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Abstract: Li-ion batteries (LIBs) and Na-ion batteries (SIBs) are deemed green and efficient electro-
chemical energy storage and generation devices; meanwhile, acquiring a competent anode remains
a serious challenge. Herein, the density-functional theory (DFT) was employed to investigate the
performance of V4C3 MXene as an anode for LIBs and SIBs. The results predict the outstanding
electrical conductivity when Li/Na is loaded on V4C3. Both Li2xV4C3 and Na2xV4C3 (x = 0.125, 0.5, 1,
1.5, and 2) showed expected low-average open-circuit voltages of 0.38 V and 0.14 V, respectively, along
with a good Li/Na storage capacity of (223 mAhg−1) and a good cycling performance. Furthermore,
there was a low diffusion barrier of 0.048 eV for Li0.0625V4C3 and 0.023 eV for Na0.0625V4C3, implying
the prompt intercalation/extraction of Li/Na. Based on the findings of the current study, V4C3-based
materials may be utilized as an anode for Li/Na-ion batteries in future applications.

Keywords: V4C3; MXene; Li-ion battery; Na-ion battery; electrochemical energy storage; DFT

1. Introduction

The everlasting consumption of fossil fuels leads to their depletion and greenhouse gas
emissions, which are the primary cause of global warming [1–3]. A variety of endeavors are
currently being dedicated to addressing these issues, including gas conversion reactions [4,5]
and utilizing sustainable energy sources (i.e., solar power [6,7], hydrogen power [8], fuel
cells [9,10], and energy storage devices [11–15]). Li-ion batteries (LIBs) and Na-ion batteries
(SIBs), with their high energy, power density, and long cycle life, are among the most
beneficial electrochemical energy conversion and storage technologies available for smart
grids, mobile electronics, and electric vehicles [16–18]. The performance of LIBs and SIBs is
primarily shaped by the electrochemical properties of the anode materials [16,17]. Graphitic
carbon is the universally utilized commercial anode material, but its low Li/Na theoretical
capacity (372/25 mAh/g) and low rate capability limit its widespread, practical use [19].
Despite the significant progress in LIBs and SIBs, the earth availability of Li/Na, charge
time, durability, temperature tolerance, self-discharge, and recyclability of the decayed
batteries are creating a significant challenge [16–22]. Therefore, developing novel anodes
with high specific capacities, greater rate capabilities, and cycling longevity is imperative.

MXenes are a novel class of 2D transition metal carbide/carbonitride electrodes that
have several advantages for LIBs, SIBs, and other applications, including hydrophilicity,
high active surface areas, rich electron densities, and low costs [23–25]. Numerous MXenes
such as Ti2C, Ti3C2, V2C, Nb2C, and Mo2C were utilized as anodes for LIBs, and SIBs with

Nanomaterials 2022, 12, 2825. https://doi.org/10.3390/nano12162825 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12162825
https://doi.org/10.3390/nano12162825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-5327-2497
https://orcid.org/0000-0001-9588-1960
https://doi.org/10.3390/nano12162825
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12162825?type=check_update&version=3


Nanomaterials 2022, 12, 2825 2 of 12

the Ti3C2 MXene phase has been studied most extensively [23–28]. Distinct from other
MXenes, V4C3 MXene offers many advantages, including greater interlayer spacing, better
structural durability, and high specific capacity, which are essential for the fabrication
of high-performance anodes for LIBs and SIBs [29–31]. Besides its excellent mechanical
properties and thermal stability, V4C3 MXene possesses excellent metallic properties due
to its narrow band gap at the Fermi level [32,33]. Meanwhile, the vanadium metal (V) in
V4C3 MXene has a prosperous valence state from +2 to +5, which may enhance the electro-
chemical performance of LIBs and SIBs [29,34,35]. For instance, the V4C3 MXene/MoS2/C
electrode significantly boosted LIB activity compared to MoS2/C and MoS2 electrodes,
showing an outstanding reversible capability of 0.622 Ah/g at 1 A/g after 450 cycles and
maintaining a superior rate capability of 0.5 Ah/g at 10 A/g [36]. That is due to the out-
standing electrical conductivity, structural durability, and fast reaction kinetics promoted
by V4C3. Likewise, V4C3Tx (T = O, OH, and F), which is formed by the ball milling (B.M.)
of V4AlC3 followed by HF etching (V4C3Tx-BM-HF), enhanced the LIB performance over
V4C3Tx-HF and yielded a specific capacity of 0.225 Ah/g after 300 cycles at 0.1 A/g and
0.125 Ah/g at 1/A g because of the superior interlayer spacing and specific surface area [37].
Despite the noted progress in V4C3 MXene, it is rarely reported on for applications in energy
storage, and usually is exclusively with regard to LIBs; to the best of our knowledge, it has
not been yet addressed theoretically for both LIBs and SIBs.

In pursuit of this aim, we employed the first principle, DFT simulation, to predict
the performance of V4C3 MXene as an anode for LIBs and SIBs as a function of Li and
Na loading. V4C3 MXene loaded with Li/Na was investigated for lithiation, sodiation,
electrical conductivity, and surface energy. The surface energy is calculated by considering
Li/Na loading on V4C3 with a diffusion barrier of 0.023 eV for Li and 0.048 eV for Na
migration.

2. Methodology

To conduct the current DFT investigations, we employed VASP software (Vienna,
Austria) known as the Vienna Ab Initio Simulation Package [38], whereas correlation poten-
tial and the electronic exchange were examined by utilizing a generalized gradient (GGA)
combined with a Perdew–Burke–Ernzerhof (PBE) functional (GGA-PBE). This is because
the GGA-PBE is a nonempirical functional with judicious accuracy for qualitative and quan-
titative prediction of the molecules interacting and being stored with metal surfaces over
a wide range of systems [39]. In the present calculations, we restricted the force value to
1/100 eV/Å, and the energy was 1 × 10−6 eV. Based on the GGA-PBE level, we simulated
the electronic structure of V4C3 and Li/Na loaded V4C3. For plane-wave expansion, cut-off
energy of 500 eV was selected. The Monkhorst–Pack technique was employed to sample the
k-points in the Brillouin zone, with a dense k-point grid of 17 × 17 × 1 [40]. Additionally,
the DFT-D2 model [41] was applied in our calculations to acquire reliable binding strength
between Li/Na and V4C3. In the structure of V4C3, we generated a vacuum space of 20 Å
to prevent coupling between V4C3 layers.

Our simulations found that the materials under research are spin-polarized with Li/Na
content loading. The voltage and energy profiles were computed with increasing Li/Na
content, such that x = 0.125, 0.25. 0.5, 1.0, 1.5, and 2. The electronic structure calculations
were carried out within the GGA-PBE to determine the electronic density of states (DOS).
The AIMD simulations were used to investigate the change in the energy fluctuation of
Li/Na-loaded V4C3 at 300 K within each time step of 1 fs for the total time duration of
5000 fs [42]. Several Li/Na concentrations were studied to procure the binding energies
and voltage profile. The relationship of binding energy is shown in Equation (1) [43]:

Eb =
(
ELi−V4C3 + nELi − EV4C3

)
/n, (1)

where ELi−V4C3 represents the Li-loaded V4C3 energy, EV4C3 denotes the bare V4C3 energy,
ELi is the metallic Li energy, and n is the number of Li content loaded on the V4C3 sheet.
Similarly, we adopt the above formula for Na adsorption by substituting Li with Na
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to estimate Eb. Next, we calculate the charge density difference based on the relation:
∆ρ(r) = ρLi−V4C3(r)–ρV4C3(r)–ρLi(r)). Here, ρLi−V4C3 specifies the charge density of Li-
loaded V4C3, ρV4C3 denotes the charge density of bare V4C3, and ρLi is the charge density
of Li (isolated). For Na-loaded V4C3, a similar formulation is employed by substituting
only Li with Na.

For each concentration of the LixV4C3 compound, the open-circuit voltage (OCV) is
evaluated by Equation (2) [44]:

V(x1, x2) =
[
ELix1 − ELix2 + (x2 − x1) ELi

]
/(x2 − x1)e (2)

where ELix1 , ELix2 , and ELi are the energies of Lix1 V4C3, Lix2 V4C3, and bulk Li, respectively.
A detailed discussion of the voltage profile is given in the supporting information.

The theoretical capacity (C) can be determined through Equation (3):

C = nF/MV4C3 (3)

where n denotes the number of adsorbed Li/Na atoms, F defines the Faraday constant
(26,801 mAh/mol), and MV4C3 is the molar weight of V4C3.

The Bader charge technique was employed to calculate the amount of charge trans-
ferred from Li/Na to V4C3 (Table 1). Finally, the charging and discharging processes were
investigated by using the simulation of surface barriers and minimum energy paths (MEPs)
of Li/Na migration in the V4C3 monolayer with the climbing nudged elastic band (CI-NEB)
method. This technique approximately justifies metal-ion batteries’ lithiation/delithiation
and sodiation/desodiation mechanisms [45].

Table 1. Structural parameters of pristine V4C3 MXene and Li/Na content-loaded V4C3 (2 × 2 × 1
supercell) at x = 0.0625, including binding energy and charge transfer.

Parameters Simulated Values

Ead (eV) for Li
1-site 2-site 3-site 4-site
0.90 0.884 0.828 0.897

Ead (eV) for Na 1.21 1.16 1.15 1.20
Charge q (|e|) for Li 0.84 0.83 0.83 0.883
Charge q (|e|) for Na 0.67 0.664 0.66 0.665
Height (hS-S) 6.96 Å
Lattice constants (a, b) 2.90 Å

3. Results and Discussion
3.1. Structure of V4C3 Monolayer

As a first step, we shall examine the structure of the V4C3 monolayer, which can
be viewed in Figure 1a where the top and side views are shown. The structure portrays
four layers of vanadium (V) and three layers of carbon (C) atoms. Each carbon layer is
sandwiched between two V layers. In the relaxed structure, a unit-cell of V4C3 is composed
of four V atoms and three C atoms with lattice parameters a = b = 2.90 Å and thickness
d = 6.96 Å. These structural parameters are in line with the preceding results [46]. Currently,
experimental data are available for the structure of V4C3 MXene; thus, it is interesting to
investigate its anodic properties for LIBs and SIBs using DFT calculations. To determine
the binding energies, the Li and Na are first adsorbed on V4C3 MXene. We selected four
stable sites on the surface of V4C3 for Li/Na adsorption. The calculated Eb of the adsorbed
four sites, site-1, site-2, site-3, and site-4 are 0.90 eV, 0.884 eV, 0.828 eV, and 0.897 eV,
respectively, for Li (x = 0.0625). Similarly, for Na (x = 0.0625) adsorption, the binding
energies are 1.21 (site-1) eV, 1.16 eV (site-2), 1.15 eV (site-3), and 1.20 eV (site-4) as depicted
in Figure 1b. Comparatively, the adsorbed site-1 possesses greater binding energy for both
Li/Na adsorptions. Thus, we picked site-1 for further adsorption of Li/Na loading. To
avoid the repulsive interactions between Li+−Li+ and Na+−Na+, we consider that both
surfaces (top/bottom) of V4C3 MXene acquire reliable binding strength and maximum
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Li/Na ion storage. Figure 1c depicts the decreasing binding energy curves with increasing
Li/Na concentrations at x = 2. A decreasing trend in Eb curves is noticeable due to the
Li+−Li+ and Na+−Na+ repulsive forces. A similar pattern was also discerned in other
2D materials upon Li/Na loading [47,48]. The various optimized Li/Na-loaded content
structures with front and side views are shown in Figure 2 and Figure S1, respectively.
Subsequently, we found the amount of charge transferred from Li/Na to V4C3 by employing
the Bader charge analysis. The amount of charge transfer from Li to V4C3 and Na to V4C3
is given in Table 1 [47–49]. A large amount of charge transfer from Li/Na to V4C3 confirms
the binding energy curve (Figure 1c). The decrease in binding energy means there is a
repulsion of charge due to Coulomb forces. It could be deduced from these results that
there is a charge transfer from Li/Na to the V4C3 surface [47–49]. This reveals that an
electrochemical reaction may occur between Li/Na and V4C3.
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with their Eb at x = 0.0625. (c) Eb with increasing Li/Na content. The numbers 1,2,3, and 4 represent
the adsorbed four sites site-1, site-2, site-3, and site-4, respectively.
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and 2. The red color balls are V, brown ones are C, green ones are Li, and dark green ones are Na.

3.2. Safety and Stability of Li/Na-Loaded V4C3

Volume alteration of the V4C3 monolayer was studied in the in-plane expansion of
the V4C3 single-layer (Figure S2) upon Li/Na adsorption. The results reveal that the lattice
parameters increased with Li/Na adsorption increments in both Li2xV4C3 and Na2xV4C3,
whereas the highest expected lattice expansions were about ~4.31% and 6.20%, respectively.
Noticeably, V4C3 revealed a lower volume alteration during adsorption/desorption of
Li/Na than graphite [50,51]. The energy fluctuation was computed and compared to time
duration at 300 K (25 ◦C) using AIMD simulations to estimate the change in the structure
of Li2xV4C3 and Na2xV4C3 (x = 0.125, 0.5, 1, 1.5, and 2) (Figure 3).
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The energy fluctuation reduced with increasing Li/Na loading in both Li2xV4C3 and
Na2xV4C3. However, the energy remained stable without any significant change over time,
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as illustrated in the straight line (Figure 3). That serves as an indication of the insignificant
change in the structures of Li2xV4C3 and Na2xV4C3 without any deformations during
Li/Na intercalation on the time scale of 1 fs to 5000 fs, which is in line with other reports
on 2D materials [52–54]. We executed our simulations up to 5 ps (5000 fs) at 300 K. These
steps are enough as the structure is retained at the end of 5 ps. It is noticed that the total
energy converges right after as the time duration increases. Furthermore, our results show
a low energy fluctuation.

3.3. Voltage and Li/Na Storage Capacity

To further examine the electrochemical behavior of V4C3 as a Li/Na host for LIBs and
SIBs, we calculated the open-circuit voltage (OCV). Here, we discuss the anodic behavior
of V4C3 for both LIBs and SIBs. During the lithiation and delithiation processes, the anode
reaction is indicated by V4C3 + xLi+ + xe− � LixV4C3. In this reaction, the charges (positive)
start the motion between electrolyte and electrodes while the electrons pursue their motion
through the external circuit of the cell. Ignoring the impact of temperature, pressure, and
entropy, the voltage profile for Li/Na-loaded V4C3 is plotted in Figure 4a. Since the voltage
profile depends on the binding energy, it decreases with the increase in Li/Na loading.
However, our average voltages are estimated at around 0.38 V and 0.14 V for LIBs and SIBs.
The computed voltages are underneath the described voltages of monolayers with Li/Na
adsorption, where LixSnC is 0.44 V, LixSi2H2 is 0.42 V, NaxSi2H2 is 0.64 V, NaxSnS2 is 1.0 V,
and NaxSnSe2 is 0.68 V [17,55,56]. Furthermore, our evaluated average voltages also satisfy
the commercial anode materials (i.e., 0.11 V for graphite and 1.5–1.8 V for TiO2) [57,58].
Therefore, the suitable OCV designates the monolayer V4C3 as the superior Li/Na host
material for LIBs and SIBs. Additionally, the amount of charge transfer is confirmed by
evaluating the charge density difference as shown in Figure 4b,c for Li and Na, respectively.
The isosurface marked with yellow exhibits the electron deficit, whilst the blue isosurface
indicates the accumulated electrons. The results showed the possible charge transfer from
Li/Na to the V4C3 surface and subsequently probable electrochemical reaction may occur
between Li/Na and V4C3 [47–49].
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The Li/Na storage capacity of 2D V4C3 is computed by employing the formula [59],
C = xF/MV4C3 . In this equation, the terms x, F, and MV4C3 define the Li/Na content loaded
on V4C3, the Faraday constant possesses a noted value of 26,801 mAh mol−1, and the
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molar mass is per formula unit V4C3, correspondingly. According to the above formula, the
Li/Na storage capacity is 223.5 mAhg−1 with a maximum loading of Li/Na content (x = 2).

3.4. Li/Na Activation Energy Barriers

In an electrochemical cell, the fast transportation of electrons and ions is desirable
in a rechargeable battery to reduce the charging and discharging time. It is necessary to
diffuse the metal ion at a rapid rate as it depends on the rate capability of the battery.
To investigate the energy surface of V4C3 with Li/Na loading, we adopted a technique
recognized as the climbing image nudged elastic band (CI-NEB) technique. This method is
useful for finding the activation barriers and the corresponding paths. In the case of the
monolayer V4C3 (2 × 2 × 1 supercell), we selected three minimum energy paths (MEPs),
path-I (1-2-1), path-II (2-3-2), and path-III (1-4-1), for the migration of Li/Na content
(x = 0.0625) as depicted in Figure 5. Five images are incorporated between the final and
initial sites for each path. The simulated activation barriers for Li migration along the
three pathways are 0.048 eV (path-I), 0.064 eV (path-II), and 0.073 eV (path-III). For Na
migration, the computed diffusion energy barriers along the three paths are 0.048 (path-
I), 0.023 eV (path-II), and 0.065 eV (path-III). The comparison of the results was made
with the prior attempts, such as with LixMoN2 (0.49 eV), NaxMoN2 (0.56 eV), LixVN2
(0.237 eV), NaxCP3 (0.356 eV), and LixB3S (0.32 eV). The MXene (V4C3) is dominant over
other 2D materials due to its high Li/Na charging-discharging rates and low activation
barriers. Moreover, we compared the diffusivity and voltages with some well-known
anodes, as depicted in Table 2. The simulated results predict low diffusion energy barriers
for Li/Na on V4C3 compared to graphitic materials (0.277~0.47 eV) [60,61], illustrating an
enhanced rate capability of the host (V4C3) for LIBs and SIBs.
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Table 2. Comparison of voltages and energy barriers with LixV4C3 and NaxV4C3.

Material Voltage Diffusion Barrier Energy Reference

NaxMoS2 0.56 V 0.08 eV
Method

[62]NEB
NaxW2C 0.43 V 0.019 eV NEB [59]
NaxSiS 0.10 V 0.18 eV CI-NEB [63]

LixWSe2 0.67 V 0.24 eV NEB [64]
LixSiH 0.42 V 0.18 CI-NEB [56]

2D KxPC 0.69 V 0.26 eV NEB [65]
2D KxSnC 0.41 V 0.17 eV NEB [66]

3D LixPBC2 0.48 V 0.29 eV CI-NEB [67]
3D LixSi2BN 0.27 V 0.44 eV NEB [68]

LixV4C3 0.38 V 0.048 eV CI-NEB This work
NaxV4C3 0.14 V 0.023 eV CI-NEB This work

3.5. Electronic Properties

Besides electronic conductivity, another essential attribute of anode materials is their
superior performance. This can be assessed thoroughly to study the electronic structure,
such as the density of states (DOS). Therefore, we performed the GGA-PBE calculations
to establish the density of states (DOS) and partial density of states (PDOS) of pristine
V4C3 MXene and Li/Na (x = 0.0625)-loaded V4C3 (Figure 6). Employing the GGA-PBE
technique, the DOS of the monolayer V4C3 was expected to be of a possible metallic nature
(Figure 6a). The metallic character of the bare V4C3 was further examined by PDOS. The
main contributions occur due to the state of V_d and C_p in the conduction band. However,
the other states show small contributions to electronic conductivity. The states, such as V_p
and C_s, mainly contribute to the valence band. These results justify the initial efforts made
on electronic structures of the V4C3 [46].

The PDOS is depicted in Figure 5b,c after loading the Li/Na content on the supercell
of V4C3 at an insignificant amount (x = 0.0625). Furthermore, the electronic structures of
Li/Na-loaded V4C3 are inspected at x = 0.0625. At low Li/Na loading, the metallicity of
the material is still maintained (i.e., Li_s or Na_s). Thus, the charge carrier transfer to the
conduction band is predicted to improve electronic conductivity. The enhanced electronic
conductivity suggests the better performance of V4C3 as an outstanding host material for
both LIBs and SIBs.
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4. Conclusions

In summary, a first-principle DFT simulation was utilized to predict the performance of
V4C3 MXene as an anode for LIBs and SIBs. To this end, the electronic properties, durability,
voltage, storage capacity, and activation barriers of Li/Na-loaded V4C3 were assessed. The
results displayed super performances of the Li2xV4C3 and Na2xV4C3 as anodes for LIBs and
SIBs, with an average potential of 0.38 V (for Li) and 0.14 V (for Na), as well as a reasonable
Li/Na storage capacity of 223 mAhg−1 and good cycle performance. In addition, V4C3
reveals very low diffusion energy barriers of 0.048 eV (for LIBs) and 0.023 eV (for SIBs),
indicating the possible fast lithiation/delithiation and sodiation/desodiation processes.
As the Li/Na content increased, the voltage decreased from 0.8 to 0.1 V for Li V4C3 and
from 0.5 to 0.05 V for NaV4C3. During Li and Na intercalation, the energy fluctuation vs.
time duration revealed a straight line, implying structural stability without any apparent
deformations. The process also stems from the prompt recovery of V4C3, structure stability
during Li/Na, and ion intercalation/extraction. The presented findings may create the
opportunity for further usage of V4C3 as an anode material for LIBs and SIBs.
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//www.mdpi.com/article/10.3390/nano12162825/s1, Figure S1: Side views of various models of
Li/Na loaded on V4C3 monolayer, Figure S2: Variation of lattice parameters with increasing Li/Na
content, and Voltage profile.
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