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A B S T R A C T   

The application of inorganic composites has proven to be an effective strengthening technique for 
shear-critical reinforced concrete (RC) beams. However, accurate prediction of the shear capacity 
of RC beams strengthened with inorganic composites has been a challenging problem due to its 
complex failure mechanism and the interaction between the internal and external shear re-
inforcements. Besides, the predictive capabilities of the existing models are not satisfactory. Thus, 
this research proposed machine learning (ML) based models for predicting the shear capacity of 
RC beams strengthened in shear with inorganic composites, for the first time, considering all 
important variables. The results of the analyses evidenced that the proposed ML models can be 
successfully used to predict the shear capacity of shear-critical RC beams strengthened with 
inorganic composites. Among the ML models examined herein, the extreme gradient boosting 
(xgBoost) model showed the highest prediction capability. The comparison among the predictions 
of the proposed xgBoost and existing models evidenced that the efficacy of the xgBoost model is 
superior to the existing models in terms of accuracy, safety, and economic aspects. Finally, 
reliability analysis is performed to calibrate the resistance reduction factors in order to attain 
target reliability indices of 3.5 and 4.0 for the proposed model.   

1. Introduction 

Recently, advanced composites have been increasingly utilized as efficient systems for the strengthening of deteriorated reinforced 
concrete (RC) elements. In this context, fiber reinforced polymer (FRP) has gained immense attention owing to its favorable advan-
tages over traditional strengthening systems, such as ease and speed of installation, high strength and stiffness-to-weight ratio, keeping 
the geometry of the constituent structure, and high corrosion resistance [1]. However, the presence of epoxy resin in the FRP 
strengthening systems results in some shortcomings including low compatibility with the concrete substrate, poor performance at 
elevated temperatures, and irreversibility [1,2]. Consequently, inorganic matrix-based composites, usually referred to as fabric 
reinforced cementitious matrix (FRCM) have been introduced to alleviate some of the problems associated with FRP counterparts [1]. 
The FRCM system (referred to as FRCM in subsequent occurrences in this paper), provides better concrete compatibility, higher 
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permeability, relatively low material cost, and superior behavior at high temperatures [1]. 
FRCM has been effectively applied for the flexural strengthening of RC beams and slabs [3–6], RC column confinement [7–10], and 

beam-column joints [11]. Similarly, several experimental investigations have been reported in the literature on the shear behavior of 
RC beams strengthened with FRCM [2,12–29]. Results from these experiments showed the efficacy of FRCM in enhancing the shear 
behavior of RC beams. The shear strengthening effectiveness of FRCM system varies with different variables such as the internal shear 
reinforcement ratio [20,26,30], strength of concrete substrate [16], strengthening configuration (continuous versus discontinuous) 
[17,27,31], wrapping scheme (full wrap, U-wrap, and side bonded) [24,32], and axial rigidity of FRCM composite [20,30,31]. 

Despite a considerable amount of experimental investigations on FRCM strengthening of RC beams, there are limited analytical 
studies aimed to understand their structural behavior, particularly those shear strengthened [2,25,27,33–35]. Accurate determination 
of the shear capacity of the strengthened beams is imperative for achieving a safe and economic design. However, the accuracy of the 
available shear models and guideline formulae is limited as these equations were mainly developed empirically based on predefined 
forms of equation. Moreover, the associated experimental datasets have mainly been generated for a limited number of important 
variables. Besides, these models generally fail to consider the interactions between FRCM and stirrups. This interaction has been 
reported in previous experiments on shear-critical RC beams strengthened with FRCM [20,26,30,36,37]. It is also known that the shear 
failure of FRCM strengthened RC beams involves a complicated mechanism due to the FRCM/stirrup interactions [30]; hence, such 
type of failure has not yet been completely addressed. Thus, it is crucial to develop an accurate and reliable shear model to avoid 
catastrophic shear failure that occurs without any prior signs of damage. 

The use of supervised machine learning (ML) techniques for modeling different civil engineering structures has recently acquired 
considerable attention owing to its ability to determine the relationship between the input variables and response(s) without prior 
assumptions of the underlying mathematical and physical models [38] in contrast to most empirical models. It has been successfully 
applied to solve different problems including damage assessment of bridges [39–42] and buildings [43], prediction of material 
properties [44–47], and load-carrying capacity and failure mode of RC members [48–58]. A review of the application of different ML 
techniques in structural engineering is conducted by Salehi and Burgueño [59]. 

Previously, single ML models were mainly adopted in the literature including artificial neural network [60–63], decision trees [64], 
and support vector machine [47,65]. Generally, a single learner might not be sufficient; thus, multiple base learners can be combined 
to generate a strong model. In this context, ensemble learners combine multiple base learners (aka weak learners) to produce a more 
stable and accurate prediction. In ensemble models, new predictions are obtained by combining predictions from each base learner. 
Ensemble models can be formed by training base learners in parallel (e.g., random forest) or sequentially (e.g., gradient boosting and 
extreme gradient boosting). Successful applications of ensemble learners have been reported in the literature (e.g. [48,66–71]). 
However, the literature lacks the application of ML models for predicting the shear capacity of FRCM-strengthened shear-critical RC 
beams. 

Thus, this study proposed an ML-based model, arguably for the first time, to predict the capacity of RC beams strengthened in shear 
with the FRCM system. Six different types of ML models are evaluated to propose the best ML model for predicting the shear capacity of 
the strengthened beams. The proposed ML-based model is compared with the existing models and guidelines. The results of the an-
alyses evidenced that the proposed model is superior to other existing models and guidelines in predicting the shear capacity of the 
FRCM-shear strengthened beams. Moreover, the reliability analysis is performed, for the first time, to calibrate strength reduction 
factors to achieve specified target reliability levels for the proposed ML model. 

2. Existing models and design guideline 

Fig. 1 shows the details of an RC beam strengthened in shear with FRCM applied in U-wrapping scheme. In most of the existing 
design models [2,25,27,33], the shear capacity of the FRCM-strengthened RC beam is evaluated as a simple superposition of the 
capacity provided by concrete, stirrups, and FRCM system, as follows: 

V = Vc +VS +Vf (1) 

Fig. 1. Details of RC beams strengthened in shear within the shear span with UW FRCM.  
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where Vc, VS, and Vf denote concrete, stirrups, and FRCM contributions to shear capacity, respectively. 
The existing shear models for RC beams strengthened in shear with FRCM are summarized in Table 1. The first four models [2,25, 

27,33] generally differ in the evaluation of the FRCM contribution. In two of the models; namely, Triantafillou and Papanicolaou [2] 
and Escrig et al. [25] models, the shear capacity provided by the FRCM system is determined as a function of the FRCM fiber properties, 
while ACI 549 [33] and Ombres [27] models are based on the properties of FRCM composite. Model-1 through Model-4 fail to consider 
the FRCM/stirrups interaction. Moreover, the models do not account for the variation of the shear crack with both applied load and 
axial tensile strain in the flexural reinforcement bars. As a result, Wakjira and Ebead [34] proposed an analytical procedure based on 
the modified compression field theory [72], in which the shear capacity of the FRCM-strengthened beams is determined in an iterative 
procedure considering the effect of FRCM/stirrups interaction and change in the shear crack angle. In another study [35], the same 
authors used a simplified compression field theory (SCFT) combined with probability and statistical techniques to develop a 
non-iterative simplified shear design equation for FRCM-strengthened RC beams. 

3. Development and normalization of database 

It is well understood that the first step in the ML model involves the collection of a relevant experimental database. In this study, a 
database of 173 FRCM-strengthened RC beams is developed based on an extensive literature review [2,12–20,22–29,31,73–77]. The 
experimental database covers a wide range of beam geometries, concrete strengths, internal shear and flexural reinforcements, FRCM 
types, strengthening configurations, wrapping schemes, and mechanical properties of FRCM. Three types of wrapping schemes are 
used in the database; namely, side bonded (SB) scheme in which the FRCM is bonded to the two sides of the beam, U-wrapped (UW) 
scheme in which the FRCM is applied to the bottom and two sides of the beam, and full wrapping (FW) schemes. The FRCM composite 
is applied to the top, bottom, and two sides of the beam in the FW scheme. 

Table 1 
Existing models for determining the shear capacity of FRCM-strengthened RC beams.  

Ref. Shear capacity models  

Triantafillou and Papanicolaou [2] (Model-1) Vf = ρf εeff Ef bwhfe 

hfe = 0.9d for rectangular beams; εeff = 0.5εfu 

(2) 

Escrig et al. [25] (Model-2) Vf = 2nf εeff Ef tf hfe(cotα+cotθ)sin2α 

εeff = k1

(
f
′

c
2/3

ρf Ef

)k2

εfu(f
′

c in MPa, Ef in GPa)

θ is assumed to be 45⁰;   
k1 = 0.02; k2 = 0.55 for side bonded or U-wrap scheme and  
k1 = 0.035; k2 = 0.650 for fully wrapped scheme. 

(3)  

(3a)   

Ombres [27] (Model-3) Vf = keεeff Efrcmρf bwd(cotα + cotθ) sinα(4) 

εeff =
ffdd

Efrcm

[

1 −
1
3

lesinα
min(0.9d; hw)

]

ffdd =
0.24

γfd
̅̅̅̅γc

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Efrcmkb
̅̅̅̅̅̅̅̅̅̅̅̅̅
fckfctm

√

tf

√

fctm = 0.30fck2/3 ; le =
[
Efrcmtf
2fctm

]0.5
; kb =

[
2 − wf/b

1 + wf/400

]0.5

; ke = 0.5  

b =

{
sf ; discontinuous FRCM configuration;

0.9dsin(α + θ)/sinα; continuous FRCM configuration

}

θ is assumed to be 45⁰; wf/b ≤ 0.33  
ke = effectiveness coefficient assumed to be 0.50;  
le = optimal bond length; kb = geometric coefficient 

(4)   

(4a)   

(4b) 

ACI 549 [33] (Model-4) Vf = nf Af σeff d 
σeff = εeff,FRCMEFRCM, εeff,FRCM = εFRCM,u ≤ 0.004 

(5)  

(5a)  

Wakjira and Ebead [34] (Model-5) V = β
̅̅̅̅

f
′

c

√

bwd+(Rsρsyfsy +ρf ff )bdcotθ 
θ is determined using SCFT[72] 

(6) 

Wakjira and Ebead [35] (Mobdel-6) v = 0.855(f
′

c)
0.38 ̅̅̅̅̅̅ρsx

4
√

+ 1.286(ρsyfsy)0.84
+ 3.608Kf

0.97(in MPa)
Kf = ρf Ef 

V = vbwd 

(7) 
(7a) 
(7b) 

where ρf is reinforcement ratio of FRCM, hfe is effective depth of FRCM jacket (Fig. 1), d is effective depth of the beam section, hw is height of the beam 

web, εeff , εfu, and Ef are effective strain, ultimate strain, and the elastic modulus of FRCM fibers, respectively, f
′

c is concrete compressive strength, nf is 
number of fabric layers, α is inclination of the fiber with respect to the longitudinal axis of the beam, FW, UW, and SB indicate wrapping scheme; 
particularly, full, U-, and side bonded wrapping, respectively, Af is total area of FRCM, σeff , εeff ,FRCM , εFRCM,u, and EFRCM are design tensile strength, 
effective strain, ultimate strain, and elastic modulus of the FRCM composite, Rs is FRCM/stirrups interaction factor, β is tensile stress factor of the 
cracked concrete, and ff is effective stress in FRCM.  
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The development of an accurate shear model requires the incorporation of all parameters affecting the shear capacity of FRCM- 
strengthened beams. Thus, in this research, a comprehensive set of parameters (a total of 17 parameters) are considered, unlike the 
existing models that were developed based on a limited number of parameters. These parameters are the width of the web (bw), 
effective depth of the section (d), shear span-to-effective depth ratio (a/d), concrete compressive strength (f

′

c), flexural reinforcement 
ratio (ρsx), yield strength of reinforcing flexural bars (fsx), reinforcement ratio of stirrups (ρsy), yield strength of stirrups (fsy), and 
characteristics of the FRCM system including the fabric type, tensile strength of the fibers (ffu), elastic modulus of the fibers (Ef ), 
effective depth (hfe) (Fig. 1), thickness of FRCM (tf ), number of FRCM strips (Nf ) and width of each strip (Wf ) (for discontinuous 
configuration), number of FRCM layers (nf ), and wrapping scheme. The variables Wf , Nf , nf , and tf are used in the model in terms of the 
FRCM reinforcement ratio (ρf ) as given by: 

ρf = 2
Nf Wf

a
nf tf

bw
(8) 

where a is the shear span. 
Thus, fourteen (14) parameters are used as the final input vectors of the ML model. Five different types of FRCM fabrics are included 

in the collected experimental database; namely, carbon (C), basalt (B), glass (G), polyparaphenylene benzobisoxazole (PBO), and steel 
(S). The G, C, PBO, B, and S fabrics are identified with values 1, 2, 3, 4, and 5 in the ML model. Similarly, all the three wrapping 
schemes; viz., FW, UW, and SB schemes are included in the database and assigned values of 1 for the SB and 2 for the UW/FW schemes. 

Table 2 presents a summary of the geometry and internal reinforcement properties of the experimental tests included in the 
database along with the descriptive statistics of each parameter, while Table 3 provides a summary of the characteristics of the 
strengthening system. Besides, Fig. 2 illustrates the statistical distribution of the database in terms of the input parameters versus 
experimental shear capacity (Vexp) plots. 

4. Overview of ML models 

This section presents an overview of the ML models used in this study. Six ML models are evaluated to establish a shear capacity 
prediction model for RC beams strengthened in shear with FRCM, as discussed below. 

Table 2 
Geometry and material characteristics of the beams included in the database.  

References Geometry Concrete Internal reinforcement 

bw (mm) d (mm) a/d f ′

c (MPa) ρsx (%) fsx (MPa) ρsy (%) fsy (MPa)

[12] 180 419 2.98 46.2 3.20 555 – – 
[22] 150 159 2.52 20 1.30 578 – – 
[23] 150 307.5 3.25 37.5 2.17 480 – – 
[24] 102 177 2.60 21.6–23.8 2.23 547 – – 
[25] 300 254 2.76 28–28.3 0.79 517.2 – – 
[26] 150 250 3.00 36 5.03 520 0.0–0.50 0.0–294 
[27] 150 225 2.78–3.0 29.2–38.3 1.86–2.79 457 0.23–0.32 446 
[28] 200 385 2.63 14–15.2 3.26 571 – – 
[29] 150 256 3.91 23.2 3.20 500 – – 
[13] 250 317 3.15 61 3.72 494 0.0–0.75 0.0–365 
[14] 102 177 2.6–3.6 20–23.8 2.20 547 – – 
[2] 150 272 2.85 25.3 1.50 575 0.14 275 
[15] 120 372 2.69 25.5–34 4.20 500 0.42 500 
[16] 152 248 3.00 29.1–42.9 3.04 690 0.27 276 
[17] 120 204 3.18 25.6–35.2 2.60 570 – – 
[18] 150 320 2.50 10.1–20.8 1.60 545 – – 
[19] 150 270 2.22 28 1.50 515 – – 
[20] 150 230 3.00 21.3–24.7 6.16 545 0.22–0.34 527 
[31] 150 289 1.90 30 1.39 595 – – 
[73] 150 242 3.31 45.95 4.33 526 0.27 526 
[74] 200 273 2.20 23.3–28 0.75–1.60 500 – – 
[75] 180 329.5 2.88 34 4.14 588 0.10–0.21 234 
[76] 180 334 1.6–3.1 34 2.61 584 – – 
[77] 180 334 2.60 34 2.61 584 – – 
Mean 160 276 2.72 30.5 2.69 543.8 0.09 129.0 
STD 41 66 0.46 10.1 1.32 44.3 0.16 203.5 
Minimum 102 159 1.60 10.1 0.75 457.2 0 0 
25% 150 230 2.50 23.3 1.60 515 0 0 
50% 150 272.7 2.69 29.1 2.60 545 0 0 
75% 180 320 3.00 35.2 3.72 578 0.21 276 
Maximum 300 419 4.90 61 6.16 690 0.75 527 

STD: standard deviation. 
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4.1. Support vector machine 

Support vector machine (SVM) is one of the supervised ML techniques with associated algorithms primarily applied for classifi-
cation problems using structural risk minimization principle [78]. It can also be used to efficiently perform non-linear regression by 
indirectly mapping the original input vectors into a very high-dimensional feature space, using kernel functions [78]. The class of SVM 
used for regression problems is known as support vector regression (SVR). Given a set of training sample 
{
(x1, y1), (x2, y2),…,

(
xn, yn

) }
, support vector regression estimate the regression function f(x) in Eq. (9) with a maximum deviation of ε 

from the observed response for the complete training dataset. 

f (x) =
∑n

i=1

(
αi − α∗

i

)
K(xi, x) + b (9)  

0 ≤ αi, α∗
i ≤ C (9a) 

Where K(xi, x) is a kernel function, b is the bias, αi and α∗
i are the Lagrange multipliers, and C is a regularization parameter. 

The widely used kernels are [79,80]:  

• Linear kernel: k
(
Xi,Xj

)
=
〈

Xi,Xj

〉
.  

• Polynomial kernel: k
(
Xi,Xj

)
=
(
γ
〈
Xi,Xj

〉
+ r
)d, γ > 0 and d as a polynomial degree.  

• Hyperbolic tangent (sigmoid) kernel: k
(
Xi,Xj

)
= tanh

(
γ〈Xi,Xj〉 + r

)
, γ > 0.  

• Radial basis function (RBF) kernel: k
(
Xi,Xj

)
= e−

1
2σ2‖Xi − Xj‖

2

, where σ is the width of the kernel. 

In this study, all the above four kernel functions are considered. The other two hyperparameters that greatly affect the SVM 
predictive capacity are the regularization parameter C and ε-insensitive zone [81]. These hyperparameters are also optimized in this 
study. 

Table 3 
Summary of the strengthening system included in the database.  

References Fabric type Ef (GPa) ffu (MPa) Wrapping scheme ρf (‰) hfe (mm)

[12] C 201–262 2950–3800 SB 0.20 377.1 
[22] B 31.9 623 SB 1.20–3.40 143.1 
[23] G, C 75–230 2300–3800 SB, UW 0.49–1.18 276.75 
[24] C 225 3800 SB, FW 1.86–5.59 159.3 
[25] B, G, C, PBO 90–270 2610–5800 FW 0.28–0.35 228.6 
[26] C 230 3800 SB 1.92–3.84 225 
[27] PBO 270 5800 UW 0.30–1.20 202.5 
[28] C 74–225 1400–4800 UW 1.86–3.80 238.5 
[29] G 75 574 FW 1.50–2.20 230.4 
[13] C 230 3800 SB 0.70–1.41 285.3 
[14] C 225 3800–4800 UW 1.22–6.80 159.3 
[2] C 225 3350 FW 0.60–1.30 244.8 
[15] G 75 574 UW 1.80–5.50 252 
[16] PBO 127 1664 UW 0.61–2.42 223.2 
[17] G 74 1102 SB, UW 0.20–1.20 183.6 
[18] C 225 3375 UW 0.60–2.60 220 
[19] C 240 4300 SB, UW 0.40–2.90 243 
[20] C, S 190–240 3800 UW 0.63–3.60 207 
[31] C, G, PBO 80–270 2600–5800 SB 0.40–0.63 260.1 
[73] PBO 270 5800 UW 0.34 300 
[74] S 190 2800 UW, FW 0.84–2.54 245.5 
[75] S 190 3000 SB, UW 1.87–3.76 229.5 
[76] S 190 3000 UW 1.87–3.76 300.6 
[77] S 190 3000 SB, UW 1.22–3.76 300.6 
Mean – 192.4 3393 – 1.69 249.4 
STD – 71.1 1496 – 1.42 59.8 
Minimum – 31.9 574 – 0.20 143.1 
25% – 190.0 2800 – 0.60 207.0 
50% – 225.0 3800 – 1.30 245.5 
75% – 240.0 4300 – 2.46 288.0 
Maximum – 270.0 5800 – 6.80 377.1 

STD: standard deviation; C: carbon; G: glass; PBO: polyparaphenylene benzobisoxazole, B: basalt; S: Steel; SB: side bonded; UW: U-wrapping; FW: full 
wrapping 
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4.2. Decision trees 

Decision tree aka classification and regression tree or CART for short is a non-parametric supervised ML algorithm that resembles a 
flowchart-like structure. The CART algorithm predicts the response following the decision from the root node to the leaf, in which each 
internal node or decision node denotes the test, while each leaf or terminal node represents the outcome of the test. 

It can be used to solve both classification and regression problems in the form of a tree structure [64]. In regression, given n 
observations of training dataset 

{
(x1, y1), (x2, y2),…,

(
xn, yn

) }
, decision tree iteratively splits the training data into a set of terminal 

nodes. The algorithm then fits a regression tree in each node using the feature, which produced the highest information gain at each 
node [64]. The main hyperparameters of the CART; namely, the maximum depth of the tree, minimum number of samples required to 
split the internal node, minimum number of samples at the leaf node, and maximum number of input features at each node are 
optimized to determine the best model. 

The decision tree model is easy to interpret and visualize. However, a single tree may not be adequate to effectively learn the model. 
Furthermore, decision tree suffers from the problem of generalization and high variance and bias. The ensemble of CARTs can be used 

Fig. 2. Correlation between the input parameters and the shear capacity.  
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to overcome these problems. 

4.3. Random forest 

Random forest is an ensemble model that constructs several decision trees in parallel as a committee to generate independent 
outputs, and finally computes their mean to generate the final output in order to ultimately increase the prediction accuracy of the 
underlying algorithms [82]. In this sense, random forest follows a two-step process: (a) construct T number of decision trees (esti-
mators) and (b) compute the arithmetic mean of the predictions across the estimators to generate the final prediction in the case of 
regression and a majority vote in the case of classification problems. In growing the trees, random forest regression (RFR) uses 
randomly selected input data with replacement (bootstrap samples) from the training dataset. Moreover, an optimal number of input 
features is chosen at each node. Random forest uses different hyperparameters including the number of estimators, which is the 
maximum number of trees that the algorithm uses to make the prediction, maximum number of randomly chosen features to be 
included at each node split, minimum number of samples at the leaf node, and maximum depth that a tree can grow. 

4.4. Extremely randomized trees 

Extremely randomized trees (ERT) algorithm is another type of tree ensemble learners that can be applied to both classification and 
regression problems [83]. Its main difference with the random forest is that it uses the complete training dataset to grow the trees, 
unlike random forest that uses bootstrap samples. Besides, ERT adds randomization in selecting the split points of each node [83]. 
Similar hyperparameters are used for the extremely randomized trees as that of random forest. 

4.5. Gradient tree boosting 

Gradient tree boosting [84] is a class of boosting ensembles, which combines weak learners, particularly decision trees in a 
sequential form to form a powerful and accurate predictive model. Each decision tree in the sequence learns and improves on the 
previous one essentially by focusing on the observations with the largest error or residuals in the previous trees. Given n training 
examples, X =

{(
xi, yi

) }n
i=1, in which xi ⊆ Rm are feature vector with m input features and yiϵR are the response variable, gradient tree 

boosting regression (GTBR) finds the predictions (ŷi) as the weighted sum of base learners. Mathematically, the GBTR can be written 
as: 

ŷi = FT(xi) =
∑T

t=1
ft(xi) (10)  

where T is the total number of estimators (trees) and ft is the set of all possible decision trees. 
The algorithm for the GBTR can be summarized as follows [84]:  

1) Initialize the function with a constant. 

F0(x) = arg min
ρ

∑n

i=1
L(yi, ρ) (11)  

where L is the loss function.  

2) From t = 1 to T, repeat the following:  

a) Compute the negative gradient of the loss function, given by: 

git = −
∂L[yi,Ft− 1(xi) ]

∂Ft− 1(xi)
, i = 1, 2, …, n (12)  

a) Fit a new decision tree (ft) using the training set {(xi, git) }
n
i=1.  

b) Compute the multiplier ρt, given by: 

ρt = arg min
ρ

∑n

i=1
L(yi,Ft− 1(xi) + ρft(xi)) (13)  

a) Update the ensemble model: 
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Ft(x) = Ft− 1(x)+ vρtft(x) (14)  

where v is the learning rate.  

3) Output FT(x). 

The gradient boosting hyperparameters are tuned to produce accurate predictions. 

4.6. Extreme gradient boosting 

Extreme gradient boosting (xgBoost), proposed by Chen and Guestrin [85], is an enhanced form of gradient boosting. Extreme 
gradient boosting introduces a regularization parameter (Ω) to prevent model complexity, and thus, reduce overfitting [85]. Hence, 
the objective function to be optimized in xgBoost consists of two parts in which the second term Ω penalizes the complexity of the 
model and avoids overfitting, as given below [85]. 

Obj =
∑n

i=1
L(ŷi , yi)+

∑T

t=1
Ω(ft) (15)  

Ω(ft) = γT +
1
2

λ‖ω‖
2 (16)  

Where γ is the complexity of each leaf, λ is the penalty parameter, and ‖ω‖ is the vector score on the leaves. 

5. Hyperparameter optimization 

Following the normalization of the database and identification of the input features and response variable, the database is randomly 
divided into the train and test datasets including 70% and 30% of the complete dataset, respectively. The ML models are then trained 
using the training set, while the test dataset is used to finally appraise their performance. Several combinations of the hyperparameters 
are examined to optimize each model using grid search in conjunction with K-fold cross-validation. In the K-fold cross-validation 
approach, the data is randomly partitioned into 10 parts of equal sizes, and then the K − 1 folds are used to train the model, while 
the remaining one-fold is used to validate the model (K = 10 is adopted in this study). Thus, each group, in turn, serves as a validation 
set and the cross-validation is repeated K times. The performance of the model is then determined as the average of the results from the 
K data folds. Four statistical performance indices; namely, mean absolute percentage error (MAPE), mean absolute error (MAE), root 
mean squared error (RMSE), and coefficient of determination (R2) are used in this study, as given by Eqs. (17a)–(17d), respectively. 

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (17a)  

MAE =
1
N
∑N

i=1
|yi − ŷi | (17b)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(17c)  

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (17d)  

Where y is the observed value, ŷ is the predicted value, and y is the arithmetic mean of y values. 

Table 4 
Optimized hyperparameters.  

Models Parameters 

SVR Kernel = RBF, C = 50, ε = 0.00001, gamma = ’auto’ 
CART Maximum depth = 7, maximum features = 8, minimum sample leaf = 1, minimum sample split = 3 
RFR Number of estimators = 6, maximum features = 6, maximum depth = 10, minimum sample leaf = 1, minimum sample split = 3 
ERT Number of estimators = 12, maximum features = 13, maximum depth = 8, minimum sample leaf = 1, minimum sample split = 2 
GTBR Number of estimators = 138, maximum features = 8, learning rate = 0.15, maximum depth = 5, subsample = 0.3, minimum sample split = 2, 

minimum sample leaf = 1 
xgBoost Number of estimators = 440, learning rate = 0.5, subsample = 0.4, maximum depth = 8, reg lambda = 1, reg alpha = 0, γ = 0, colsample by 

node = 1.0, colsample by level = 0.9, colsample by tree = 1  
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6. Results and discussion 

The ML models are trained using the optimized hyperparameters presented in Table 4. The performance of ML models is presented 
in Table 5 in terms of the MAPE, MAE, RMSE, and R2. In addition, Fig. 3a–f compare the predicted (Vpred) and experimental (Vexp) shear 
capacities based on the proposed ML models in which the solid line shows the perfect match between Vexp and Vpred, while the hidden 
lines denote the 20% overestimation or underestimation of the shear capacity. As can be seen in these figures, the predictions provided 
by all models are in good agreement with the corresponding experimental values (R2 ≥ 0.943 for all models). It can also be observed 
from the same figures that the xgBoost model produced the best prediction for the shear capacity compared to all other models. A 
strong correlation exists between the experimental and predicted shear capacities based on the xgBoost model as evidenced by the 
value of R2 of 0.995 and 0.984 for the training and test datasets, respectively, as can be seen in Fig. 3f and Table 5. The GTBR model 
was the second best model in predicting the shear capacity of the strengthened beams, as shown in Fig. 3e and Table 5. 

Moreover, performance evaluation of the ML models showed a very small difference between the experimental shear capacities and 
the corresponding predicted values using the xgBoost model in the training and test phases as indicated by the RMSE of 5.94 kN and 
10.96 kN, respectively. For the SVR, CART, RFR, ERT, and GTBR models, these values were 14.55 kN, 12.23 kN, 12.21 kN, 7.03 kN, 
and 6.78 kN, respectively, for the training dataset and 19.29 kN, 20.98 kN, 19.48 kN, 16.61 kN, and 13.55 kN, respectively, for the 
test dataset (Table 5). Thus, the xgBoost model showed the highest predictive capability with the highest R2 and least MAE, MAPE, and 
RMSE followed by the GTBR model (Table 5). The superior predictive performance of xgBoost, as an improved version of gradient tree 
boosting, is associated with the enhanced aspects of the loss function and loss optimization. On the contrary, the CART model showed 
the least predictive performance on the test dataset with the lowest R2 (R2 = 0.943) and highest RMSE (20.98 kN), as shown in 
Fig. 3a–f and Table 5. 

The prediction performance of the proposed xgBoost model is compared with that of the existing models and design guideline 
formulae discussed in Section 3. As discussed earlier, Ombres [27] and ACI 549.4R [33] models are based on the properties of the 
FRCM composite, while Triantafillou and Papanicolaou [2], Escrig et al. [25], and Wakjira and Ebead [34,35] models are based on the 
fiber properties. Out of the total number of beams included in the database, EFRCM is not reported for 78 beams. As a result, the Ombres 
[27] and ACI 549.4R [33] models are validated against 95 beams only. Moreover, Wakjira and Ebead [34,35] models are proposed for 
FRCM-strengthened RC beams with a/d > 2.5, thus they are evaluated against 128 beams out of 173 beams. Fig. 4a–f show the scatter 
plots of the experimental versus predicted shear capacities based on the existing models. As can be observed in these figures, Model-1 
overpredicted the shear capacity for large number of beams, while the shear capacity for most of the beams are underestimated by 
Model-2, -3, and -4, as shown in Fig. 4a–d. However, the predictions provided by Model-5 and Model-6 are scattered around the equity 
line that shows the perfect match between the predicted and experimental shear capacities, as shown in Figs. 4e and 4f. As shown in 
Fig. 4a–f, Model-5, which is based on the modified compression field theory provided the best predictions among the existing models 
followed by Model-6. 

Fig. 5 compares the experimental shear capacity and the corresponding predicted values based on the existing and proposed 
xgBoost models. As can be observed in this figure, the predictions provided by the proposed model lies within ± 20% error margin for 
all beams except two, while most of the predictions are highly overestimated or underestimated for the existing models. Besides, the 
statistical performance indices for the existing and proposed xgBoost models are listed in Table 6 and further illustrated in Fig. 6 in 
terms of the MAE and RMSE. 

The proposed xgBoost model substantially reduced the RSME by 91%, 90%, 92%, 92%, 79%, and 85% compared to Model-1, -2, -3, 
-4, - 5, and -6, respectively, as shown in Fig. 6 and Table 6. Similarly, the proposed model provided a significantly lower MAE 
compared to others, as shown in Fig. 6 and Table 6. The mean of the Vpred/Vexp ratio is 0.99 for the proposed xgBoost model compared 
with mean values of 1.28, 0.66, 0.53, 0.49, 0.94, and 0.9 for Model-1 through Model-6, respectively, as listed in Table 6. The pre-
dictions provided by the proposed xgBoost model was less scattered as evidenced by the standard deviation (STD) for the Vpred/Vexp 

ratio value of 0.06 compared to STD values of 0.81, 0.26, 0.25, 0.21, 0.22, and 0.28 for Model-1, -2, -3, -4, -5, and -6, respectively, as 
listed in Table 6. 

The prediction capability of the proposed xgBoost model and existing models was also evaluated in terms of the Modified Demerits 
Points Classification (MDPC) method [86], in which the penalty assigned to each value of the Vpred/Vexp ratio is used to evaluate the 
model’s accuracy, safety, and economic aspects as per Table 7. Fig. 7a–g compare the prediction capability of the proposed and 
existing models based on the MDPC method in which ‘AS’, ‘C’, ‘EC’, ‘D’, and ‘ED’, donate the appropriate safety, conservative, extra 
conservative, dangerous, and extra dangerous regions, respectively. As can be seen in these figures, the predictions provided by 

Table 5 
Performance indices for the proposed models.  

Models Training dataset  Test dataset 

MAPE (%) MAE (kN) RMSE (kN) R2 MAPE (%) MAE (kN) RMSE (kN) R2 

SVR  6.69  7.97 14.55  0.968 10.01 13.76  19.29  0.952 
CART  4.58  6.86 12.23  0.978 9.36 14.56  20.98  0.943 
RFR  7.09  8.60 12.21  0.978 7.96 12.82  19.48  0.951 
ERT  3.83  4.35 7.03  0.993 7.37 11.44  16.61  0.964 
GTBR  3.50  4.30 6.78  0.993 8.48 10.50  13.55  0.976 
xgBoost  1.84  2.62 5.94  0.995 6.16 8.23  10.96  0.984  
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Model-1 [2] are most scattered and biased with the least predictive capacity, while the predictions of Model-4 [33] mainly lie in the 
conservative and extra conservative regions. Among the existing models, Model-5 [34], which is based on the modified compression 
field theory provided the best predictions followed by Model-6, as can be seen in Fig. 7a–g. Table 8 presents the number of beams in 
each range and the total penalty as per the MDPC method [86] for all models. As can be seen in Fig. 7a–g and Table 8, the predictions 
for 98% of the beams, based on the proposed xgBoost model lie in the appropriate safety region compared to only 22%, 18%, 16%, 3%, 
51%, and 34% of the beams for Model-1, -2, -3, -4, -5, and -6, respectively. Thus, the proposed xgBoost model exhibited superior 
predictions with a total penalty of 12 compared to the total penalty of 559, 220, 125, and 190 for Model-1, -2, -5, and -6, respectively, 
as listed in Table 8. Model-3 and Model-4 are evaluated against 95 beams only and are associated with a total penalty of 144 and 157, 
respectively, as listed in Table 8. This observation evidenced that the proposed xgBoost model is capable to yield accurate and safe 
predictions with superior prediction capability compared to the existing models. Generally, the prediction of the proposed model is in 
an appropriate safety region for all ranges of the input variables, as can be observed in Fig. 8 that shows the input factors versus the 
predicted-to-experimental shear capacities ratio plots. Compared to RC beams without stirrups, the predictions for RC beams internally 
reinforced with stirrups are more accurate (Figs. 8g and 8h). Moreover, the proposed model showed a better prediction accuracy for 

Fig. 3. Comparison of experimental and predicted shear capacities of the strengthened beams based on (a) SVR, (b) CART, (c) random forest, (d) 
extremely randomized trees, (e) gradient tree boosting, and (f) xgBoost. 
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RC beams strengthened with side bonded scheme compared to U-wrap or full wrap scheme, as shown in Fig. 8l. 

7. Reliability evaluation 

Reliability analysis is used to estimate the level of safety of a system in terms of its failure probability. Accordingly, structural 
reliability analysis measures the performance of structures. In this study, the structural reliability analysis is performed for the pro-
posed xgBoost model to calibrate the resistance (strength) reduction factors to achieve specified target reliability indices. 

The reliability index (β) can be given by Eq. (18), while Eq. (19) defines the safety margin (g) in terms of the resistance (R) and load 
effect (Q): 

β = φ− 1(1 − PF) (18)  

g = R − Q (19)  

where PF is the probability of failure and φ− 1 is the inverse of standard normal cumulative distribution. 
Thus, the probability of failure is the probability that a particular combination of R and Q will result in a failure state which 

corresponds to a negative value of g. The ultimate limit state load cases as per ACI 318 [87] is used in this study considering only dead 

Fig. 4. Predictions of the shear capacity based on the existing models.  
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Fig. 5. Comparisons of shear capacity predictions based on the existing and proposed xgBoost models with ± 20% error bounds.  

Table 6 
Performance of different shear models.  

Model Model ID Sample size RMSE (kN) MAE (kN) Mean ofVpred/Vexp STD ofVpred/Vexp 

Triantafillou and Papanicolaou [2] Model-1 173 87.02 65.30  1.28  0.81 
Escrig et al. [25] Model-2 173 81.60 60.66  0.66  0.26 
Ombres [27] Model-3 95 97.17 73.86  0.53  0.25 
ACI 549.4R [33] Model-4 95 97.21 77.83  0.49  0.21 
Wakjira and Ebead [34] Model-5 128 37.84 27.97  0.94  0.22 
Wakjira and Ebead [35] Model-6 128 50.29 37.60  0.90  0.28 
xgBoost – 173 7.80 4.30  0.99  0.06 

STD: standard deviation. 

Fig. 6. Comparison of the predictions of the shear models in terms of the RMSE and MAE.  

Table 7 
Modified Demerits Points Classification criteria [86].  

Vpred/Vexp Classification Penalty 

> 2 Extra dangerous 10 
[1.176–2] Dangerous 5 
[0.869–1.176] Appropriate safety 0 
[0.5–0.869] Conservative 1 
≤ 0.5 Extra conservative 2  
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load (DL) and live load (LL): 

ϕRn ≥ 1.4DL (20a)  

ϕRn ≥ 1.2DL + 1.6LL (20b) 

The following steps are followed in this study to determine the reliability index: 

Fig. 7. Prediction capability of the proposed and existing models based on the MDPC method [86].  
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• Load distribution: both dead load and live load are assumed to follow a normal distribution [88]. According to Szerszen and Nowak 
[88], the bias factor for dead load is taken as 1.05 with a coefficient of variation (COV) of 10% for cast-in-place concrete, whereas 
the bias and COV for a 50 year live load are taken as 1.0% and 18%, respectively. To determine the nominal live load, dead load to 
total load ratios (α = DL/(DL+ LL)) of 0–1.0 at 0.1 intervals are considered in this study. A total of 250 million simulations was 
generated using Monte Carlo simulation for each α. The actual mean is determined as the product of the nominal mean and bias.  

• Resistance distribution: the experimental data is used to determine the bias factor and COV of the resistance distribution, while the 
nominal resistance distribution is determined based on the governing load combination in Eqs. (20a) and (20b).  

• The reliability index is then determined in terms of the failure probability in Eq. (18) where PF is determined based on the ultimate 
limit state in Eq. (19), where Q is the sum of dead load and live load. 

The consequences of failure determines the choice of the target reliability index [89]. According to [89], a value between 3.5 and 
4.0 is taken as βT for brittle/sudden failure. Thus, two levels of target reliability (βT = 3.5 and βT = 4.0) are considered in this study in 
order to represent the range of target reliability indices in design manuals for shear failure. The resistance reduction factor is calibrated 
using the least square method: 

H =
1
n
∑n

i=1
(βi − βT)

2 (21)  

where H is the least square mean, βi is the reliability at a particular ϕ, and βT is the target reliability, as defined earlier. 
Several values of resistance (strength) reduction factor (ϕ) ranging from 0.80 to 0.95 at 0.01 intervals were considered. Similarly, 

the load ratio ranged between 0.0 and 1.0 at 0.1 intervals. The results of the reliability analysis for the proposed xgBoost model are 
illustrated in Figs. 9a and 9b in terms of reliability indices versus resistance reduction factor and load ratio, respectively. As can be seen 
in these figures, the reliability index varies with the load ratio and ϕ. Most of the reliability indices are greater or equal to 3.0, as shown 
in Figs. 9a and 9b. When the live load (LL) is zero, there is a sudden increase in the reliability index as the load factor for LL is higher 
than that for DL, Eq. (20b). A similar trend can be observed in previous study [88]. 

Moreover, Fig. 10 illustrates the Hϕ versus ϕ responses for target reliability indices of 3.5 and 4.0. As can be observed in this 
figure, Hϕ initially decreased with an increase in ϕ and subsequently increased with an increase in ϕ. The minimum Hϕ corresponds to 
resistance reduction factors of 0.91 and 0.87 for target reliability levels of 3.5 and 4.0, respectively, as shown in Fig. 10. Thus, the 
calibrated resistance reduction factor is 0.91 to achieve a target reliability index of 3.5, while a reduction factor of 0.87 is selected to 
yield βT = 4.0 for the developed xgBoost model. A lower strength reduction factor of 0.75 is used in the ACI 318 [87] for the shear 
failure of pristine RC beams compared to ϕ = 0.91 for xgBoost model proposed in this study for FRCM-strengthened RC beams to 
achieve the same target reliability level of 3.5. A design example is presented in the following section using the calibrated resistance 
reduction factor (ϕ = 0.91) for βT = 3.5. 

8. Design example 

Consider a simply supported shear deficient rectangular RC beam of dimensions 180 × 400 mm (b× h) and a clear span of 1000 mm 
subjected to two factored point loads of 200 kN on each clear span. Fig. 11 shows the cross-sectional dimensions and reinforcement 
details of the beam in the shear span. Assuming the following material properties and internal reinforcement, the FRCM strengthening 
amount needs to be designed. 

Table 8 
Predictive performance of the models based on the Modified Demerits Points Classification [86].  

Shear model Sample 
size 

Vpred/Vexp > 2 [1.176–2] [0.869–1.176] [0.5–0.869] ≤ 0.5 Total 
penalty 

Criteria Extra 
dangerous 

Dangerous Appropriate 
safety 

Conservative Extra 
conservative 

Penalty 10 5 0 1 2 

Triantafillou and 
Papanicolaou [2] 

173 N 26 45 38 54 10 559 
Penalty 260 225 – 54 20 

Escrig et al.[25] 173 N – 7 32 83 51 220 
Penalty – 35 – 83 102 

Ombres [27] 95 N – – 15 16 64 144 
Penalty – – – 16 128 

ACI 549.4R [33] 95 N – – 3 27 65 157 
Penalty – – – 27 130 

Wakjira and Ebead [34] 128 N – 15 65 46 2 125 
Penalty – 75 – 46 4 

Wakjira and Ebead [35] 128 N – 25 44 53 6 190 
Penalty – 125 – 53 12 

xgBoost 173 N – 2 169 2 – 12 
Penalty – 10 – 2 – 

N: number of samples in the specified range. 
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Material properties and internal reinforcement details:  

• Concrete: f
′

c = 30MPa,  
• Yield strength of longitudinal bars: fsx = 550MPa,  
• Yield strength of transverse bars: fsy = 350MPa,  
• Flexural reinforcement: 6 bars with 20 mm diameter arranged in two layers (Fig. 11),  
• Internal transverse reinforcement: 8 mm stirrups spaced at d/2 = 165mm (Fig. 11), and  
• FRCM properties: uni-directional steel FRCM fabrics with elastic modulus and tensile strength of 190 GPa and 3000 MPa, 

respectively [90]. 

The factored load (VQ) at the supports is 200 kN. The shear capacity of the unstrengthened beam is 169 kN using the SCFT. The 

Fig. 8. Input factors versus Vpred/Vexp ratio plots.  
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design is carried out as follows:  

i. Provide one layer of externally bonded U-wrapped steel FRCM reinforcement with nominal fiber thickness of 0.084 mm 
(Table 9) and determine the shear capacity of the beam using the proposed xgBoost model, which is available at: https://github. 
com/twakjira/FRCM-shear-strengthened-beam. Based on this design, the predicted nominal shear capacity of the beam is 
206 kN. Considering the resistance reduction factor of 0.91 calibrated to achieve a reliability level of 3.5 as in ACI 318 [87], the 
factored resistance (Vr) = ϕVn = 0.91 × 197kN = 179kN, which is less than the applied factored load (200 kN). 

Fig. 9. Reliability index for the proposed xgBoost model.  

Fig. 10. Calibration of strength reduction factors to attain target reliability indices of βT = 3.5 and βT = 4.0 for the proposed xgBoost model.  

Table 9 
Design example for FRCM-strengthened beam.  

Internal reinforcement FRCM properties Resistance 

ρsx(%) fsx(MPa) ρsy(%) fsy(MPa) Fabric type Wrapping scheme tf (mm) nf ρf (‰) hfe(mm) Vn (kN) ϕVn (kN) 

3.17 550 0.34 350 Steel UW 0.084 1 0.933 297 197 179 
3.17 550 0.34 350 Steel UW 0.084 2 1.867 297 248 225 
3.17 550 0.34 350 Steel UW 0.169 2 3.756 297 290 263  
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ii. Increase the FRCM reinforcement: by increasing the FRCM fabric layers to two, the nominal shear capacity of the beam is 
increased to 248 kN, as listed in Table 9. Thus, Vr = ϕVn = 0.91 × 248kN = 225kN > VQ, which implies that the provided 
strengthening system is adequate to resist the applied shear.  

iii. Check for ductile failure: using section analysis the flexural capacity of the beam is determined to be 256 kN.mm, which 
corresponds to a load capacity of 256 kN.  

iv. Comparing the results in steps (ii) and (iii), it can be observed that the flexural capacity is larger than the shear leading to shear 
failure, which is not ductile; hence, increase the FRCM reinforcement by increasing the nominal thickness of the fabric. Using 
two layers of steel fabrics with a nominal thickness of 0.169 mm, the nominal shear capacity is increased to 290 kN (Table 9), 
which corresponds to Vr = ϕVn = 0.91 × 290kN = 263kN, which is greater than the load capacity for flexural failure 
(256 kN). 

Therefore, use two layers of steel FRCM fabrics with a nominal thickness of 0.169 mm, tensile strength of 3000 MPa, and elastic 
modulus of 190 GPa. The designed steel fabric is known by its commercial name as GeoSteel G1200 [90] (Fig. 11). 

9. Conclusions 

Despite several experimental studies aimed to understand the structural response of RC beams strengthened with FRCM as inor-
ganic composites, there are limited analytical or numerical studies, particularly for shear strengthened RC beams. To this end, data- 
driven ML-based models to predict the shear capacity of RC beams strengthened with inorganic composites are presented in this paper 
for the first time. Six ML algorithms; namely, support vector machine, classification and decision trees, random forest, extremely 
randomized trees, gradient tree boosting, and extreme gradient boosting are evaluated to predict the shear capacity of FRCM shear 
strengthened RC beams. The developed ML models account for several input parameters that characterize the beam geometry, concrete 
strength, internal shear and flexural reinforcements, and FRCM system. The following conclusions can be drawn from this study:  

• The developed ML-based models are shown to be effective in predicting the shear capacity of FRCM-strengthened RC beams. 
Among the ML models, xgBoost is the most efficient algorithm in predicting the shear capacity of FRCM-strengthened RC beams 
with stable and accurate predictions. The experimental shear capacity and predicted values based on the xgBoost model showed the 
least margins of error and strongest correlation with a coefficient of determination (R2) of 0.995 and 0.984, for the training and test 
datasets, respectively.  

• Among the existing models, Model-5, which is based on the modified compression field theory resulted in the highest predictive 
accuracy. The comparisons of the proposed models with the existing formulae confirmed the superiority of the xgBoost model over 
other models. Moreover, the proposed xgBoost model resulted in the most stable, accurate, and safe predictions. The average of the 
predicted to experimental shear capacity based on the xgBoost model was 0.99 (STD = 0.06) compared to the mean values of 1.28 
(STD = 0.81), 0.66 (STD = 0.26), 0.53 (STD = 0.25), 0.49 (STD = 0.21), 0.94 (STD = 0.22), and 0.90 (STD = 0.28) for the existing 
models.  

• In addition, the proposed xgBoost model substantially reduced the MAE and RMSE compared to the existing models. For instance, 
the RSME for Model-1, -2, -3, -4, -5, and -6 were 87.02 kN, 81.60 kN, 97.17 kN, 97.21 kN, 37.84 kN, and 50.29 kN respectively. 
The corresponding value for the proposed xgBoost model was 7.80 kN, which represents 91%, 90%, 92%, 92%, 79%, and 85% 
reduction in the RMSE relative to Model-1, -2, -3, -4, -5, and -6, respectively.  

• Furthermore, the safety, accuracy, and economical aspects of the predictions provided by the proposed and existing models were 
compared using the Modified Demerits Point Classification method. The proposed xgBoost model provided safe and accurate 
predictions compared to all other models. Model-1 highly overpredicted the shear capacity of the strengthened beams with more 
scatter, while Model-4 highly underpredicted the shear capacity of the strengthened beams. The predictions provided by the 
proposed xgBoost model lie in the appropriate safety region for 98% of the beams compared to only 22%, 18%, 16%, 3%, 51%, and 
34% of the beams for Model-1, -2, -3, -4, -5, and -6, respectively.  

• The findings of this study showed the successful implementation of machine learning techniques to predict the shear capacity of 
FRCM-strengthened shear-critical RC beams. 

Fig. 11. FRCM-strengthened beam section.  
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• Finally, the reliability analysis was performed to calibrate the resistance reduction factors that meet two different levels of target 
reliability indices (βT = 3.5 and 4.0) for shear capacity prediction of FRCM-strengthened beams using the proposed xgBoost model. 
Based on the results of the analysis, resistance reduction factors of 0.91 and 0.87 are calibrated to achieve target reliability levels of 
3.5 and 4.0, respectively. A design example is provided using ϕ = 0.91 for βT = 3.5. 

The results of this study showed that the existing empirical model and guideline equations are generally not capable of accurately 
predicting the shear capacity of FRCM-strengthened RC beams, and thus should be modified to account for all the key design pa-
rameters that influence the shear capacity of the strengthened beams. 
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