four principal sub-categories as follows:

Graph signal processing (GSP): A trending research field aiming at
describing stochastic characteristics of power signals based on graph
theory. In He, Stankovic, Liao, and Stankovic (2018), a graph-based
method for identifying individual appliances has been introduced af-
ter detecting appliance events. This results in a better detection of
appliance-level fingerprints and further a reduction of time compu-
tation compared to conventional graph-based techniques. In Li and
Dick (2019), various multi-label graphs have been developed to detect
individual devices based on a semi-supervised procedure. In Zhao,
He, Stankovic, and Stankovic (2018), NILM performance have been
enhanced via the use of a generic GSP-based technique, which is build
upon the application of graph-based filters. This results in a better
detection of on/off appliance states, via the mitigation of electric noise
produced by appliances.

Sparse coding features: In this category, the NILM framework is
treated as a blind source separation problem and recent sparse coding
schemes are then applied to split an aggregated power consumption
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signal into specific appliance based profiles (Kolter, Batra, & Ng, 2010).
In Singh and Majumdar (2019), a co-sparse analysis dictionary learning
is proposed to segregate the total energy consumption into a device-
level data and significantly shorten the training process. In Singh and
Majumdar (2018), a deep learning architecture is used for designing a
multi-layer dictionary of each appliance rather than constructing one-
level codebook. Obtained multi-layer codebooks are then deployed as
features for the source-separation algorithm in order to break down
the aggregated energy signal. In Rahimpour, Qi, Fugate, and Kuruganti
(2017), an improved non-negative matrix factorization is used to pick
up perceptibly valuable appliance-level signatures from the aggregated
mixture.

Binary descriptions: Most recently, binary descriptors have been in-
estigated for the classification and fault detection of 1D signals such as
lectroencephalogram (EEG), electrocardiogram (ECG), and myoelec-
ric signals (Hammad, Zhang, & Wang, 2019). For power consumption
ignals, this concept is novel. The only few works that can be found
n the literature are mainly focusing on representing the power signal
n a novel space and directly being used to train the convolutional
eural network (CNN). In Du, He, Harley, and Habetler (2016), power
ingerprints are derived by estimating the similarity of voltage–current
V–I) shapes, encoding it using a binary dictionary and then extracting
mage graphical footprints that are directly fed to a self-organizing map
SOM) classifier, which is based on neural networks. In Gao, Kara,
iri, and Bergés (2015), V–I binary representation is employed through
onverting the normalized V–I magnitude into binary matrices using a
hresholding process before being fed to a CNN. More specifically, this
pproach relies on binary coding of the V–I edges plotted in the new
epresentation. These data are then fed into an ML classifier in order
o identify each appliance class. In Liu, Wang, and You (2019), a color
ncoder is proposed to draw V–I signatures that can also be translated
o visual plots. These footprints are then fed to a deep learning classifier
o identify each electrical appliance. In Baets, Develder, Dhaene, and
eschrijver (2019), a siamese-neural network is employed aims at
apping the V–I trajectories into a novel characteristic representation
lan.

ime–frequency analysis: Time–frequency analysis is an imperative
esearch topic, in which much attention has been devoted to it in the
ast and even nowadays. It is applied in several applications among
hem energy efficiency (Junker et al., 2018), NILM or energy disag-
regation (Himeur, Alsalemi, Bensaali, & Amira, 2020b) and power
onsumption anomaly detection (Wang & Ahn, 2020). In Himeur,
lsalemi, Bensaali, and Amira (2020c, 2020d), a novel NILM descriptor

s proposed based on the fusion of different time-domain descrip-
ors. In Himeur et al. (2020a), a novel time-scale analysis is adopted
ased on the use of multi-scale wavelet packet trees (MSWPT) and a
epstrum-based event detection scheme to glean appliance-level power
onsumption patterns from the aggregated load.

.2. Classification

.2.1. Improved k-nearest neighbors
In the building energy sector, KNN has been widely deployed in the

iterature for different purposes, such as energy disaggregation (Shi,
ing, Shakkottai, Xie, & Yao, 2019) and anomaly detection (Himeur,
lsalemi, Bensaali, & Amira, 2020e; Himeur, Elsalemi, Bensaali, &
mira, 2020; Mulongo et al., 2020) although it has some issues, e.g. the
ensitivity of the neighborhood size 𝑘 could significantly degrade its
erformance (Abu Alfeilat et al., 2019; Mehta, Shen, Gou, & Niu,
018). To that end, an improved version is proposed in Gou, Ma et al.
2019) to address this issue, named generalized mean distance-based
-nearest neighbor. Specifically, multi-generalized mean distances are
ntroduced along with the nested generalized mean distance that rely
n the properties of the generalized mean. Accordingly, multi-local
3

ean vectors of a specific pattern in every group are estimated through
deploying its class-specific 𝑘 nearest neighbors. Using the obtained 𝑘
ocal mean vectors per group, the related 𝑘 generalized mean distances

are estimated and thereby deployed for designing the categorical nested
generalized mean distance. Similarly, in Gou, Qiu, Yi, Xu et al. (2019),
the authors introduce a local mean representation-based KNN aiming
at further improving the classification performance and overcoming
the principal drawbacks of conventional KNN. Explicitly, they select
the categorical KNN coefficients of a particular pattern to estimate the
related categorical k-local mean vectors. Following, a linear combina-
tion of the categorical k-local mean vectors is used to represent the
particular pattern. Moving forward, in order to capture the group of
this latter, group-specific representation-based distances between the
particular pattern and the categorical k-local mean vectors are then
considered.

Moreover, in Gou, Qiu et al. (2019), two locality constrained
representation-based KNN rules are presented to design an improved
KNN classifier. The first one is a weighted representation-based KNN
rule, in which the test pattern is considered as a linear aggregation of
its KNN samples from every group, while the localities of KNN samples
per group are represented as the weights constraining their related
representation elements. Following, a classification decision rule is used
to calculate the representation-based distance between the test pattern
and the group-specific KNN coefficients. On the other side, the second
rule is a weighted local mean representation-based KNN, where k-local
mean vectors of KNN coefficients per group are initially estimated and
then utilized to represent the test pattern. On the other hand, aiming
at improving the performance of existing KNN classifiers and making
them scalable and automatic, granular ball computing has been used
in various frameworks. This is the case of Xia, Liu, Ding, Wang, Yu,
and Luo (2019), where a granular ball KNN (GBKNN) algorithm is
developed, which could perform the classification task on large-scale
data sets with low computation. In addition, it provides a solution to
automatically select the number 𝑘 of clusters.

2.2.2. Improved k-means clustering
In addition to the use of KNN and its variants, K-means cluster-

ing (KMC) is another important data clustering method. It has been
widely investigated to classify similar data into the same cluster in
large-scale data sets for different applications, such as appliance identi-
fication (Chui, Tsang, Chung, & Yeung, 2013), anomaly detection (Hen-
riques, Caldeira, Cruz, & Simões, 2020), cancer detection (Saba, 2020),
and social media analysis (Alsayat & El-Sayed, 2016). Despite the
simplicity of KMC, its performance was not convincing in some ap-
plications. To that end, different variants have been proposed in the
literature to design efficient, scalable and robust KMC classifiers. For
example, in Yu, Chu, Wang, Chan, and Chang (2018), to overcome the
vulnerability of the conventional KMC classifier to outliers and noisy
data, a tri-level k-means approach is introduced. This was possible
through updating the cluster centers because data in a specific data set
usually change after a period of time. Therefore, without updating the
cluster centers it is not possible to accurately represent data in every
cluster. While in Zhang, Zhang, and Zhang (2018), the authors focus on
improving both the accuracy and stability of the KMC classifier. This
has been achieved by proposing a k-means scheme based on density
Canopy, which aims at solving the issue corresponding to the deter-
mination of the optimal number 𝑘 of clusters along with the optimum
initial seeds. Specifically, the density Canopy has been utilized as a pre-
processing step and then its feedback has been considered as the cluster
number and initial clustering center of the improved KMC technique.
Similarly, in Lu (2019), an incremental KMC scheme is introduced using
density estimation for improving the clustering accuracy. Explicitly,
the density of input samples has been firstly estimated, where every
primary cluster consists of the center points having a density superior
than a given threshold along with points within a specific density range.
Following, the initial cluster has been merged with reference to the



Sustainable Cities and Society 67 (2021) 102764Y. Himeur et al.
Fig. 1. Flowchart of the proposed NILM framework.
distance between the two cluster centers before dividing the points
without any cluster affection into clusters nearest to them.

On the other hand, in some specific data sets, e.g. real-world medi-
cal data sets, data samples could pertain to more than one cluster simul-
taneously while traditional KMC methods do not allow that since they
are developed based on an exclusive clustering process. Therefore, an
overlapping k-means clustering (OKMC) scheme is proposed in Whang,
Dhillon, and Gleich (2015) to overcome that issue, which have intrinsi-
cally overlapping information. Similarly, in Khanmohammadi, Adibeig,
and Shanehbandy (2017), the authors introduce a hybrid classifier that
aggregates k-harmonic means and OKMC to address the sensitivity
problem of the latter to initial cluster centroids.

2.3. Drawbacks and limitations

Despite the fact that the outlined event-based NILM systems have
recently been widely examined in the state-of-the-art, they can be
affected by certain problems and limitations, which impede the devel-
opment of powerful NILM architectures and even increase the difficulty
to implementing real-time NILM systems. Moreover, most of these
issues have not yet been overcome. For example, most of existing
solutions suffer from a low disaggregation accuracy. Therefore, these
approaches need deeper investigation in order to improve their per-
formance. Moreover, they are usually built upon detecting transient
states, which can limit their detection accuracy if multiple appliances
are turning on/off simultaneously. In addition, most of the reviewed
NILM systems are only validated on one category of data with a unique
sampling frequency. This restricts the applicability of these techniques
on different data repositories. On the other hand, most of the existing
classifier have some issue to accurately identify appliance-level data
especially if the validation data set is imbalanced.

To overcome the aforementioned limitations, we present, in this
framework, a novel non-intrusive load identification, which relies on
4

(i) shifting power fingerprints into 2D space, (ii) deriving binary char-
acteristics at local regions, (iii) representing the extracted features
in the decimal field, and (iv) going back to 1D space via capturing
novel histograms of the 2D representations. Following, these steps can
help in designing a robust identification approach, which has various
benefits; (i) via transforming the appliance signatures into 2D space,
novel appliance footprints are developed that describe each appliance
fingerprint in another way and texture descriptions are derived from
local regions using square kernels; (ii) the proposed strategy helps in
identifying appliances at accurately without depending on the devices’
states (i.e. steady or transient); (iii) the proposed scheme can support
real-time applications because it can be run at a low computation cost.
Specifically, it acts as a dimensionality reduction component as well,
where short characteristic histograms having only 256 samples are
collected at the final stage to represent every appliance, and (iv) an
improved KNN algorithm has been developed to overcome the issues
occurring with imbalanced data sets and improve the appliance iden-
tification performance. Moreover, our 2D descriptor can be trained via
simple machine learning algorithms without the need to deploy deep
leaning models, which usually have a high computation complexity.

3. Proposed NILM based on 2D feature extraction

This section focuses on presenting the principal steps of the pro-
posed appliance identification system, which relies on the application
of an original 2D descriptor. Accordingly, the flowchart of the proposed
NILM system is portrayed in Fig. 1. It is clear that the 2D-based load
identification system represents the fundamental part of the NILM
system.

3.1. Background of local 2D feature extraction

In recent years, 2D local feature extraction schemes have received
significant attention in various research topics, including image and



Sustainable Cities and Society 67 (2021) 102764Y. Himeur et al.
Fig. 2. Block diagram of the LPH descriptor: Example using a patch of size 3 × 3 (N = 8).
video processing (Tao, 2019), breast cancer diagnosis (Kumar et al.,
2020), face identification (Gong, Li, Huang, Li, & Tao, 2017) and fin-
gerprint recognition (Valdes-Ramirez et al., 2019). They are generally
deployed to derive fine-grained characteristics after partitioning the
overall 2D representation into various local regions using small kernels.
Explicitly, a local feature extraction can be applied at each local region
of the 2D representation to draw pertinent features about the neigh-
borhood of each key-point. The multiple features derived from several
regions are then fused into a unique, spatially augmented characteristic
vector, in which the initial signals are effectively represented.

3.2. Event detection

For the event detection step, various event detection schemes are
proposed in the state-of-the-art. Event detection techniques are split
into three main groups (Batra et al., 2019a): specialized heuristics,
probabilistic models and matched filters (Batra et al., 2019b; Lu, Xu, &
Huang, 2017). In this framework, the pre-processed aggregated power
is segregated into different sections using the edge detector module (Ba-
tra et al., 2019c) implemented in the NILMTK platform (Batra et al.,
2014). Accordingly, the on/off events of electrical devices are generally
picked up via the analysis of power level variations in the aggregated
signal. This event detector has been elected because of its simplicity
and availability of its source code in the NILMTK platform.

3.3. Local power histogramming (LPH) descriptor

The proposed appliance identification scheme relies mainly on
transforming the appliance consumption signals into 2D space and
therefore treating the appliance recognition task as a CBIR prob-
lem. With this in mind, all image descriptors could be utilized to
extract the fine-grained properties of the obtained 2D power signal
representations.

In that respect, the proposed LPH-based feature extraction scheme
transforms appliance signals to image representations. Following, an
examination local regions around each power sample is performed us-
ing a block partition procedure to collect local features. Explicitly, LPH
descriptor is introduced for abstracting histogram-based descriptions
of the 2D representations of power observations. Accordingly, LPH
performs a binary encoding of power blocks through comparing the
central power sample of each block with its neighbors.
5

Fig. 2 explains the flowchart of the proposed LPH description
scheme. A comparison of each central power observation is conducted
with its power neighboring in a kernel of 𝑁 × 𝑁 power samples
through subtracting the central power value from the neighboring
power patterns. Following, a binary encoding procedure is applied
where the positive values of the subtractions are moved to 1, on the flip
side, the negative values are considered as 0. Next, a binary sequence
is then acquired by means of a clockwise-based comparison process.
Consequently, the gathered binary samples represent the corresponding
LPH codes. Moving forward, the overall binary sequences are gleaned
from all the regions (kernels) to form a binary array, which in turn, is
converted to the decimal field. Specifically, each binary sequence ex-
tracted from a specific block is converted to decimal (as it is illustrated
in Fig. 2). Lastly, a histogramming procedure is applied on the resulted
decimal array, in which an LPH histogram is extracted to represent the
initial power signal. The whole steps of the proposed LPH descriptor
are summarized in Algorithm 1.

Moving forward, a histogram of 256 samples is derived to represent
each appliance signature, which has significantly lower number of
samples compared to the initial signal. Accordingly, LPH helps also in
reducing the dimensionality of the appliance power signals. Therefore,
this leads to efficaciously reducing the computation cost of our NILM
system.

3.4. Improved k-nearest neighbors (IKNN)

This stage is responsible on predicting the labels of each power
consumption observations 𝑃 (𝑡) that belongs to a specific micro-moment
group. Consequently, the class identification step of SAD-M2 is applied
in two stages using a 10-fold validation, i.e. the training and test. In
the first one, device load usage fingerprints are learned along with
their labels generated based on the rule-based algorithm described
previously. Accordingly, 9 folds of the database are utilized randomly
in each training phase while the remaining fold is employed for the test
purpose.

Moving forward, selecting the value of 𝐾 is of utmost importance
for KNN model. However, power abnormality detection data sets suffer
from the imbalanced classes issue, in which some classes include more
consumption observations (i.e. majority classes) than other classes
(i.e. minority classes). Accordingly, a salient drawback of conventional
KNN schemes is related to the fact that if 𝐾 is a fixed, user-defined
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Algorithm 1: The principal steps of the proposed LPH descriptor
eployed to derive LPH features from the 𝑀 appliance power
ignals.

Result: 𝐁𝐿𝑃𝐻 : The histogram of local power histograms (LPH)
a. Define the array 𝑌 (𝑖, 𝑗) of the appliance power signatures, where
𝑖 presents the index of appliance power sequences, and 𝑗 stands for
the index of the samples in every sequence;
while 𝑖 ≤ 𝑀 (with 𝑀 the total number of appliance signatures in
the overall database) do

Step 1. Normalize and transform the appliance signature 𝑌 (𝑖, ∶)
into 2D space (image representation), as explained in Fig. 3.
Step 2. Calculate the LPH values of each power pattern (𝑢𝑐 , 𝑣𝑐 )
in each specific kernel of size 𝑆 × 𝑆, by comparing the central
power pattern with its neighbor as follows:

𝐿𝑃𝐻𝑛,𝑆 (𝑢𝑐 , 𝑣𝑐 ) =
𝑁−1
∑

𝑛=1
𝑏(𝑗𝑛 − 𝑗𝑐 )2𝑛 (1)

where 𝑗𝑐 refers to the central power sample, 𝑗𝑛 represents the
𝑛th surrounding power neighbor in a patch of size 𝑆 × 𝑆 and
𝑁 = 𝑆2 − 1. Moving forward, a binary encoding function 𝑏(𝑢) is
generated as:

𝑏(𝑢) =
{

1 if 𝑢 ≥ 0
0 if 𝑢 < 0

(2)

Step 3. Glean the binary samples 𝐿𝑃𝐻𝑛,𝑆 (𝑢𝑐 , 𝑣𝑐 ) generated
from every kernel and therefore transform the obtained binary
data into a decimal field in order to design a new decimal
array 𝐼𝐷 (as it is explained in Fig. 2).
Step 4. Perform a histogramming procedure on the obtained
decimal matrix for extracting an LPH histogram 𝐻𝐿𝑃𝐻 (𝑛, 𝑆),
which is measured from each patch. Thus, the resulted
histogram is then used as a texture feature vector to represent
the initial appliance signature. Finally, after conducting the
histogramming process, a description histogram 𝐻𝐿𝑃𝐻 (𝑛, 𝑆) is
produced, which has 2𝑁 patterns (i.e. with relation to the 2𝑁

binary samples generated by 𝑁 power sample neighbors of
each block of data).

𝐻𝐿𝑃𝐻 (𝑛, 𝑆) = ℎ𝑖𝑠𝑡(𝐼𝐷) = [𝐻1,𝐻2,⋯ ,𝐻2𝑁 ] (3)

Step 5. Normalize the resulted histogram to make the value of
each bin in the range [0,1].

𝐁𝑖
𝐿𝑃𝐻 = Normalize(𝐻𝐿𝑃𝐻 (𝑛, 𝑆)) = 𝑏1, 𝑏2,⋯ , 𝑏2𝑁

=
𝐻1

∑2𝑁
𝑚=1 𝐻1

,
𝐻2

∑2𝑁
𝑚=1 𝐻2

, ⋯ ,
𝐻2𝑁

∑2𝑁
𝑚=1 𝐻2𝑁

(4)

end

value, the classification output will be biased towards the majority
groups in most of the application scenarios. Therefore, this results in
a miss-classification problem.

To avoid the issue encountered with imbalanced data set, some
works have been proposed with the aim of optimizing the value of
𝐾, such as Liu and Chawla (2011) and Zang, Huang, Wang, Chen,
Tian, and Wei (2016). However, they are very complex to implement
and can significantly increase the computational cost, which hinders
developing real-time abnormality detection solutions. In contrast, in
this paper, we introduce a simple yet effective improvement of KNN,
which can maintain a low computational cost. It is applied as explained
in Algorithm 2.

Overall, the proposed improved KNN helps in improving the appli-
ance identification performance through enhancing the classification
6

accuracy and F1 score results in addition to reducing the execution time
Algorithm 2: IKNN algorithm used to classify appliances based on their
LPH signatures.
Result: Predicting class labels of test samples
Read the training appliance histograms extracted using LPH in
Algorithm 1.
while 𝑗 ≤ 𝐽 (with 𝐽 is the number of test appliance histograms to be
identified) do

Step 1: Compute the information-entropy of every appliance
histogram 𝑏 that is deployed to estimate its information gain.
Thus, it operates as the weight of appliance histograms power
consumption observations to allocate priorities to each of them;

𝐸(𝐵) = −
𝑛
∑

𝑖=1
𝑎𝑖 log2(𝑎𝑖) (5)

where 𝐵 is the training ensemble, |𝐵| as the number of training
data, 𝑎𝑖 = |

|

𝑐𝑖, 𝐵|| ∕ |𝐵| and 𝑎𝑖 refers to the probability that an
random histogram in 𝐵 pertains to class 𝑐𝑖
Step 2: Define the 𝑘 values of the training ensemble;
Step 3: Partition the training ensemble into 𝑚 sub-groups;
Step 4: Estimate the mean value of each sub-group to derive its
center;
Step 5: Identify the sub-group that is closest to a test histogram 𝑏𝑗
via estimating the Euclidean distance between each test
observation and the center of each sub-group as follows:

𝑑𝑗 (𝑏𝑐𝑖 , 𝑏𝑗 ) =
√

(𝑏𝑐𝑖 ) − (𝑏𝑗 )2 (6)

where 𝑐𝑖 represents the central instance of the 𝑖th sub-group and
𝑖 = 1, 2,⋯ , 𝑚.
Step 6: Estimate the weighted-Euclidean distance 𝑤𝑑𝑗 between
the test histogram 𝑏𝑗 and every histogram in the closest sub-group
as follows:

𝑤𝑑𝑗 (𝑏𝑖, 𝑏𝑗 ) =
√

𝑤𝑖(𝑏𝑖 − 𝑏𝑗 )2 (7)

Therefore, this results in determining the 𝑘 nearest neighbors;
Step 7: Compute the weighted class probability of the test
histogram 𝑏𝑗 as follows:

𝑐(𝑏𝑗 ) = argmax
𝑐∈𝐶

𝑘
∑

𝑖
𝑤𝑖𝛿(𝑐, 𝑐(𝑦𝑖)) (8)

where 𝑦1, 𝑦2,⋯ , 𝑦𝑘 refer to the 𝑘 nearest neighbors of the test
histogram 𝑏𝑗 , 𝐶 denotes the finite set of the appliance class labels,
𝛿(𝑐, 𝑐(𝑦𝑖)) = 1 if 𝑐 = 𝑐(𝑦𝑖) and 𝛿(𝑐, 𝑐(𝑦𝑖)) = 0 otherwise.

end

as it will be demonstrated in the next step. Therefore, this could help
in developing real-time abnormality detection solutions.

4. Evaluation and discussion

We concentrate in this section on presenting the outcomes of an
extensive empirical evaluation conducted on four real-world data sets,
namely UK-DALE (Kelly & Knottenbelti, 2015), GREEND (Monacchi,
Egarter, Elmenreich, D’Alessandro, & Tonello, 2014), PLAID (Gao, Giri,
Kara, & Bergés, 2014) and WHITED (Kahl, Haq, Kriechbaumer, &
Jacobsen, 2016). They are which are vastly deployed to validate NILM
and load identification frameworks in the state-of-the-art.
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Fig. 3. Conversion of 1D signal into 2D representation.
Table 1
Properties of power consumption data sets considered in this framework, i.e. appliance classes and their number for both PLAID and WHITED, and appliance classes and number
of observed days for both UK-DALE and GREEND.
UK-DALE GREEND PLAID WHITED

# Device # # Device # # Device # # Device #
class days class days class app class app

1 Dishwasher 183 1 Coffee 242 1 Fluorescent lamp 90 1 Modems/receivers 20
2 Refrigerator 214 machine 2 Fridge 30 2 Compact fluorescent 20
3 Washing machine 210 2 Radio 242 3 Hairdryer 96 lamp
4 Microwave 171 3 Fridge 240 4 Microwave 94 3 Charger 30
5 Stove 193 w/freezer 5 Air conditioner 51 4 Coffee machine 20
6 Oven 188 4 Dishwasher 242 6 Laptop 107 5 Drilling machine 20
7 Washer/dryer 216 5 Kitchen 242 7 Vacuum cleaner 8 6 Fan 30
8 Air conditioner 157 lamp 8 Incandescent light bulb 79 7 Flat iron 20
9 LED light 172 6 TV 242 9 Fan 96 8 LED light 20

10 Washing machine 22 9 Kettles 20
11 Heater 30 10 Microwave 20

11 Iron 20
w
n

𝐹

w

4.1. Data set description

The three power consumption repositories considered in this frame-
work are gleaned at distinct sampling rates (i.e. 1/6 Hz, 30 kHz
and 44 kHz) to perform a thorough evaluation study and inform the
effectiveness of the proposed solution when the sampling rate of the
recorded appliance consumption signals varies.

Under UK-Dale, power usage footprints have been gathered for a
long time period ranging 2 to 4 years at both sampling frequencies
of 1/6 Hz and 16 kHz (for aggregated data). In order to assess the
performance of proposed scheme, we exploit the consumption finger-
prints gleaned from a specific household at 1/6 Hz, which encompasses
nine appliance categories and each category includes a large number
of daily consumption signatures. Moving forward, power traces of six
different appliances collected under GREEND (Monacchi et al., 2014)
are also considered, in which a sampling frequency of 1 Hz has been
used to record energy consumption footprints for a period of more than
six months. Under PLAID, the power signatures of 11 device groups
have been recorded on the basis of a frequency resolution of 30 kHz.
Moreover, load usage footprints of the WHITED have been gleaned with
reference to 11 appliance classes at a frequency resolution of 44 kHz.
The properties of each data set, their appliance categories and the
number of observed appliance/days are recapitulated in Table 1.

4.2. Evaluation metrics

Aiming at evaluating the quality of the proposed appliance identi-
fication objectively, various metric are considered, including the accu-
racy and F1 score, normalized cross-correlation (NCC) and histogram
7

length. The accuracy is introduced to measure the ratio of successfully
recognized devices in the testbed, but it is nonetheless not enough to
evaluate the performance of an appliance identification system giving
that alone it is not regarded as a reliable measure. This is mainly
the case of imbalanced data sets, in which the power samples are not
uniformly distributed (e.g. in this framework, both PLAID and WHITED
data sets are imbalanced). To reinforce the objectivity of the evaluation
study, F1 score is also recorded as well, which is considered as a fairly
trustworthy metric in such scenarios. Explicitly, F1 score describes the
specified as the harmonic average of both the precision and recall
measures.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(9)

here 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 depict the number of true positives, true
egatives, false positives and false negatives, respectively.

1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(10)

here [𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝑇𝐹 ] and [𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ].
Additionally, normalized cross-correlation (NCC) has been deployed

to measure the similarity of the raw appliance signatures and LPH
histograms derived form original power signals. NCC is also described
via calculating the cosine of the angle 𝜃 between two power signals (or
extracted characteristic histograms) 𝑥 and 𝑦:

𝑁𝐶𝐶 = 𝐶𝑜𝑠(𝜃) =
𝑥 ⋅ 𝑦
|𝑥| |𝑦|

=
∑

𝑖 𝑥𝑖 ⋅ 𝑦𝑖
√
∑

𝑖 𝑥𝑖
√
∑

𝑖 𝑦𝑖
, − 1 ≤ 𝑁𝐶𝐶 ≤ 1 (11)
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Fig. 4. Correlation arrays computed for: (a) raw appliance signatures belonging to the same appliance category and (b) their LPH histograms.
4.3. Performance in terms of the NCC

It is of utmost importance to comprehend at the outset how LPH
histograms varies from the initial appliance power signatures. Accord-
ingly, this subsection focuses on investigating the nature of the relation
between appliance power signatures that pertain to the same appliance
class. In addition, this can aid in understanding the way LPH histograms
could improve the discrimination ability between appliances belonging
to different classes and on the other flip increasing the similarity ratio
between appliance from the same group.

To that end, six appliance signatures 𝑠1, 𝑠2,… , 𝑠6 have been consid-
ered randomly from every device category of the UK-DALE data set.
8

Moving forward, the NCC performance has been measured between
these signatures to evidently demonstrate why the LPH can results in a
better correlation between the signatures of the same device category.
Fig. 4 outlines obtained NCC matrices, which are calculated between
the six raw power signals (left side) and the LPH feature vectors (right
side), respectively. Both raw power signals and LPH vectors are gleaned
from four device groups, defined as the washing machine, fridge w/
freezer, coffee machine and radio. It can be shown from the plots in
the left side of Fig. 4 that NCC rates are quite low and vary randomly.
Specifically, it is hard to identify a certain interval specifying the limits
of the NCC rates. On the other side, when measuring the correlation
between LPH vectors as indicated in the right side of Fig. 4, NCC values
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Fig. 5. Example of appliance signals, their 2D LPH representations and their LPH histograms from the UK-DALE data set: (a) television, (b) Network Attached Storage (NAS), (c)
washing machine, (d) dishwasher, (e) notebook and (f) coffee machine.
outperform those obtained from the raw power signals. Overall, NCC
rates gleaned from LPH vectors are generally more than 0.97 for all
appliance groups investigated in this correlation study.

Fig. 5 portrays an example of six appliance signals extracted from
UK-DALE database, their encoded 2D representations and final his-
tograms collected using the LPH descriptor. It is worth noting that each
appliance signal is represented by a unique image in 2D space and
further by a specific histogram in the final step. It has been clearly
seen that via transforming the appliance signals into 2D space, they
have been considered as image, where we can use any 2D feature
extraction scheme to collected pertinent features. Moreover, through
adopting the 2D representation, every power sample has been encircled
by eight neighboring samples instead of only two neighbors in the 1D
space. Therefore, more opportunities have been available for extract-
ing fine-grained characteristics from each device signature in reliable
way. Consequently, it could help effectively correlate between devices
9

that pertain to the same device group, and in contrast, it increases
the distance between devices corresponding to distinct categories. In
addition, the LPH-based load identification system does not relies on
capturing the appliances’ states (steady or transient). This represents
and additional benefit of the proposed solution, which could recognize
each electrical device without the need to collection state information.

Moreover, even the neighborhood is temporary distant in 2D space
but this gives us various possibilities to encode the power signal.
Therefore, this results in better correlation and discrimination abilities
and hence a better classification performance of the power signals.
In the contrary, if the signal is processed in the original 1D space,
the possibilities for encoding the signal are very limited. Thus, the
correlation and discrimination abilities lose their efficacy since the
classifiers frequently make confusion in identifying appliances using the
features generated in this space.
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Table 2
Performance of the proposed appliance identification system using the LPH descriptor in terms of the accuracy and F1 score with reference to various classifiers.

Classifier Classifier parameters UK-DALE GREEND PLAID WHITED

Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

LDA / 93.71 93.53 94.55 94.37 84.71 77.93 82.50 77.41
DT Fine, 100 splits 97.42 97.37 97.81 97.69 75.42 66.9 92.5 90.49
DT Medium, 20 splits 96.51 96.5 96.77 96.70 65.85 50.20 91.25 90.84
DT Coarse, 4 splits 73.86 69.38 75.11 71.36 49 31.15 34.16 28.36
DNNs 50 hidden layers 71.69 69.82 74.3 72.42 78.14 76.09 82.37 81.86
EBT 30 learners, 42 k 82.51 81.26 84.66 82.71 82.57 74.98 91.66 88.67

splits
SVM Linear Kernel 94.84 95 95.39 95.48 81.85 71.61 84.58 82.52
SVM Gaussian kernel 89.31 98.93 90.61 90.05 85 77.57 84.91 87.91
SVM Quadratic kernel 93.93 93.81 94.72 94.13 89.14 85.34 92.5 89.07
KNN k = 10/Weighted 96.96 96.81 97.23 96.97 82.14 73.57 87.91 82.71

Euclidean dist
KNN k = 10/Cosine dist 96.13 96.01 96.79 96.55 75.57 65.57 84.58 80.1
KNN k = 1/Euclidean dist 97.45 97.41 97.60 97.36 91.75 89.07 92.43 89.97
IKNN k = 5/Weight Euclidean 98.50 98.49 98.84 98.77 96.85 96.48 96.55 96.34

distance + Euclidean
distance
4.4. Performance compared to different ML classifiers

We present in this subsection the performance of the proposed
appliance identification system based LPH-IKNN in comparison with
different classifiers, namely conventional KNN, DT, SVM, DNN and
EBT. Specifically, Table 2 reports the accuracy and F1 scores collected
under UK-DALE, PLAID and WHITED data set, in which a 10-fold cross
validation is adopted.

It is clearly shown that the proposed IKNN classifier based on
both Euclidean distance and weighted Euclidean distance outperforms
the other classification models, it provides the best results on the
three data sets considered in this framework. For instance, it achieves
98.50% and 98.49 F1 score under UK-DALE while the performance has
slightly propped for both the PLAID and WHITED data sets. Accord-
ingly, 96.85% accuracy and 96.18% F1 score have been obtained under
PLAID and 96.5% and 96.04% have been attained under WHITED. This
might be justified by the rise of the sampling frequency in both PLAID
and WHITED data sets, where data have been gleaned at 30 kHz and
44 kHz, respectively, in contrast to UK-DALE, in which consumption
footprints have been gathered at a resolution of 1 Hz. Moreover, it is
important to notice that the LPH descriptor serves not only as a feature
extraction descriptor but as a dimensionality reduction approach as
well. Explicitly, for each appliance signal, the resulting LPH vector en-
compasses only 256 samples while the initial appliance signals include
much higher samples (e.g. 22491, 57600 and 30000 samples WHITED,
UK-DALE and PLAID, respectively). This drives us to determine that the
proposed LPH-IKNN solution operates better under low frequencies. All
in all, the performance obtained with LPH-IKNN are very promising
because they are all superior than 96% for all the data sets considered
in this study.

On the other side, it is worth noting that the proposed LPH descrip-
tor can be trained using simple ML algorithms without the need to
deploy deep leaning models, which usually have a high computation
complexity. In this direction, it was obvious that conventional classi-
fiers, e.g. LDA, DT, EBT, SVM and KNN outperforms significantly the
DNN classifier, especially under UK-DALE and GREEND data sets.

4.5. Comparison with existing 2D descriptors

The promising results of the proposed LPH obtained under the three
data sets considered in this study has pushed us to investigate the
performance of other 2D descriptors in comparison with our solution.
Accordingly, in this section, we investigate the performance of three
10

other feature extraction schemes.
Fig. 6. Kirsch kernels utilized in the LDP approach.

• Local directional patterns (LDP): After transforming the power
signal into 2D space, for each pattern of the power array, an 8-bit
binary sequence is derived using LDP (Srinivasa & Mouli, 2016).
The latter is measured via the convolution of small kernels from
the power array (e.g. 3 × 3) with the Kirsch blocks in 8 different
orientations. Fig. 6 portrays an example of the Kirsch blocks used
in LDP.

• Local ternary pattern (LTeP): Unlike LPH, LTeP does not encode
the difference of power patterns in every kernel into 0 or 1, but
encode them into other quantization values using a thresholding
process (Yuan, Zhu, Gan, & Shang, 2014). Let consider 𝑡ℎ𝑟 is the
threshold parameter, 𝑠𝑐 presents the central power pattern in a
patch of 3 × 3, and 𝑠𝑛 stands for the neighbor patterns, every
central pattern 𝑠′𝑐 can be encoded as follows:

𝑠′𝑐 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑠𝑛 > 𝑠𝑐 + 𝑡ℎ𝑟
0 if 𝑠𝑛 > 𝑠𝑐 − 𝑡ℎ𝑟 and 𝑠𝑛 < 𝑠𝑐 + 𝑡ℎ𝑟
−1 if 𝑠𝑛 < 𝑠𝑐 − 𝑡ℎ𝑟

(12)

• Local Transitional Pattern (LTrP): It compares the transitions of
intensity changes in small local regions (e.g. kernels of 3 × 3) in
different orientations in order to binary encode the 2D represen-
tations of appliance power signals. Specifically, LTrP generates a
bit (0/1) via the comparison the central power pattern of a 3 × 3
patch with only the intensities of two neighbors related to two
particular directions (Ahsan, Jabid, & Chong, 2013).

• Local binary pattern (LBP): Is a texture descriptor that presents a
low computation complexity along with a capability to captur-
ing a good part of textural patterns of 2D representations. LBP

represents micro-patterns in power matrices by an ensemble of
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Table 3
Performance of the LPH-based descriptor vs. other 2D descriptors with reference to the histogram length, accuracy and F1 score.

Descriptor Histogram length UK-DALE GREEND PLAID WHITED

Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

LDP 56 99.46 99.50 99.62 99.59 89.79 85.82 81.66 79.38
LTeP 512 98.86 98.80 98.95 98.91 91.28 88.97 82.08 80.15
LTrP 256 97.04 96.99 97.11 97.05 85.81 81.37 81.25 78.78
LBP 256 97.21 96.56 97.35 97.13 91.83 90.72 92.5 92.03
BSIF 256 96.75 96.12 96.88 96.50 90.33 89.41 88.94 87.77
LPH 256 98.51 98.49 99.65 99.55 96.85 96.48 96.55 96.34
Fig. 7. The performance of LPH descriptor compared to other 2D feature extraction schemes in terms of (a) accuracy, and (b) F1 score.
simple computations around each power sample (Tabatabaei &
Chalechale, 2018).

• Binarized statistical image features (BSIF): It constructs local de-
scriptions of 2D representations via effectively encoding texture
information and extracting histograms of local regions. Accord-
ingly, binary codes for power patterns are extracted via the
projection of local power regions onto a subspace, where basis-
vectors were learnt using other natural images (Kannala & Rahtu,
2012).

Table 3 along with Fig. 7 portray the performance of LPH in com-
arison with the aforementioned 2D descriptors, among them LBP, LDP,
TeP, BSIF and LTrP with regard to the histogram length, accuracy and
1 score. The results have been obtained by considering the IKNN for
ll descriptors (K=5). I has been evidently shown that high performance
as been obtained with all the descriptors under UK-DALE. Explicitly,
ll the descriptors have achieved an accuracy and F1 score of more than
6%. On the other hand, LDP and LTeP descriptors marginally surpass
he LPH under this repository. On the contrary, the performance of the
ther descriptors have been highly dropped under PLAID and WHITED
nd only LPH maintains good accuracy and F1 score results. For in-
tance, LPH has attained 96.85% accuracy and 96.48 F1 score under
LAID and 96.55% accuracy and 96.34% F1 score under WHITED. In
his context, under PLAID, LPH outperforms BSIF, LBP, LTrP, LTeP and
DP in terms of the accuracy by more than 6%, 5%, 11%, 5.5% and
%, respectively. While in terms of the F1 score, it outperforms them
y 7%, 5.5%, 15%, 7% and 10%, respectively.

Conversely, the performance variation reported under the different
ata sets is due to frequency resolutions variation, in addition be-
ause UK-DALE records appliance power consumption for multiple days
i.e. it collects the consumption from the same devices but for distinct
ays for a long period) while PLAID and WHITED data sets observe
ifferent devices from distinct manufacturers (brands) and which are
elonging to the same device category.

Moving forward, we have evaluated the computation cost of the pro-
osed appliance identification scheme based on different 2D descriptors
n order to demonstrates its applicability in real-time scenarios. Ac-
ordingly, the computation time for the training and test phases of our
11
approach have been computed using MATLAB 9.4. The computational
costs are computed on a laptop having a Core i7-85500 with 32 GB
RAM and 1.97 GHz. Table 4 depicts the obtained computational times
(in sec) with regard to various 2D descriptors under the three data sets
adopted in this framework.

Accordingly, it has been clearly seen that the appliance identifica-
tion based LPH achieves the lowest computational time in comparison
with the other descriptors for both the training and test stages under
the three data sets. Moreover, the test time of LPH based solution under
PLAID and WHITED is less than 1 s, which can proves that it is possible
to implement it for real-time applications since most of the transmitter
can transmit data with a sampling rate of more than 1 s On the other
flip, the test time of the LPH based solution has increased under UK-ALE
to more than 2 s because in this case long daily consumption signatures
are analyzed. In contrast to PLAID and WHITED, where short appliance
fingerprints from are considered.

4.6. Comparison with existing load identification frameworks

Table 5 recapitulates the results of various existing load identifica-
tion frameworks under REDD data set, in comparison with the proposed
LPH-IKNN solution and with reference to different parameters, among
them the description of learning model, its type, number of the device
categories and accuracy performance. It has been clearly seen that the
LPH-IKNN framework outperforms all other architectures considered in
this study. Moreover, LPH-IKNN has a low computational cost, which
can make it a candidate for real-time applications. On the other side,
it is worth noting that the proposed method is evaluated under three
distinct power repositories with different sampling rates, in which it
presents promising results. In contrast, each of the other methods is
only validated under one data set, therefore, this increases the credibil-
ity of the our study and proves that it could be deployed under different
scenarios without caring about the sampling rate.

All in all, it is of significant importance to mention that the proposed
LPH-IKNN has been validated using four different data sets (i.e. UK-
DALE, GREEND, PLAID and UK-DALE) including different kinds of
power signatures recorded (i) with distinct frequency resolutions, and
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Table 4
Computational time (in sec) of the proposed appliance identification based on different 2D descriptors.

Time (in sec)

2D descriptors UK-DALE GREEND PLAID WHITED

Training Test training test Training Test Training Test

LDP 25.18 3.71 32.23 4.73 8.89 1.27 6.17 0.88
LTeP 31.22 3.86 39.97 4.96 11.39 1.69 7.76 1.19
LTrP 34.69 4.38 44.41 5.61 12.48 1.44 8.42 1.03
LBP 19.55 2.96 25.44 3.77 6.26 0.97 4.13 0.69
BSIF 39.17 5.11 49.17 6.61 13.75 1.76 9.27 1.25
LPH 19.45 2.92 21.89 3.76 5.91 0.93 3.68 0.64
Table 5
Performance of the proposed LPH-IKNN based load identification system vs. existing solutions with reference to different criteria.

Framework Approach Learning type # appliance classes Accuracy (%)

Himeur et al. (2020a) MSWPT + DBT Supervised 9 96.81
Park et al. (2019) ANN Supervised 8 83.8
Ma et al. (2018) fingerprint-weighting KNN Supervised 6 83.25
Guedes et al. (2015) HOS Supervised 11 96.8
Wang and Zheng (2012) mean-shift clustering UnSupervied 13 80
Dinesh et al. (2016) Karhunen Loéve Supervised N/A 87
Morais and Castro (2019) AANN Supervised 5 97.7
Zhiren et al. (2019) AdaBoost Supervised 5 94.8
Ghosh, Chatterjee, and Chatterjee (2019) Fuzzy model Supervised 7 91.5
Yan et al. (2019) Bayesian classifier + correlation Supervised 29 95.6
Our LPH + IKNN Supervised 9 98.5
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(ii) under different scenarios. For instance, under both UK-DALE and
GREEND, we collect the power consumption signatures that vary
through the time for a set of appliances (i.e. each daily consumption
trace represents a power signature); while under both PLAID and
WHITED, for each appliance category, the power traces are gleaned
from different manufacturers. In this regard, validating our solution
under these data sets using different scenarios, has helped in (i)
showing its high performance although the frequency resolution has
been changed, and (ii) proving its capability to be implemented in
real-application scenarios since it can identify appliance-level data
even if they are from different manufacturers and although the power
signatures change from a day to another.

5. Conclusion

In this paper, a novel method for performing accurate appliance
identification and hence improving the performance of the NILM sys-
tems has been presented. The applicability of a local 2D descriptor,
namely LPH-IKNN, to recognize electrical devices has been successfully
validated. Consequently, other types of 2D descriptors can be investi-
gated in order to further improve the identification accuracy, such as
local texture descriptors, color histograms, moment-based descriptors
and scale-invariant descriptors. This line of research is full of challenges
and plenty of opportunities are available. Moving forward, in addition
to the high performance reached, the LPH-IKNN based appliance iden-
tifications scheme has shown a low computational cost because of the
use of a fast 2D descriptor along with the IKNN, which uses a smart
strategy to reduce the training and test times. Furthermore, LPH-IKNN
acts also as a dimensionality reduction, in which very short histograms
have been derived to represent appliance fingerprints.

On the other hand, although LPH-IKNN has shown very promising
performance, it still has some drawbacks among them is its reliance on
a supervised learning process. Explicitly, this could limit its application
in some scenarios, where it might be difficult to collect data to train
the proposed model. To that end, it is part of our next future work
to change the learning process by building an improved version of this
LPH-IKNN using an unsupervised learning approach. Moreover, another
option is by adding a transfer learning module to eliminate the need to
collect new data for training our system if the sampling frequency of
collected data is changed. Moreover, IKNN classifier could be replaced
12

by any other improved algorithm that enables an automatic selection
of the 𝑘 value to simplify the use of LPH-IKNN in real application sce-
arios. In this context, the GBKNN classifier discussed in Section 2.2.1
eems to be a good alternative that could be investigated in our future
ork.

On the other hand, due to the size of appliance identification based
ata sets is not very large, it will be of significant importance to inves-
igate the use of other feature extraction methods in our future work,
hich are very convenient for small data sets, e.g. rough set based

echniques (Xia, Li et al., 2020; Xia, Zhang et al., 2020). The latter helps
lso in attribute reduction and feature selection and hence it could
urther reduce the computational cost of the appliance identification
ask to support real-time applications. Finally, it will also be part of our
uture work to focus on developing a powerful recommender system,
hich can use the output of the LPH-IKNN based NILM system to detect
bnormal power consumption in buildings before triggering tailored
ecommendations to help end-users in reducing wasted energy.
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