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A B S T R A C T

The building internet of things (BIoT) is quite a promising concept for curtailing energy consumption,
reducing costs, and promoting building transformation. Besides, integrating artificial intelligence (AI) into
the BIoT is essential for data analysis and intelligent decision-making. Thus, data-driven approaches to
infer occupancy patterns usage are gaining growing interest in BIoT applications. Typically, analyzing big
occupancy data gathered by BIoT networks helps significantly identify the causes of wasted energy and
recommend corrective actions. Within this context, building occupancy data aids in the improvement of the
efficacy of energy management systems, allowing the reduction of energy consumption while maintaining
occupant comfort. Occupancy data might be collected using a variety of devices. Among those devices are
optical/thermal cameras, smart meters, environmental sensors such as carbon dioxide (CO2), and passive
infrared (PIR). Even though the latter methods are less precise, they have generated considerable attention
owing to their inexpensive cost and low invasive nature. This article provides an in-depth survey of the
strategies used to analyze sensor data and determine occupancy. The article’s primary emphasis is on reviewing
deep learning (DL), and transfer learning (TL) approaches for occupancy detection. This work investigates
occupancy detection methods to develop an efficient system for processing sensor data while providing
accurate occupancy information. Moreover, the paper conducted a comparative study of the readily available
algorithms for occupancy detection to determine the optimal method in regards to training time and testing
accuracy. The main concerns affecting the current occupancy detection system in terms of privacy and
precision were thoroughly discussed. For occupancy detection, several directions were provided to avoid or
reduce privacy problems by employing forthcoming technologies such as edge devices, Federated learning, and
Blockchain-based IoT.
1. Introduction

Nowadays, building internet of things (BIoT) and big data analytics
provide promising perspectives to enhance building operation and
management. BIoT relies on incorporating the internet of things (IoT)
concept along with other smart technologies, i.e., machine learning
(ML) and artificial intelligence (AI) into the building sector, to support
building automation and smart management (Himeur et al., 2021a).
Typically, this helps collect different kinds of data produced by ei-
ther by buildings occupants or/and equipment installed in building
environments (Alsalemi et al., 2021).

Besides, a variety of factors influences electricity usage. Building at-
tributes, equipment efficiency, and weather conditions are all physical
considerations. On the other hand, end-users cannot readily manage
or modify these aspects during building use. The term ‘‘occupancy’’ is
used to describe the main level of residents behavior modeling (Rueda
et al., 2020). To elaborate, occupancy is a component of behavior
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that describes the occupants’ presence, power usage habits, and in-
terior conditions. In the context of automation systems, identifying
presence patterns holds significant importance. This significance stems
from its potential to manage electrical devices and techniques like
air conditioning, lighting, and ventilation, which may save substantial
energy in residential and commercial buildings (Sardianos et al., 2020a,
2021). Additionally, a lot of potential can be offered in enhancing
the capabilities of demand-driven systems that utilize true occupancy
data to improve the energy-to-comfort trade-off. Not to mention the
correlation between occupants’ behavior and lifestyle habits to their
energy usage (Oikonomou et al., 2009). To highlight the importance
of occupancy detection notation, the authors in Leephakpreeda (2005)
presented occupancy-based lighting management reduced the system’s
energy usage by 35% to 75%. Furthermore, according to Jin et al.
(2016), by controlling the ventilation operation having the knowledge
of occupancy data, this might save up to 55% of the ventilation system
demand.
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On another hand, collecting and using occupancy data to enhance
he energy-to-comfort trade-off requires powerful ML models that can
ffectively infer the relevant behavioral information (Elnour et al.,
022a; Himeur et al., 2021b). An extension of ML is DL which em-
loys numerous layers to extract higher-level characteristics from raw
nput data. By utilizing the backpropagation technique, DL structures
etermine how a machine’s intrinsic parameters should be modified
o calculate the subsequent layer representation from the preceding
ayer. However, the broad utilization of ML, especially DL to monitor
he presence of buildings’ end-users can be prevented or delayed by
arious key barriers, among them (i) data scarcity where historical data
r real-time records may not be promptly available due to shortages
f grid communication infrastructures (Li et al., 2022), (ii) lack of
abeled datasets for training ML models (Tariq et al., 2021), (iii) high
omputing resource requirements of DL models especially when they
re trained on a massive range of environmental and energy data (Liu
t al., 2021a); (iv) supervised learning can create highly accurate mod-
ls by training ML models for completing a wide range of tasks using
nnotated datasets, however, its application on real-world scenario may
ncounter some issues if actual data deviates or strays from the training
ets (Elnour et al., 2022b).

To that end, reducing the volume of training datasets, creating la-
eled datasets, and decreasing the training time while keeping adequate
earning performance are challenging and crucial issues. One solution
hat can help overcome these problems is transfer learning (TL), which
as been recently introduced as a solution to bring numerous advan-
ages to the development process of ML/DL-based systems. TL is a
romising ML technique that focuses on transferring knowledge across
omains. The concept’s inception was inspired by the humans’ ability
o transfer knowledge between different domains; TL seeks to use infor-
ation from a corresponding field (also known as the source domain) to

nhance learning outcomes or reduce the number of labeled instances
eeded in the target domain Zhuang et al. (2020). Typically, DL helps
o (i) save computing resources and improve efficiency when training
ew models since the ML/DL models can be pretrained offline on large-
cale datasets and then fine-tuned on small datasets (Ahmed et al.,
021); (ii) train ML/DL models on available annotated datasets before
alidating them on unlabeled datasets, which is of utmost importance,
eeping in mind that labeling data is a tough task that takes time and
ffort and requires the intervention of experts (Zheng et al., 2021);
iii) train ML/DL models using simulated or synthetic data instead of
eal-world environments (Ko and Park, 2021), (iv) leverage knowledge
rom existing models instead of starting from scratch each time, and
v) exploit the knowledge acquired from previous tasks for improving
eneralization about others (Kim et al., 2021).

This article goes through the methodologies for analyzing various
ata types and determining occupancy information. The primary focus
f this paper will be on DL and TL algorithms for occupancy detection.
his research looks at occupancy detection algorithms to reach an
fficient and accurate system in processing sensor data. In addition, this
ork will perform a comparative study of the currently available occu-
ancy detection algorithms to determine the best technique regarding
raining duration and testing accuracy. Consequently, a few suggestions
re provided on enhancing various features of the current occupancy
etection algorithms. Cloud computing, for example, generates a lot of
andwidth demand, which results in a lot of energy usage. This problem
ight be solved by moving computing to the network’s edge and/or
sing TL. The use of Federated learning and Blockchain-based IoT are
ecommended for occupancy detection to improve end-user privacy and
ecurity by shifting processing from a centralized to a decentralized
ashion. The primary contributions of this paper are as follows:

• Providing, to the best of the authors’ knowledge, the first review
that explores and summarizes the significance and deployment of

DL and TL for occupancy detection.
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• Presenting a comprehensible taxonomy to categorize state-of-
the-art occupancy detection systems regarding various aspects,
e.g., data collection methodology, DL models, TL, platforms for
computing, applications, existing concerns, and possible future
paths

• Conducting critical analysis and discussion to identify current
issues that impede developing reliable occupancy systems, such
as data scarcity, lack of open-source toolkits, privacy concerns,
and scalability and interoperability.

• Identifying prospective paths that will draw major research and
development in the foreseeable future, including edge computing,
federated learning, and blockchain, because of their benefits in
preserving occupants’ privacy and enabling real-time occupancy
monitoring.

The reminder of the article is structured as follows: Section 2 dis-
cusses the review methodology deployed for the publications selection
to be included in the review. Section 3 explains the data gathering
component of the article. Section 4 surveys the state-of-the-art DL and
TL algorithms for the application of occupancy detection. The findings
and the comparative analysis are discussed in Section 5. In Section 6,
potential directions are recommend. Finally, concluding remarks are
found in Section 7.

2. Review methodology

We first conducted a comprehensive literature search in the Scopus,
Elsevier, and IEEE databases. All the works that deal with the following
aspects were included in this review: occupancy detection, sensors,
and data collection, datasets, ML algorithms, statistical models, DL,
TL, building type, performance, and limitation. Several combinations
of these keywords and their synonyms were adopted when search-
ing. Therefore, research studies introduced between January 2015
and February 2022 were discussed in this framework. This period
has been selected to evaluate the more recent and pertinent contri-
butions and also to have a sufficient number of contributions to be
studied in this review. Typically, this framework discusses English-
written peer-reviewed journal articles, conference proceedings papers,
and book chapters. Fig. 2 demonstrates the taxonomy applied in this
review to categorize existing studies based on different aspects, includ-
ing data collection, DL models, TL algorithms, computing platforms,
applications, current challenges and future directions.

2.1. Study selection

The selection process adopted in this review relies on adhering the
specifications of the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) (Moher et al., 2009), which is a practical
and efficient approach for writing survey studies. Concretely, a search
was performed for the last seven years (January 2015–February 2022).
This was done to focus solely on the latest trends of DL and TL for
occupancy detection while having a sufficient number of studies to
be discussed. To eliminate duplicate references, a reference manager
software has been utilized, and only the remaining frameworks have
then been considered after filtering them by their titles, keywords, and
abstracts.

2.2. Inclusion/exclusion criteria

All selected frameworks have thoroughly been screened out and
carefully read based on the inclusion/exclusion procedure explored
in what follows: (i) frameworks considering DL and TL models have
been overviewed. Table 1 portrays the search queries conducted in this
review; (ii) only studies published from January 2015 to February 2022
have been investigated; only research publications accessible online
(i.e., peer-reviewed conference proceedings papers, book chapters, and
journal articles) have been included; and (iv) when different frame-
works on the same problem have been published by the same authors,

the most recent and valuable ones have been analyzed.
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Fig. 1. Statistical observations on the included papers.
Table 1
Search queries used when conducting the review.

Parameter Search query

Occupancy ‘‘Building Occupancy’’ or ‘‘Indoor Occupancy Detection’’
Learning
model

‘‘Convolutional Neural Networks’’ or ‘‘Recurrent Neural Networks’’ or ‘‘Long Short Term Memory Networks’’
or ‘‘Multilayer Perceptrons’’ or " Radial Basis Function Networks‘‘ or ’’Generative Adversarial Networks" or
‘‘Self Organizing Maps’’ or ‘‘Deep Belief Networks’’ or ‘‘Autoencoders’’ or ‘‘Restricted Boltzmann Machines’’
2.3. Quantitative analysis

Numerous research studies have studied various technologies, sen-
sors, and algorithms to detect occupancy information. A quantitative
analysis corresponding to the specifics of referenced studies is pre-
sented in this subsection. Typically, we provide the research statistics
on the included articles in Fig. 1, in respect to the employment of either
DL and TL algorithms, building type, year of publication, and first
author’s country. In this respect, it is worth noting that environmental
data and images are the most used data types to infer occupancy
patterns, where 34% and 28% of included studies have been built
on them, respectively. It is apparent from the reported results that
very little interest is still put towards developing TL-based occupancy
solutions (with only 4% of the included papers) although its significant
benefits. Typically, 96% of studied frameworks belong to DL-based
category. In this context, it is evident that most of the frameworks
have been developed based on convolutional neural network (CNN)
and multilayer perceptrons (MLP) algorithms, with 26% and 23% of
the reported works, respectively. For the publication year, an increasing
interest has been noticed, starting from 2018 in the included sample of
works. Lastly, statistics of the 1st author’s publication are also given.
The US, is the country with most publications with twenty four papers
followed by china with eight papers.

3. Data collection

Based on the reviewed research frameworks, occupancy detection
in buildings can be performed using data collected from either the
network of sensors (i.e., humidity, temperature, CO2, etc.), mobility

sensors (i.e., passive infrared (PIR) sensors collecting mobility data)
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smart meters (i.e., energy consumption footprints) or cameras (i.e., vi-
sual data). Following this classification, this section discusses the main
contributions achieved in each category.

3.1. Network of sensors

Presence detection is a critical component in smart buildings to
optimize the overall energy consumption. However, when designing
occupancy detection methods, some challenges arise. One of them is
keeping in mind how to protect the occupants’ privacy while cre-
ating such devices (Sardianos et al., 2020b; Himeur et al., 2020a).
An adequate occupancy detection system should be built to prevent
inhabitants or their actions from being identified. As a result, non-
intrusive methods for detecting occupancy are required; otherwise,
existing mechanisms should be improved (Zou et al., 2017; Wang et al.,
2021a).

The authors in Abade et al. (2018) presented and evaluated a
system for non-intrusive occupancy detection employing sensors col-
lecting data such as noise, temperature, carbon dioxide (CO2), and
light intensity. A working system was tested, which included a device
to collect and analyze environmental data, as well as an analysis of
data patterns across the obtained data using ML techniques to estimate
human occupancy in interior spaces.

Additionally, the authors in Adeogun et al. (2019), presented the
results on implementing ML methods using sensory data such as tem-
perature, humidity, pressure, CO2, sound, total volatile organic com-
pounds (TVOC), and PaPIRMotion which is based on PIR sensor. The
data was gathered from an IoT monitoring system to estimate indoor
occupancy information. For binary and multi-class problems, the pro-
posed system could predict room occupancy with an accuracy of up to
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Fig. 2. Taxonomy of occupancy detection techniques.
94.6% and 91.5%, respectively. Similarly, the work done in Li et al.
(2019) inferred occupancy by fusing data from a network of sensors.
In Zemouri et al. (2018), environmental data was employed to detect
occupancy. However, the authors claimed they used edge devices in
their implementation. Nevertheless, they relied on a cloud provider
to supply the packaged code to the IoT devices, which may appear
contradictory.

The study in Jeon et al. (2018) tackled the problem in a novel
manner. They introduced an occupancy detection system using IoT
technologies and on dust concentration change patterns. The extrac-
tion technique used by the authors is to create triangle forms, and
accordingly their characteristics are utilized to recognize presence in an
indoor setting. Data is collected using dust, temperature, and humidity
sensors. The system was implemented in a real-live experiment to eval-
uate the effectiveness. Finally, a qualitative analysis of the experimental
outcomes was conducted to compare the system performance against
other standard techniques.

Another study performed by the authors in Wu and Wang (2021)
concluded that the use of PIR sensors for internal lighting management
resulted in a high number of false-negative for stationary occupancy
detection, accounting for over 50% of the overall occupancy accuracy.
To resolve that issue, they designed a synchronized low-energy elec-
tronically chopped PIR (SLEEPIR) sensor that employs a liquid crystal
(LC) shutter to reduce the power of the PIR sensor’s long-wave infrared
output. By incorporating a support vector machine (SVM) classifier,
experiments with everyday routines showed a 99.12% of accuracy.

In Abedi and Jazizadeh (2019), the use of doppler radar sensors
(DRS) along with infrared thermal array (ITA) sensors demonstrated a
high accuracy when using deep neural networks (DNN) algorithms. The
DRS and ITA sensors achieved occupancy detection accuracy of 98.9%
and 99.96%, respectively.

3.2. Mobility data

With the recent success of ML algorithms (i.e., CNN, recurrent neu-
ral network (RNN), autoencoders, etc.), the use of big data analytics,
4

and the widespread use of mobile phones, the most modern tech-
nologies, including, the IoT, global positioning system (GPS), wireless
local-area networks (WLAN), radar sensors, and Bluetooth, have found
broad application for the use case of occupancy detection (Ding et al.,
2021).

The strategy developed in Demrozi et al. (2021), is based on iden-
tifying human-induced changes in Bluetooth low energy (BLE) signals.
Comprehensive experiments on five distinct datasets are piloted to de-
termine the approach’s efficacy. Several pattern recognition models are
used and compared to systems based on IEEE 802.11 (Wi-Fi) standards.
In various settings, the occupancy prediction of the developed design
reaches an accuracy of 97.97%. When predicting the number of people
in a room, on the other hand, the anticipated number of people differs
by 0.32 people on average from the actual number.

The study in Wang et al. (2019a) proposed a non-intrusive, unique
and accurate method for detecting occupant counts in buildings. The
systems used existing Wi-Fi infrastructure without installing additional
hardware or sensors. Using Wi-Fi connections count data, the re-
searchers used the random forest (RF) algorithm to estimate occupants
count in a room. Similarly, the work in Zhao et al. (2015) utilized
GPS and Wi-Fi smartphone connection data to detect occupancy in
buildings. Comparably, the study in Liu et al. (2020) proposed an
indoor occupancy detection system using a passive Wi-Fi sensor.

3.3. Smart meters

Since energy meters are already installed in millions of households
and office buildings, energy consumption monitoring has the poten-
tial of being an extremely affordable and non-intrusive alternative to
manage the end-users occupancy and behavior (Alsalemi et al., 2020).
In this respect, data analysis models for human occupation behavior
are developed based on the use of sub-metering records from domestic
home devices (Himeur et al., 2020b). New statistical and probabilis-
tic methods have been developed and put up for consideration to
determine appliance consumption and occupancy (Baek et al., 2021).
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For instance, in Vafeiadis et al. (2017), the difficult task of detecting
ccupants in a domestic setting was addressed using data from smart
nergy and water meters. Door counter sensor readings were used
s ground truth training data for the most common ML algorithms,
ncluding boost variants. Based on the results of the simulations, the RF
nd decision tree (DT) learning approaches outperform the remaining
lassifiers, with an accuracy moderately higher than 80% and an F-
core of approximately 84%, respectively. Similarly, the study in Jin
t al. (2017) was performed to predict occupancy patterns from smart
eter data accurately and reached an accuracy of around 78%–93% for

esidential buildings and 90% for office spaces. Additionally, the work
one in Feng et al. (2020) utilized advanced metering infrastructure
AMI) data to provide real-time occupancy data for buildings. The
esearchers developed a DL model which consisted of a CNN and an
ong short-term memory (LSTM) network. The model forecast occu-
ancy patterns with an accuracy of around 90%. Correspondingly, the
uthors in Akbar et al. (2015) developed a k nearest neighbor (kNN)
pproach deployed in smart offices to identify occupancy statues with
n efficiency that reached 94%.

The use of load curve data to identify occupancy has been previ-
usly explored. On the other hand, such approaches are often based
n a time-consuming and complicated model training procedure. To
void this problem, the authors in Tang et al. (2015) devised a straight-
orward, non-intrusive occupancy detection method which requires no
odel training and relies just on load curve data and seamlessly avail-

ble appliance records. The performance of the approach was evaluated
gainst other supervised classification algorithms and demonstrated
cceptable performance.

The work in Pal et al. (2019) introduced the deep learning system
or occupancy classification (DeepEOC). The system studies the im-
act of various feature extraction algorithms. Such algorithms include
he principal component analysis (PCA) and SHapley Additive exPla-
ation (SHAP). For evaluating and comparing the algorithms, three
istinct metrics have been considered: Mathew’s correlation coefficient,
2-score, and accuracy.

.4. Cameras

Because of their outstanding precision, cameras are also helpful in
stimating and detecting building occupancy (Chen et al., 2018). The
se of a thermal camera to detect occupancy was explored in Metwaly
t al. (2019). The performance of several DL models was investigated
n various embedded processors. The developed method reached a
rediction accuracy of 98.9% for people counting approximation.

Additionally, the work in Tse et al. (2020) utilizes a camera and
aspberry Pi (RPi) platform to detect occupancy patterns on the net-
ork’s edge. Specific image processing techniques have enhanced this
ethodology, allowing it to be adapted and applied in various indoor

ituations without needing a separate training phase. Occupancy pre-
iction by employing cameras generally yields accurate findings, but it
as several drawbacks, including high computing complexity, lighting
onditions’ influences on the accuracy, and privacy concerns (Chen
t al., 2018).

. Overview of existing frameworks

.1. Deep learning models

To derive higher-level interpretations from raw inputs such as pixel
ata pictures, audio recordings, and text documents, DL, which is a sub-
ield of ML in AI, uses hierarchical architectures such as DNN, CNN,
eep belief network (DBN), and graph neural network (GNN). In this
ection, the various DL methods applied in the context of occupancy de-
ection will be discussed. The general process of identifying occupancy

s demonstrated in Fig. 3.
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4.1.1. Convolutional Neural Networks (CNNs)
A novel cascade video analysis technique based on a creative fusion

of SVM, CNN, and K-means clusters, is proposed in Zou et al. (2017).
The system employs a cascade classifier that recognizes the human head
and includes a pre-classifier, primary classifier, and clustering analyzer.
The experimental findings reveal that occupancy measurement accu-
racy may reach 95.3%, with a computing cost of just 721 ms. Similarly,
in Zou et al. (2018a), daily human activities are recognized using Wi-
Fi-enabled IoT devices and a DL framework that includes autoencoders,
CNN, and LSTM. Extensive tests are carried out in three typical indoor
locations, and the findings show that the proposed framework reached
an accuracy of 97.6% for activity identification while eliminating the
need for human participation.

Two distinct approaches for processing and fusing data collected
from several heat sensors are explored in Arvidsson et al. (2021) with
the use of a CNN to forecast occupancy. Tests were conducted to
evaluate offered solutions’ performance and determine the effect of
sensor field view overlap on the prediction outcomes. Equivalently,
in Abedi and Jazizadeh (2019), the use of DRS along with ITA sensors
demonstrated a high accuracy when using DNN algorithms. The DRS
and ITA sensors achieved occupancy detection accuracy of 98.9% and
99.96%, respectively. In Feng et al. (2020), the fusion of CNN and LSTM
algorithms was employed to detect binary occupancy patterns from
AMI data. The authors obtained 90% accuracy by training the algorithm
using actual occupancy data. Likewise, the authors in Saha (2021)
presented a few shot learning frameworks for indoor human occupancy
identification using very low-quality photos to preserve privacy. This
approach supports the use of comparatively simpler CNN architectures.
In Sun et al. (2021), indoor human heads are detected using a fully
convolutional head detector (FCHD). The research in Mutis et al. (2020)
offered a unique strategy for controlling indoor air quality, which
incorporates occupancy sensing, motion identification algorithms, and
human motion analysis via the analysis of video streams using CNN
algorithms. Similarly, the work in Acquaah et al. (2020) employed
thermal cameras with AlexNet CNN network to identify occupancy
patterns with accuracy up to 98.8%.

The objective of the work in Tien et al. (2021a) was to present a
image-based occupancy and appliances usage detection approach for
demand-driven control systems to reduce excessive power consumption
and improve thermal conditions. In real-time, the approach detects and
recognizes many inhabitants, their behaviors, and equipment employed
within building spaces. A faster region-based convolutional neural
network (R-CNN) was created, then trained, and integrated based on
camera data to detect occupancy activities and appliance usage in
real-time.

The study in Wang et al. (2021b) presented and modeled an
occupancy-aware intelligent dispatching for efficient elevator group
control in real-time. The dispatching system estimates elevator capacity
using object detection based on CNN and incorporates the model into
the optimization of the dispatching by adjusting the prioritized A*
search method to deploy the mentioned occupancy detection approach.

The study in Tien et al. (2020a) describes a vision-based DL strategy
for detecting and recognizing occupant activity in building areas. Via
employing CNN, the model was created to identify occupancy activity
using camera footage. Detection accuracy of 80.62% was reached on
average. Similarly, a technique for real-time prediction of building
occupancy load and an air-conditioning load forecast-based control
approach was proposed in Meng et al. (2020), both of which have the
potential for improving air quality in public buildings. The system uses
a camera to capture visual data from the interior of the building, which
is then processed using image processing and DL detection, particularly
a CNN model. The study in Tien et al. (2020b) describes the preliminary
construction of a data-driven DL framework for identifying occupant
behaviors. Additionally, the findings gained from the method’s initial
test inside building energy simulation are analyzed. A CNN was trained
for classification and detection based on images. With an accuracy of

89.39%, the DL model was verified.
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Fig. 3. Overview of the process of occupancy detection via ML/DL.
The authors in Callemein et al. (2019) proposed the use of om-
nidirectional image sensors mounted on intelligent embedded low-
resolution cameras to count occupants in office spaces. Because of the
dearth of comparable labeled data for training, the authors produced an
annotated examples using existing presence detection algorithms. The
research in Acquaah et al. (2021) used thermal images to train ML mod-
els for occupancy detection to be integrated into heating ventilation
and air conditioning (HVAC) control models. Four feature extraction
strategies were investigated based on the usage of thermal camera
footage, which are: wavelet feature extraction, wavelet scattering, grey-
level co-occurrence matrix (GLCM) feature extraction, and feature maps
of pre-trained CNN. Typically, two CNN models have been consid-
ered, including, the visual geometry group (VGG-16) and deep residual
(Resnet-50).

The study in Chen et al. (2020) utilizes the convolutional deep bidi-
rectional LSTM (CDBLSTM) network to identify occupancy from various
sensor data with an accuracy of 95.42%. The use of such sensors,
with the presence of ventilation, on the other hand, may change the
amount of humidity, CO, and CO2 in the home environment, resulting
in an incorrect occupancy predication. On another tangent, the study
in Kim et al. (2020) detected significant emergency occurrences in
single-person homes (SPH) and developed a unique SPH monitoring
method based on sound recognition and DL (i.e., using CNN and LSTM).

4.1.2. Recurrent Neural Networks (RNNs)
The research in Wang et al. (2018) makes use of Wi-Fi probe

technology to purposefully examine the requests and responses made
between the building occupants’ access points and network devices. The
authors suggested a Markov-based feedback recurrent neural network
(M-FRNN) approach for modeling and forecasting presence patterns
using collected data. Using support vector regression (SVR) and RNN
algorithms, the authors (Zhao et al., 2018) offer a unique technique
for detecting a building’s occupancy behavior based on temperature
and/or likely heat source information. The suggested system in Billah
and Campbell (2019) which is based on a limited number of wireless
packets, estimates the occupancy of an area using a fast and tiny gated
recurrent neural network (FastGRNN) operating on the BLE device,
providing energy-efficient real-time analytics.

4.1.3. Long Short Term Memory Networks (LSTMs)
It was suggested in Husnain and Choe (2020) that an occupancy

detection system can be built without entirely covering the whole
room with sensors. A decision module based on LSTM predicts human
presence patterns to cover the sensor’s off-range region. It lowers
the cost of installing an occupancy detection system. On the same
tangent, the authors in Pešić et al. (2019) proposed a technique to
detect occupancy centered on the usage of data fusion of Wi-Fi and
Bluetooth information and a set of data analytics functions for exam-
ining occupancy data across logical and physical boundaries. Lastly,
they studied an LSTM neural network (NN) for occupancy forecasting
and explained how the same data analytic features could present and
anticipate occupancy data. They have achieved an edit distance on real
(EDR) signals similarity of 75.45% for workdays.
6

Another work in Chen et al. (2017) proposed a CDBLSTM method
for building occupancy projection using non-intrusive and affordable
environmental sensors, including CO2, humidity, temperature, and air
pressure. Considering that CNN and LSTM techniques are the two
most widely used DL methods for occupancy detection, their respective
operating principles are shown in Fig. 4.

Six forecasting models were used in Chang et al. (2021) to analyze
the same dataset: gaussian process regression (GPR), RF, least-square
support vector regression (LSSVR), back propagation neural networks
(BPNN), general regression neural networks (GRNN), and LSTM. The
numerical findings demonstrate the superiority of the LSTM network
model in accurately estimating the accuracy rate in the hotel compared
to other models across three data repositories. The model reached a
root mean squared error (RMSE) of 13.31%. The primary objective
in Elkhoukhi et al. (2019) is to assess the accuracy of forecasting the
number of occupants by applying a steady-state model to CO2 forecasts
using contemporary DL techniques, including RNN and LSTM methods.

In Hitimana et al. (2021), Hitimana et al. utilized multivariate
time series to predict occupancy patterns in a regression forecasting
problem. The empirical evaluation demonstrated that the designed
solution effectively collects, processes, and stores environmental data.
The acquired data was fed into an LSTM model, which was then
compared to various ML techniques to show good performance in the
context of the study.

Using a network of PIR sensors in IoT-based lighting systems, the
paper in Samani et al. (2020) developed an anomaly detection method
using occupancy data with the potential to be applied to building
energy efficiency. The next day electricity consumption was predicted
using LSTM as the DNN architecture so that the observed reduction in
power usage might be leveraged to offer demand response

4.1.4. Generative Adversarial Networks (GANs)
The work done in Zhou et al. (2021) presents a non-intrusive

method for comprehensively modeling different occupant activity pat-
terns. The technological innovations are threefold and are centred on
the generative adversarial network (GAN) concept and Wi-Fi records.
On a similar tangent, human occupation in a confined place may
change the radio frequency (RF) spectrum (Liu et al., 2021b). This
research proposes a conditional GAN approach to generate human
RF fingerprints using the baseline spectrum in the interested region.
Additionally, the research in Chen and Jiang (2018) employed a GAN
framework for building occupancy modeling utilizing optical camera
data.

4.1.5. Radial Basis Function Networks (RBFNs)
This study presents an occupancy prediction model based on a

collection of non-intrusive sensors capable of measuring a variety of
environmental information (Yang et al., 2012). Sensors data are ana-
lyzed to approximate the number of inhabitants in real-time using a
radial basis function (RBF) NN.
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Fig. 4. Occupancy detection process using DL showing (a) the high-level procedure and (b) CNN structure (Chen et al., 2017).
.1.6. Multilayer Perceptrons (MLPs)
The study in Taheri and Razban (2021) established a procedure for

anaging a campus classroom HVAC system in response to the quantity
f CO2 in the surrounding environment. This is archived by predicting
he CO2 levels using a MLP network.

In the study performed in Sani et al. (2018), it was determined
hat the wrapper subset evaluation (WSE) features selection approach
s best suited for solving the challenge of forecasting room occupancy
elevant to this research and the dataset provided. Date, humidity,
ight, and CO2 are the best features to utilize out of eight possible

features. The given feature set was used, classification results showed
that instance-based k (IBk) classifier outperforms MLP and logistic
model trees (LMT), with statistically significant differences between
their performances. Similarly, the study in Rodrigues et al. (2017) pro-
vided a MLP model for estimating classroom occupancy using relative
humidity, temperature, and CO2 concentration.

4.1.7. Self Organizing Maps (SOMs)
The authors in Maddalena et al. (2014) presented a camera system

with a multi-view property used for people counting. The system uses
current advances in multi-view video analysis, incorporating effec-
tive components. The 3D self organizing maps (SOM) neural network
methodology integrates spatial and temporal templates, and the kNN
algorithm estimates the number of people.

4.1.8. Deep Belief Networks (DBNs)
The work done in Dodier et al. (2006) constructed and installed

a network of several PIR sensors in two private workplaces and de-
termined occupancy using Bayesian probability analysis methods. The
network of sensors which is gathering occupancy data was subjected to
a class of graphical probability models known as belief networks.

4.1.9. Restricted Boltzmann Machines (RBMs)
In Khan et al. (2018) real-world verbal and acoustic data is used

to develop an acoustic sensing-based occupancy detection and person-
counting solution. This helped in emphasizing the importance of in-
corporating both non-overlapping and overlapping verbal data in a
realistic context. The study employed the restricted boltzmann machine
(RBM) algorithm.
7

4.1.10. Autoencoders (AEs)
DL techniques are employed in Liu et al. (2017) to accomplish

occupancy detection. The authors developed a sparse auto encoder (AE)
to extract features from data and afterwards feed the extracted features
to Softmax, Liblinear, and SVM classifiers to determine the status of
occupancy for a given room.

DeepSense is a device-free human activity detection technique
which is capable of correctly and automatically discriminate typical
behaviors using just commodity Wi-Fi-enabled IoT devices, as suggested
in Zou et al. (2018b). Additionally, the authors introduced autoencoder
long-term recurrent convolutional network (AE-LRCN), a new DL model
that uses AE, CNN and LSTM modules to de-noise raw Wi-Fi data to
extract representative features.

Device-free occupancy detection is critical for particular IoT ap-
plications that do not require the user to carry a receiver. The re-
searchers in Ng and She (2019), Ng et al. (2019) suggested a denoising-
contractive autoencoder (DCAE) that could be trained to identify ef-
fective feature representations from sparse and noisy feature vectors
made up of received signal strength (RSS) data obtained from BLE
devices. An occupancy detection approach was designed in the study
in Shirsat and Bhole (2021) by employing chaotic whale spider monkey
(ChaoWSM) optimization method and a deep-stacked AE for human
count identification in buildings. The suggested occupancy detection
technique includes preprocessing, extracting and reducing features,
detecting occupancy, and counting occupants. The proposed method
yielded an accuracy of 94.5%.

The suggested system in Aziz Shah et al. (2020a) is created for
future body-centric communication by employing readily available
non-wearable components, including an omnidirectional antenna, net-
work interface card and Wi-Fi router. Time-frequency scalograms are
extracted from Wi-Fi signals. Then, the occupancy is identified by
utilizing an AE NN to categorize the scalogram pictures. The proposed
approach has a classification accuracy of 91.1%. Table 2 summarizes
existing DL- and TL-based occupancy detection frameworks and com-
pares their characteristics in terms of learning model, sensors/devices
used, occupancy resolution, building type, best performance and limi-
tation/advantage of each framework. It is worth noting that occupancy
detection systems can be classified into two main categories, i.e., oc-
cupancy presence detection and occupant number detection. In this re-
gard, the occupancy resolution column provides information about the
nature of the occupancy detection task conducted in each framework,
including state measurement, quantity estimation, or activity monitor-
ing (or tracking). It is seen that a significant number of occupancy
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Table 2
Comparison of occupancy-based solutions using DL.

Learning model Sensors/devices used Occupancy
resolution

Building type Best performance Limitation/Advantage

CNN, SVM, and
K-means (Zou
et al., 2017)

Surveillance camera Quantity Office Accuracy = 95.3% • Extreme scenarios are not
well examined.

CNN, LSTM, and
AE (Zou et al.,
2018a)

Wi-Fi-enabled IoT devices Activity Office Accuracy = 97.6% • Depends on the availability
of Wi-Fi routers.

CNN (Arvidsson
et al., 2021)

Heat sensor Quantity Office N/A • 1-System not fully tested
with various environmental
conditions. 2- Further research
on the placement of sensors.

CNN (Abedi and
Jazizadeh, 2019)

DRS and ITA sensors State Office Accuracy = 99.96% • Testing conditions are not
generalized.

CNN and LSTM
(Feng et al.,
2020)

AMI data from the ECO dataset State Residential Accuracy = 90% • Lack of research of power
consumption behavior of home
appliances using AMI data.

CNN (Saha,
2021)

Image sensor State Residential Accuracy = 85.84% • Lower accuracy compared to
existing supervised learning
benchmarks.

CNN (Sun et al.,
2021)

Entrance video camera Quantity Laboratory Accuracy = 97.8% • Privacy concerns.

CNN (Mutis
et al., 2020)

Surveillance video camera Quantity and
activity

Office Accuracy = 84% • 1- Privacy concerns. 2- Low
accuracy.

CNN and SVM
(Acquaah et al.,
2020)

Thermal camera Quantity Office Accuracy = 98.8% • Privacy concerns.

R-CNN (Tien
et al., 2021a)

Image camera Activity Laboratory Accuracy = 97.09% • Privacy concerns.

CNN (Wang
et al., 2021b)

Surveillance video camera Occupancy
density

Elevator N/A • Privacy concerns.

CNN (Tien et al.,
2020a)

Video camera Activity Office Accuracy = 80.62% • 1- Privacy concerns. 2- Low
accuracy.

CNN (Meng
et al., 2020)

Image camera Quantity Office Accuracy = 70% • 1- Privacy concerns. 2- Low
accuracy.

CNN (Tien et al.,
2020b)

Video camera Activity Office Accuracy = 89.39% • Privacy concerns.

CNN (Callemein
et al., 2019)

Omnidirectional camera Quantity Office Accuracy = 93.9% • Privacy concerns.

CNN and others
(Acquaah et al.,
2021)

Thermal camera Quantity General Accuracy = 100% • Privacy concerns.

CNN and LSTM
(Chen et al.,
2020)

CO2, T, AP, H Quantity (range:
0, low, medium,
high)

Office Accuracy = 95.42% • Issues with real-life
implementation.

CNN and LSTM
(Kim et al.,
2020)

Acoustic sensor Activity Residential Precision = 78% • Real-life experiments are not
performed.

CNN (Liu et al.,
2020)

Receiver, transmitter devices State None Accuracy = 99.94% • Relies on the availability of
Wi-Fi routers.

CNN (Pal et al.,
2019)

AMI data from the ECO dataset State Residential Accuracy = 94% • Training data has bad
distribution of two classes.

M-FRNN (Wang
et al., 2018)

Wi-Fi probe Quantity Office Accuracy = 93.9% • Relies on the availability of
Wi-Fi routers.

RNN, and SVR
(Zhao et al.,
2018)

T, HVAC P Quantity Office Error = 2.64% • Real-life experiments are not
performed.

RNN (Billah and
Campbell, 2019)

BLE devices State General Accuracy = 95% • System is
environment-specific.

LSTM (Husnain
and Choe, 2020)

Thermal, PIR sensors State Laboratory Accuracy = 95.62% • Additional experimental
testing is missing.

LSTM (Pešić
et al., 2019)

BLE devices State Smart EDR = 75.45% • Testing conditions are not
generalized.

LSTM, BPNN,
GRNN, LSSVR,
RF, and GPR
(Chang et al.,
2021)

Customer rating scores and reviews Rate Hotel RMSE = 13.22% • Real-life experiments are not
performed.

LSTM and RNN
(Elkhoukhi
et al., 2019)

CO2, T, H, P, PIR, camera State, quantity
and activity

Office Accuracy = 70% • Lower accuracy compared to
existing supervised learning
benchmarks.

LSTM (Hitimana
et al., 2021)

CO2, T, H, L State Laboratory Accuracy = 96.8% • Noisy parameters affecting
the overall accuracy.

LSTM (Samani
et al., 2020)

PIR State Laboratory Accuracy = 84% • Lower accuracy compared to
existing supervised learning
benchmarks.

(continued on next page)
8
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Table 2 (continued).
Learning model Sensors/devices used Occupancy

resolution
Building type Best performance Limitation/Advantage

LSTM, DNN, and
RF (Wang et al.,
2019a)

Wi-Fi access point Quantity Office RMSE = 3.95% • Relies on the availability of
Wi-Fi routers.

Learning model Sensors/devices used Occupancy
resolution

Building type Best performance Limitation/Advantage

GAN (Zhou
et al., 2021)

Wi-Fi devices Activity Smart Activity dependent • Relies on the availability of
Wi-Fi routers.

GAN, CNN, and
k-NN (Liu et al.,
2021b)

Radio frequency signatures State Office Accuracy = 99.94% • Distance shift between the
person and antenna may
produce errors.

GAN (Chen and
Jiang, 2018)

Video camera Quantity Laboratory NRMSE = 14.24% • Performance could be
enhanced.

RBF (Yang et al.,
2012)

CO2, T, H, L, S, PIR Quantity Office Accuracy = 87.62% • Sensors utilized in the study
were not calibrated.

MLP, SVM,
AdaBoost, RF,
GB, and LR
(Taheri and
Razban, 2021)

CO2 Quantity Laboratory RMSE = 33.29% • Real-life experiments are not
performed.

MLP, LMT, and
IBK (Sani et al.,
2018)

CO2, T, H, RH, L State Office Accuracy = 99.24% • Real-life experiments are not
performed.

MLP (Rodrigues
et al., 2017)

CO2, T, RH Quantity Laboratory MSE = 1.99% • Real-life experiments are not
performed.

MLP, RF, NB,
KNN, SVM, and
DT (Wu and
Wang, 2021)

PIR State and
activity

Laboratory Accuracy = 99.12% • N/A.

SOM and k-NN
(Maddalena
et al., 2014)

Multiple video cameras Quantity Office Precision = 99% • Lower accuracy results for
crowded scenarios.

DBN (Dodier
et al., 2006)

PIR Quantity Commercial N/A • Not tested with spaces with
large crowd.

RBM (Khan
et al., 2018)

Microphone and accelerometer sensors Quantity Commercial Activity dependent • Server based design.

AE (Liu et al.,
2017)

CO2, T, H, RH, L State General Accuracy = 98.88% • N/A.

AE, CNN, and
LSTM (Zou
et al., 2018b)

Wi-Fi-enabled IoT devices Activity Smart Accuracy = 97.4% • Depends on the availability
of Wi-Fi routers.

AE (Ng and She,
2019; Ng et al.,
2019)

BLE devices Quantity Laboratory Accuracy = 90% • Using cloud processing.

AE (Shirsat and
Bhole, 2021)

CO2, T, H, RH, L State Office Accuracy = 94.5% • Real-life experiments are not
performed.

AE (Aziz Shah
et al., 2020a)

Wi-Fi router and omnidirectional antenna State and
activity

Laboratory Accuracy = 91.1% • Relies on the availability of
Wi-Fi routers.

CO2: carbon dioxide, T: temperature, H: humidity, HR: humidity ratio, L: light, AP: air pressure, P: power, S: sound, PIR: passive infrared, BLE: Bluetooth low energy, DRS: doppler
radar sensor, ITA: infrared thermal array, AMI: advanced metering infrastructure, ECO: electricity consumption and occupancy.
detection frameworks have been conducted in office and laboratory
buildings. Also, most studies have been shown to track the occupancy
status and quantity of occupants in different kinds of buildings. In
contrast, more minor contributions have been devoted to monitoring
the activity of building occupants. Regarding the occupancy detection
performance, some studies showed low or average performance results;
most of them are based on analyzing image data.

4.1.11. DL advantages and drawbacks
Occupancy detection techniques gain significantly from DL; how-

ever, there are also some additional constraints. The CNN method
is frequently used for image processing but could be less successful
with time-series data. Alternatively, time-series data must be trans-
formed into images to utilize the CNN networks’ unique architecture.
On the other hand, the LSTM and MLP structure are highly likely
to be employed in the presence of occupancy-related time-series data
(i.e., environmental, mobility, and smart meter data). The autoencoder
technique could be useful if data annotation were not available. Models
such as GAN, RBFN, SOM, DBN, and RBM are not widely studied or
adopted for occupancy detection applications. Real-time model gener-

alization and implementation were lacking from a substantial portion

9

of the papers reviewed. The fact that the majority of publicly acces-
sible occupancy datasets only include occupancy state resolution and
seldom occupancy quantity is a significant drawback discovered while
conducting the review.

4.2. Transfer learning

Training a DL model from scratch requires extensive computational
and memory resources and a vast amount of labeled dataset. In smart
buildings, large annotated occupancy datasets are not always available.
Moreover, creating large annotated datasets is a labor-intensive and
costly operation, and the number of monitored facilities might not be
sufficient to create a large dataset. TL has been proposed to close this
gap as an alternative to training DL models fully.

By leveraging TL, the knowledge acquired from another domain
(e.g., another building or another task) could be transferred for solv-
ing a targeted building occupancy detection problem. Typically, TL
helps to (i) save computing resources and improve efficiency when
training new DL, as the latter can be pre-trained offline on large-scale
datasets and then fine-tuned on small datasets; (ii) train DL models

on available annotated datasets before validating them on unlabeled
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Fig. 5. Difference between conventional DL and TL techniques for multiple tasks: (a) conventional ML and (b) TL.
atasets (Che et al., 2021), which is of utmost importance, keeping in
ind that labeling data is a challenging task that takes time and effort

nd requires the intervention of experts; (iii) train DL models using
imulated or synthetic data instead of real-world environments (Ko and
ark, 2021), and (iv) exploit the knowledge acquired from previous
asks for improving generalization about others (Kim et al., 2021).
ig. 5 illustrates the difference between conventional DL and TL for
ultiple tasks. Typically, in conventional ML (Fig. 5(a)), the models are
eployed to perform multiple classification/learning tasks separately
ithout any interaction between them. In contrast, if transfer learning

s considered (Fig. 5(b)), the knowledge learned on a task can be
ransferred to conduct different but related tasks. This means there is a
nowledge sharing between the different tasks.

.2.1. Fine-tuning
The most extensively used TL approach based on DL for occupancy

etection is fine-tuning. A pre-trained DL model is often fine-tuned if
here is no substantial difference between the source domain (training
ataset) and the target domain (test dataset). This is doable by using
he target dataset to fine-tune the weights of the whole network, or only
ine-tune the weights of the last layers (frequently the fully-connected
ayers) while freezing the remaining layers.

CNN is commonly used to work with image data, and TL can
id in avoiding the need for training a complex CNN model from
cratch, i.e., this help speed up the learning stage an/or deal with
imited data. For example, Mosaico et al. (2019) used a pre-trained
lexNet for extracting features from thermal images, estimating the
umber of occupants. Concretely, they demonstrated that the occupant
ecognition strategy built on TL could achieve greater performance
han conventional models. Environmental sensing data may also be
sed to detect occupancy. The study in Tien et al. (2021b) analyzes
he implementation of a vision-based DL algorithm for detecting oc-
upancy activities in an open-plan office area. The recognition model
as first built by establishing and training a CNN to characterize
ccupancy activities using a TL approach. In a similar manner, the
tudy in Leeraksakiat and Pora (2020) suggests applying TL on an LSTM
etwork to enhance the overall performance. Data from a PIR, CO2, and

temperature sensors are gathered every five minutes to be used as the
input to the presented network.

The purpose of the work in Khalil et al. (2021) was to apply a
TL technique to forecast the occupancy state of an educational facility
using environmental sensor data. The suggested approach investigates

two DL models, stacked LSTM and deep sequential model (DSM) by (i)

10
training them on a large-scale dataset (two years of historical data),
then fine-tuning them on the target datasets (two months of historical
data). Weber et al. (2020a) used TL to pre-train and TL with DNN
to decrease the quantity of data required for training, enabling it to
be deployed for various other rooms without sufficient labeled data.
Ultimately, occupant number may be forecasted from past occupant
records with a RNN algorithm. Using solely commercial IoT devices,
the study developed in Zou et al. (2018c) suggested Wi-Free, a Wi-Fi-
based device-free occupancy detection, and crowd counting technique.
The authors presented a transfer kernel learning (TKL) classifier to
consistently achieve accurate occupancy level prediction throughout
environmental and temporal fluctuations. According to test results,
Wi-Free achieved an accuracy of 99.1% for occupancy detection and
92.8% for crowd counting in a device-free way while ensuring occupant
privacy over temporal variance.

4.2.2. Domain adaptation (DA)
Although fine-tuning is fairly simple to use and comprehend, it is

less successful when the distributions of the source and target domains
diverge. For this case, researchers attempted to include distance mea-
suring in TL into the original networks, a process known as DA. This
concept modifies the original network’s cost function by including a
domain loss to quantify the dispersion of the source and target data.

As it is challenging to record enough ground truth data to train
DL models, Weber et al. (2020a,b) proposed a DA occupancy detection
scheme based on conducting experiments with data from a CO2 sensors
in an office room and additional synthetic data generated using the
software. This work investigates reducing the quantity of real-world
data required for model training using synthetic data.

Typically, CO2 dynamics under randomized occupant behavior have
been simulated. Next, a proof of concept for knowledge transfer from
simulated CO2 data is introduced using a CNN with a CDBLSTM.
The results obtained in this study have confirmed DA’s capability to
diminish the required amount of data for model training. Fig. 6 portrays
the flowchart of the occupancy detection method based on DA proposed
in Weber et al. (2020b).

In Arief-Ang et al. (2017), they presented a CO2 model for domain
adaptation human occupancy counter (DA-HOC). When trained model
and labeled data are available, the number of persons is accurately
predicted by the DA-HOC baseline model. They have created a unique,
semi-supervised domain adaption for an occupancy detection model



A.N. Sayed, Y. Himeur and F. Bensaali Engineering Applications of Artificial Intelligence 115 (2022) 105254
Fig. 6. Flowchart of the occupancy detection method based on DA proposed.
Table 3
Comparison of occupancy-based solutions using transfer learning.

Learning
mode

Type of TL Sensor Occupancy
resolution

Building type Best performance Limitation/advantage

CNN (Tien
et al., 2021b)

Fine-tuning Cameras State, quantity
and activity

Open office Accuracy = 98.65% • High complexity could hinder
real-time implementation

LSTM
(Leeraksakiat
and Pora,
2020)

Fine-tuning PIR sensors State Residential Accuracy = 94.30% • Security and privacy concerns were
not explored, and moderate
performance.

staked LSTM,
and DSM
(Khalil et al.,
2021)

Fine-tuning Environmental
sensors

State N/A Accuracy = 71% • Moderate performance that needs
further improvement.

CNN
(Mosaico
et al., 2019)

Fine-tuning Thermal cameras Quantity Non-residential MAE = 0.7, RMSE = 1.3 • Privacy concerns were not
discussed.

CNN-DBLSTM
(Weber et al.,
2020a,b)

DA Environmental
sensors

State Commercial Accuracy = 93.30% • Moderate performance and privacy
concerns were not addressed. Also,
DA between different kinds of
buildings was not studied.

RNN (Zhang
and
Ardakanian,
2019)

DA Environmental
sensors

Quantity Public RMSE = 4.39 • Two rooms from the same building
were used, which reduces the impact
of the DA. Also, the source and
target domain share the same feature
space.
that could be deployed in any building/room without sufficient la-
beled data. A semi-supervised DA model was used to count occupants
by Arief-Ang et al. (2018).

The work in Zhang and Ardakanian (2019) seeks to address the
limited amount of real-live occupancy training data. This is discoursed
by using RNN models to infer occupancy footprints in particular rooms
using trend data found via the building management system. Fur-
thermore, by using the DA approach, existing occupancy detection
algorithms trained using annotated datasets (i.e., a controlled environ-
ment in the source domain) may be transferred to another domain
(i.e., the target domain) suffering from label scarcity or unavailabil-
ity. The model parameters were modified to account for the obvious
variations among the two scenarios, and the revised model was used to
estimate the number of occupants in the target domain. Table 3 shows
a comparison of occupancy-based methods identified in the literature
that use transfer learning.
11
4.2.3. Cross-building TL (CBTL):
TL has enabled using the knowledge acquired on occupancy data

collected from a building to train ML models on target data from other
buildings. This has opened the doors for a new research topic called
cross-building TL (CBTL), which relies on improving models’ robustness
and generalization ability. Thus, this helps transfer the knowledge of
ML and DL algorithms by training and testing them on different but
related buildings (e.g., households with varying profiles of occupancy,
energy consumption, etc.) or entirely different buildings (e.g., house-
holds vs. commercial buildings, or office buildings vs. sports venues,
etc.) but recorded from the same geographical region. Moreover, CBTL
has recently been applied in many other applications of the building
sector, such as building energy forecasting (Ribeiro et al., 2018; Fang
et al., 2021), energy disaggregation (Yang et al., 2021), fault diagno-
sis (Liu et al., 2021c,c), thermal comfort control (Park and Park, 2021),
etc.
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4.3. Computing platforms

Due to the computational complexity of DL, different kinds of com-
puting platforms have been utilized in the state-of-the-art to implement
scalable occupancy detection framework and equip them with the
needed computing resources. Accordingly, based on our investigation,
four main computing architectures have been deployed as follows.
Edge computing allows data processing on edge of the network which
is closer to the users by adopting different kinds of edge platforms,
servers, or mobile devices. For instance, smart-plugs, micro-controllers,
affordable computing platforms (e.g., Arduino and Raspberry Pi), and
multi-core embedded platforms (e.g., Jetson TX1/TX2, Jetson Nano,
ODROID, etc.) are the most popular (Alsalemi et al., 2022; Thinh et al.,
2021). Fog computing is the processing of data in the intermediate
layer, which is placed between the edge and cloud layers (Khalid
and Javaid, 2019). Cloud computing enables process occupancy data
on the cloud level. Cloud computing can provide various benefits
for implementing occupancy detection solutions, such as direct access
to data centers with high storage capacities. Although many occu-
pancy detection works rely on cloud computing, using this computing
architecture also provides different issues related to privacy threats
and communication latency due to transmitting data to remote cloud
platforms (Alsalemi et al., 2020). Lastly, in hybrid computing, the data
processing and occupancy monitoring stages are implemented on the
combination of the previously presented architectures, for example,
edge–cloud, edge–fog, or fog–cloud architectures (Talaat et al., 2020).

4.4. Applications of occupancy detection

Occupancy sensing plays a significant role in supporting building
automation and promoting sustainability and safety in indoor environ-
ments. Accordingly, occupancy detection helps (i) endorsing energy
saving through optimizing the control HVAC systems, lighting, and
other kinds of appliances (Zhang et al., 2022); (ii) track building oc-
cupants’ behavior, and thus it is an essential element to adjust building
system operation and optimize thermal comfort of end-users (Kong
et al., 2022); (iii) monitoring elderly homes and hence keeping an eye
on their safety (Kaushik et al., 2007); (iv) improving safety and security
measures at public buildings from retail and offices to sports venues and
hospitality (Azimi and O’Brien, 2022); (v) detecting energy consump-
tion anomalies due to the presence/absence of end-users, e.g., keeping
on some appliances, lighting or HVAC systems while a room/building
is empty (Himeur et al., 2020c).

5. Discussion of key challenges and comparative analysis

5.1. Interpretability and generalizability

After achieving convincing performance in many research fields,
using ML and DL models has raised different issues. Typically, more
research on model interpretability and explainability is needed. New
goals have been then set by the AI research community to develop the
next generation of ML/DL models that can not only predict systems’
outputs with high accuracy but also explain the produced results and
enable scientists to interpret the learned models (Himeur et al., 2022a).
Typically, DL models continue to be treated mostly as black-box func-
tion approximators, which map given inputs to classification outputs.
Incorporating these tools into critical processes, such as occupancy de-
tection, behavior monitoring, energy optimization, medical diagnosis,
planning and control, etc., necessitates a level of trust associated with
their outputs. While statistical assessment is employed to quantify the
outputs, the notion of trust relies on providing explanations or visual
demonstrations to convince the users (Varlamis et al., 2022a). Put
differently, DL models need to produce human-understandable justifi-
cations for their outputs, which can lead to insights about the inner
workings. Such models are called as interpretable DL algorithms (Du
12
et al., 2019). For occupancy detection, only few studies have been
proposed to investigate this important aspect. For instance, Jaworek-
Korjakowska et al. (2021) developed an interpretable and explainable
DL scheme for seat occupancy detection in a vehicle interior space. To
that end, more effort should be devoted to developed explainable and
interpretable occupancy detection systems in the near future.

On the other hand, using occupancy detection and prediction mod-
els aims to predict the classes of new data collected from new buildings
(target domains). This data could significantly differ from the source
domain data due to varying building characteristics and operation
parameters (e.g., varying profiles of occupancy, use of different equip-
ment and devices, etc.). In this regard, ML and DL models are built
on existing data with the aim of extending and generalizing them to
new data. Consequently, the generalizability of ML and DL models
is of utmost importance when developing robust occupancy detection
systems.

Although most conventional ML models have excelled in classi-
fying occupancy patterns (especially with supervised learning), they
often fail to generalize, mainly when the target datasets are small
(i.e., there is a data scarcity issue) or the target domain data is different
than the source domain patterns (Rafiq et al., 2021; Himeur et al.,
2020d). By contrast, despite their high computational cost, DL models
have revealed excellent generalization and self-learning abilities (not
only in occupancy detection but in many other applications). How-
ever, it is still seen that the generalizability of occupancy detection
models has not been carefully investigated in most existing works.
For example, in Chen et al. (2020), the generalization ability of the
convolutional deep bidirectional LSTM (CDBLSTM) model used for
building occupancy prediction is assessed only by randomly selecting
the data for training and testing from the same building. Put differently,
more evaluation tests and experiments need to be conducted to check
the generalizability of DL models under different occupancy profile
scenarios, different buildings with varying operation parameters, etc.

5.2. Key challenges

Developing efficient DL-based occupancy detection solutions is im-
possible without large-scale datasets for training and testing DL mod-
els. However, only a few datasets have been proposed in the liter-
ature and made public. Among them, the University of California
Irvine occupancy detection dataset (UCI-ODDs) (Candanedo, 2016;
Candanedo and Feldheim, 2016), electricity consumption and occu-
pancy (ECO) dataset (Kleiminger et al., 2015), and Ecobee donate your
data (DYD) dataset (Ecobee, 2022) and the high-fidelity occupancy
detection dataset (HF-ODS) (Jacoby et al., 2021). To address this chal-
lenge, it is important to produce comprehensive datasets that can meet
the requirement of DL models in terms of quantity and annotation. This
can help train supervised DL algorithms and facilitate the comparison
of their results.

5.2.1. Data scarcity
The lack of annotated data is a persistent issue when developing

occupancy detection algorithms in real-world scenarios. In fact, since
most of the DL models are supervised they require collecting anno-
tated ground-truth datasets in advance to train these models. However,
annotating massive amounts of data is a time-consuming, complex,
and expensive task, which experts often perform. To overcome this
issue, TL is one option to be further investigated as it helps training
DL algorithms on existing large-scale datasets (e.g., synthetic datasets)
proposed for similar or different tasks, and then (i) fine-tune them
on small real-world dataset (Mosaico et al., 2019), or (ii) perform of
domain-adaptation (Weber et al., 2020b). Another option to alleviate
the data scarcity problem is by adopting deep semi-supervised learning,

in which only few amount of annotated data is used to train DL models.
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Table 4
Summary of available open-source binary occupancy detection algorithms.

Algorithm Building type Link of the open-source algorithm

LR, NB, k-NN, DT, RF, GBM, and k-SVM Office space https://github.com/LuisM78/Occupancy-Detection-1
NN and RF Residential/Commercial https://github.com/sustainable-computing/ODToolkit
1D-CNN Office space https://github.com/yaonuma/Occupancy_Detection
RF, DNN, MLP Office space https://github.com/pcko1/occupancy-detection
LR, DT, SVM, RF, and k-NN Office space https://github.com/bhargavyagnik/Room-occupancy-predictor
k-NN, RF, SVM, and AdaBoost Office space https://github.com/mabdullahsoyturk/Occupancy-Detection
LR, DT, SVM, RF, and k-NN Office space https://github.com/shayanalibhatti/Predicting_room_occupancy_using_logistic_regression
SVM, LR, DT, RF Office space https://github.com/OmarBouhamed/Occupancy_pred

LR: logistic regression, NB: naive bayes, k-NN: k-nearest neighbors, DT: decision tree, RF: random forest, GBM: gradient boosting machines, SVM: support vector machines, NN:
neural network, DNN: deep neural network, 1D-CNN: one-dimensional convolutional neural network, MLP: multi layer perceptron.
5.2.2. Open-source toolkits to reproduce scientific results
With the rising number of people counting systems and building

occupancy detection solutions, it becomes challenging to compare the
results. This is because of the lack of open-source implementation
algorithms, open-access test datasets, and consensus on the evaluation
metrics. The summary of available open-source occupancy detection
algorithms is shown in Table 4. Notably, several of the mentioned
open sources for occupancy detection techniques are neither DL nor
TL. However, due to the scarcity of open-source occupancy detection
techniques, all the widely available ones are included in Table 4.
It should also be emphasized that all open-source, publicly accessi-
ble occupancy detection methods leverage binary occupancy detection
(i.e., occupied/unoccupied).

To that end, designing open-source toolkits to facilitate the de-
velopment of occupancy detection algorithms has become a priority.
In this respect, Zhang et al. (2019) develop ODToolkit,1 which can
(i) import and convert sensor data collected from different building
environments into a unique data representation, (ii) enable the imple-
mentation of a wide range of ML-based occupancy detection methods,
assess the performance of implemented algorithms using the same
evaluation metrics in every experiment. Moreover, the ODToolkit has
been extended to implement domain-adaptive algorithms for detecting
occupancy patterns. Additionally, it helps explore the sensing modal-
ities and precision required to reach a desirable level of accuracy for
estimating or predicting occupancy using a fusion of sensors.

5.2.3. Security and privacy concerns
Detecting building occupancy patterns at the moment in time may

represent a threat if this information is leaked as it is strongly correlated
with electricity usage. More specifically, the presence time of end-users
can be easily inferred from occupancy data, which makes this latter a
cause of privacy violation (Shateri et al., 2020). In this regard, Chand
et al. (2021) attempt to overcome this issue by predicting occupancy
based on the sensor data without a need to breach privacy. Besides,
in Aziz Shah et al. (2020b), a privacy-preserving occupancy detection
system is introduced, which is based on (i) detecting occupancy using
DL-based image analysis, and (ii) encryption collected images with the
chaos-based scalogram. Similarly, a secure occupancy detection method
is developed in Ahmad et al. (2018), which relies on a video frame en-
cryption paradigm. This framework has been validated against different
statistical attacks. Overall, because of the few number of frameworks
proposed in the literature to address the security and privacy concerns,
it is still challenging to design secure and privacy preserving occupancy
detection systems.

5.2.4. Scalability and interoperability
Considering high sampling sensors and different kinds of data, occu-

pancy detection systems based on DL introduce high computational cost
in most real-world scenarios and require significant memory capacities.
In this regard, utility companies or end-users considering occupancy de-
tection systems should utilize high-end smart plugs or other hardware

1 https://odtoolkit.github.io/
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platforms with enough storage and practical computing components.
Alternatively, the occupancy detection task might be conducted using
cloudlet platforms. However, this can significantly increase cloud ser-
vice costs if the number of users is increased. This is a major problem
that impedes widely adopting occupancy detection systems.

To overcome this problem, scalable occupancy detection solutions
might be designed using edge devices and servers with embedded
high performing Graphics processing units (GPUs). This enables the
implementation of (i) low-cost computational processing on the edge
(e.g. data collection, processing, resampling, etc.) and (ii) complex DL
algorithms on the cloud. Typically, this approach can decrease the
cloud service cost (Athanasiadis et al., 2021). From another hand, an
essential issue with most occupancy detection solutions is the potential
absence of interoperability. Every occupancy detection has a propri-
etary data protocol, which needs the development and maintenance of
different processes and integrations. Additionally, due to the competi-
tiveness between occupancy detection developers, no one is interested
to make its data accessible to third parties.

5.2.5. TL limitations
Although TL significantly benefits occupancy detection algorithms,

new issues can be raised. For instance, the problem of negative transfer
when encountered in a TL algorithm ends up with a degradation of
the classification of prediction performance (or accuracy) of the newly
developed model. Specifically, TL can perfectly work if the source and
target domains are sufficiently similar. However, if the data used to
pretrain the TL model is different enough than the data used to re-train
this model (or some of its parts), the performance might be worse than
expected. Moreover, measuring the knowledge gained when a TL model
is adopted to conduct specific tasks is challenging. The study in Hu et al.
(2019) has attempted to analyze the quantization of the TL gain, where
four metrics have been introduced to quantify the gain knowledge,
i.e., transfer error, transfer loss, transfer ratio, and in-domain ratio.
Despite that these measures can overcome some interpretation issues
related to the performance results occurring when dealing with various
source domains, it is unknown how they will behave in other TL-based
methods, especially for building occupancy detection where class sets
are different between problems. Further, they can result in non-definite
performance if a perfect baseline model is obtained.

On the other hand, one of the challenges that may still impede
the advance of TL-based building occupancy detection applications
is the wide range of formulations used to describe the mathematical
background of developed TL algorithms. For example, while (Hu et al.,
2019) promotes the idea of Heterogeneous TL, Fan et al. (2020) opts
for statistical investigations of TL-based methodologies, Zhang and
Ardakanian (2019), Lin et al. (2021), Zhang and Yan (2020) focus on
domain-adaptation TL. Although these frameworks and others included
in this review share the same TL idea, they differ in their defini-
tion and implementation based on the scenario under consideration.
More importantly, different variant terminologies are used, leading to
confusion. To alleviate this issue, a unification of TL definitions and
background is becoming an emergency. Although the first tentative for
unifying TL has been proposed in Patricia and Caputo (2014), this is
still not enough to cover the occupancy detection research topic.

https://github.com/LuisM78/Occupancy-Detection-1
https://github.com/sustainable-computing/ODToolkit
https://github.com/yaonuma/Occupancy_Detection
https://github.com/pcko1/occupancy-detection
https://github.com/bhargavyagnik/Room-occupancy-predictor
https://github.com/mabdullahsoyturk/Occupancy-Detection
https://github.com/shayanalibhatti/Predicting_room_occupancy_using_logistic_regression
https://github.com/OmarBouhamed/Occupancy_pred
https://odtoolkit.github.io/
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5.3. Physical-based methods

Lu et al. (2022) compiled a list of case studies that investigated
estimating the building occupancy based on CO2 sensing. The com-
parison was based on employing physical-based or statistical methods.
Using a physical model has various benefits for predicting occupancy
count. Opposite to DL techniques, physical models do not require a
substantial amount of training data. They do not need specific building
information; they need previous data relating to air exchange rate
measurements. Therefore, the dynamic model may be manually built
up for rapid use. Physical models are essential since they are general
and applicable to various ventilated spaces. It should be noted that
the mass-balanced model employed in this application is limited to
single-zone space. For the model assumptions to be supported, it is
also necessary to verify that the interior air is evenly mixed. Last
but not least, the steady-state version of the physical models ignores
temperature sensor impacts that could influence the dynamics of the
space’s air exchange rate (Zuraimi et al., 2017). Statistical models
employ a variety of CO2 data to forecast occupancy using either con-
ventional or deep ML approaches. Statistical models frequently exhibit
the highest predictive accuracy and computational efficiency. The fact
that statistical models are data-driven and are not constrained by the
physical characteristics of the building area has the additional benefit of
exemplifying durability and data resilience. On the other hand, statisti-
cal models require substantial previous knowledge to train and evaluate
the data thoroughly. This implies that data derived from sensors cannot
be deployed right after installation, and the tested models are restricted
to the particular environment from which the model was formed.

5.4. Comparative analysis

As it is clear from Table 4, the open-source methods for detecting
occupancy are minimal. On the other hand, the found algorithms are all
based on the usage of environmental data such as light, temperature,
humidity, humidity ratio, and CO2. All in all, not only does there exist
a lack of open-source tools for occupancy detection, but they all focus
on a sole aspect of inferring occupancy, which is using a network on
sensors. Eq. (1) was used to evaluate the effectiveness of the approaches
using the straightforward accuracy criterion, which divides the correct
predictions by all the projections. Table 5 shows the training time
and testing accuracy of the found open-source algorithms; however,
the results are considered meaningless since the dataset used is not
extensive enough to provide significant results.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correct predictions
Total number of predictions (1)

6. Potential directions

6.1. Edge-based occupancy detection

By entering the era of edge computing, the Internet plays a sig-
nificant role in collecting data from sensors and distilling relevant
information from the sensor data. Therefore, most edge devices are
expected to be augmented with AI-powered by DL. However, DL-based
techniques require vast amounts of high-quality data for training and
are very demanding in terms of power consumption, memory, and
computation (Zhang et al., 2020).

Although the development of occupancy detection technologies is
gaining popularity in the building energy sector, many challenges
remain unresolved and must be addressed to produce reliable and ef-
ficient systems. For example, most present energy occupancy detection
methods are implemented on cloud servers; however, the increasing use
of networking and cloud data centers leads to high bandwidth demand,
resulting in increased energy usage (Hannan et al., 2018; Sayed et al.,
2021). Furthermore, the development of real-time systems employing
cloudlet platforms is hindered by bandwidth limitations, latency issues
14
and internet dependency caused by data transfer to cloud data cen-
ters (Cao et al., 2020). The works done in Tse et al. (2020) and Metwaly
et al. (2019) demonstrates the usage of edge devices for occupancy
detection. Nevertheless, sending and storing confidential and personal
information in the cloudlet platforms raises serious privacy and security
concerns that were not explored in most existing studies (Raafat et al.,
2017).

Typically, in Metwaly et al. (2019), different DL algorithms includ-
ing feedforward neural networks (FNN), CNN, RNN have been used for
room occupancy estimation based on thermal sensors. These DL models
have been run on different edge devices, including the STM32F401 and
STM32F722 (from the Arm Cortex M4 and M7 families), as they have
sufficient resources. Moreover, its performance has been compared with
other existing frameworks implemented on other computing boards,
i.e., Tmote Sky, Cortex M4, Arduino, Cloud, and GT60 MCU. FNN
has considerably improved the state-of-the-art by achieving the best
occupancy prediction accuracy of 98.90%.

Besides, in Tse et al. (2020), an edge-based occupancy detection
solution is developed to count people in smart campus classrooms using
DL. Specifically, cameras and Raspberry Pi platforms have been used
to implement a YOLOv3 algorithm and accurately detect occupancy
patterns. The performance of this approach has been improved using
different image processing strategies (e.g., image cropping), which can
also help generalize it to other indoor environments without requiring
a specific training process. Similarly, in Monti et al. (2022), Monti et al.
introduce an edge-based TL solution for class occupancy detection. In
this respect, the YOLOv3-based TL approach is proposed for fine-tuning
the YOLOv3 weights using two types of images representing small
and large classrooms. Typically, the classical client–server architecture
has been shifted to a fat client–thin server architecture, where the
occupancy has directly been predicted at the edge.

6.2. Federated learning

Occupancy detection using IoT sensors and DL algorithms is becom-
ing ubiquitous and playing a significant role in making sustainable,
energy-efficient and more livable buildings. However, inferring rele-
vant occupancy detection information in centralized building energy
management systems is frequently affected by a considerable response
time delay (Varlamis et al., 2022b). Moreover, monitoring occupancy
detection in buildings can raise privacy and security issues, as this
sensitive information can be used to track the presence of end-users.
Thus, the consequence of such breaches can be harmful to end-users
if a malicious person can identify the time when potential victims are
vulnerable (Kuang et al., 2021).

To overcome these issues, federated learning has recently been
introduced with the aim of (i) enhancing end-users privacy by main-
taining training datasets on edge devices without the need for data pool
for the model, (ii) continually learning from the collected end-user’s
data in real-time, (iii) improving hardware efficiency since less complex
hardware is used without requiring one complex central server for
data analysis, and (iv) performing multi-task processing simultaneously
while benefiting from similarities and differences across tasks. On the
other hand, since data is recorded on multiple devices in federated
learning, the attack surface can be increased (Sater and Hamza, 2021).

6.3. Blockchain-based IoT occupancy detection

Although intelligent occupancy detection has various applications
in the building sector, it has become a thornier prospect for building
end-users. Typically, IoT devices gather massive datasets, which can
reveal sensitive information about the owners (Himeur et al., 2022b).
Moreover, little attention has been paid to the security and privacy
reservation aspects when developing occupancy detection solutions,
which raise significant security challenges (Himeur et al., 2022c).

Additionally, most existing systems run on centralized cloud platforms
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Table 5
Comparison of binary occupancy detection algorithms.

Model Features Training time Testing accuracy

LR Light and CO2 0.42 s 98.5%
NB Weekend, working hour, light and CO2 2.55 ms 98%
k-NN Light and CO2 10.62 s 97.5%
DT Light and CO2 6.38 s 98.5%
RF Weekend, working hour, light and CO2 1198.86 s 98%
GBM Weekend, working hour, light and CO2 67.74 s 96%
SVM Light and CO2 99.00 s 98.5%
1D-CNN Light, temperature, humidity, humidity ratio and CO2 2.57 s 98%
MLP Light, temperature, humidity, humidity ratio and CO2 1.37 s 98%
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monitored by major tech companies. Blockchain technology can resolve
these issues and others as it enables a peer-to-peer (P2P) connection
without the need for a centralized validator (Andoni et al., 2019).

In this respect, more interest should be put towards using blockchain
to address the privacy violation of users’ data recorded from smart
meters while enabling the benefits of big data analytics (Yilmaz et al.,
2021). While this research topic is in its infancy, blockchain promises
various benefits for occupancy detection systems, e.g., privacy protec-
tion of users’ data without compromising the accuracy of occupancy
detection and building operational efficiency preservation without
using authoritative intermediaries. Recently, two studies have been
reported in Yilmaz et al. (2021), Fernández-Caramés et al. (2020)
to explore the use of blockchain in IoT-based occupancy detection
systems.

In Yilmaz et al. (2021), the authors develop a counter-attack for
IoT occupancy detection systems by integrating blockchain and LSTM
models into a standardized smart metering framework for preventing
leakage of users’ personal information. Besides, a blockchain-based
IoT solution to monitor and track real-time occupancy is proposed
in Fernández-Caramés et al. (2020), which promotes COVID-19 pub-
lic safety. This framework ensures users’ privacy without collecting
personal information and integrates a decentralized blockchain-based
traceability system, which safeguards the gathered information’s im-
mutability, security, and availability.

Overall, despite the significance of blockchain for protecting users’
privacy in IoT occupancy detection systems, this topic still needs much
more investigation and careful analysis to develop real case studies,
experiments, and building demonstrations. On the other hand, one
of the main challenges that impede blockchain integration into IoT
occupancy detection systems is its scalability and storage capacity,
which are still under debate. Typically, because of the widespread use
of occupancy detection sensors and cameras, gigabytes of data can be
generated in real-time (Reyna et al., 2018). Consequently, this is a
severe challenge when integrating this data with blockchain, keeping
in mind that some actual implementations of blockchain process only
a few transactions per second. Moreover, the cost of integrating the
blockchain into the IoT occupancy detection frameworks represents
another barrier to its adoption (Uddin et al., 2021).

6.4. TL perspectives

Although many TL-based occupancy detection techniques have ex-
celled in transferring the knowledge of ML models from the source
domains to different and related target domains, still little information
is available regarding to what extent they can be generalized. To fill this
gap, it is significant to carry out more investigations about the capabil-
ity of TL not only with reference to the impact of spatial or geographical
changes of building occupancy data and also when different build-
ing environments (e.g., sports facilities, commercial buildings, office
buildings, households, etc.) and occupants’ behaviors are considered
simultaneously (Akhauri et al., 2021; Feng et al., 2021).

Moreover, various research directions can be identified to further
improve TL and widen its utilization. For example, avoiding negative
transfer and measuring the transferability across domains represent two
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critical challenges that can attract considerable research and develop-
ment in the near and far future. Despite the few attempts proposed in
the literature to overcome the negative transfer problem (Paul et al.,
2018; Wang et al., 2019b; Minoofam et al., 2021), the latter still
requires much more systematic analyses. Moreover, the interpretability
of TL models will be one of the promising research paths to increase
end-users’ trust and acceptance of the TL technology. Additionally, the
applicability and effectiveness of TL need to be theoretically supported
by conducting efficient theoretical studies (Zhuang et al., 2020).

Besides, in real-world scenarios, source domain data can contain
sensitive information that should be protected. In this context, trans-
ferring the knowledge included in the source domain while preserving
users’ privacy is a fundamental challenge. Future research effort must
take this issue into consideration by suggesting to integrate efficient
security and privacy preservation mechanisms, e.g., decentralized TL
using blockchain (ul Haque et al., 2020; Wang et al., 2021c) and
federated TL (Zhang et al., 2021; Maurya et al., 2021). Lastly, it is
worth noting that TL strategies can be exploited in a broad range of
applications related to occupancy detection, such as building energy
optimization, building fault and anomaly detection, and thermal com-
fort control. This necessitates addressing the knowledge transfer issues
in more complex scenarios, where a significant research endeavor can
be put in the near future.

7. Conclusion

This paper meticulously examines the various methods of deter-
mining occupancy in terms of data collection type and algorithms
used. As discussed in great detail, occupancy detection systems are
primarily based on deploying various environmental sensors (e.g., CO2,
emperature, humidity, and light sensors) or other specialized devices
e.g., PIR sensors, smart meters, Wi-Fi/Bluetooth, and cameras). Each
echnology has its own set of pros and cons. As a result, a medley
f numerous ambient and specialized sensors has been explored as a
olution to improve occupancy detection performance.

The emphasis was on investigating DL and TL approaches for oc-
upancy detection. While occupancy detection methods benefit signifi-
antly from DL, there are also inherent limitations. Although the CNN
pproach is often employed for image processing, it may not work well
ith time-series data. As an alternative, to make use of the particular
esign of the CNN networks, time-series data must be converted into
ictures. On the other hand, the LSTM structure is likely to be used
hen there is time-series data relating to occupancy (i.e., environ-
ental, mobility, and smart meter data). If data annotation was not

upplied, the AE method would be advantageous. For occupancy detec-
ion applications, models like GAN, RBFN, SOM, DBN, and RBM are not
requently explored or utilized. A sizable fraction of the publications
ssessed lacked real-time model generalization and implementation.
ccupancy detection approaches are compared to each other to achieve
n efficient and accurate system for processing sensor data. Training a
L model from scratch necessitates a large amount of computing and
emory resources and a substantial amount of an annotated dataset.
sing TL, information learned from another domain (e.g., another
uilding) might be applied to address a building occupancy detec-
ion problem. A comparison study of the widely accessible occupancy
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detection algorithms was performed to find the best strategy with
the optimal training duration and testing accuracy. The comparison
analysis was constrained since it was observed that all the open-source
methods utilize the UCI-ODDs dataset.

While there are several existing room occupancy detection systems,
only a few address the expanding demands of building engineers for
next-generation occupancy detection. In order for buildings and houses
to become ‘‘smarter’’ and more adaptable, new sensor technologies
must identify, count, and track individuals regardless of movements.
Potential directions are recommended to improve certain aspects of
the existing occupancy detection techniques. The frequent use of cloud
computing, for example, leads to high bandwidth demand, resulting
in higher energy consumption. Moving computation to the network’s
edge could potentially resolve this problem. Federated learning and
Blockchain-based IoT occupancy detection are also recommended to in-
crease end-user privacy and security by moving away from centralized
to de-centralized processing.
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